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a b s t r a c t 

A worldwide multi-scale interplay among a plethora of factors, ranging from micro-pathogens and indi- 

vidual or population interactions to macro-scale environmental, socio-economic and demographic condi- 

tions, entails the development of highly sophisticated mathematical models for robust representation of 

the contagious disease dynamics that would lead to the improvement of current outbreak control strate- 

gies and vaccination and prevention policies. Due to the complexity of the underlying interactions, both 

deterministic and stochastic epidemiological models are built upon incomplete information regarding the 

infectious network. Hence, rigorous mathematical epidemiology models can be utilized to combat epi- 

demic outbreaks. We introduce a new spatiotemporal approach (SBDiEM) for modeling, forecasting and 

nowcasting infectious dynamics, particularly in light of recent effort s to establish a global surveillance 

network for combating pandemics with the use of artificial intelligence. This model can be adjusted to 

describe past outbreaks as well as COVID-19. Our novel methodology may have important implications 

for national health systems, international stakeholders and policy makers. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The World Health Organization (WHO) reported on December

1, 2019 cases of pneumonia of undetected etiology in the city of

uhan, Hubei Province in China. A novel coronavirus (CoViD-19)

as identified as the source of the disease by the Chinese authori-

ies on January 7, 2020. Eventually, the International Committee on

axonomy of Viruses on 11 February, 2020 named the Severe Acute

espiratory Syndrome Coronavirus as SARS-CoV-2 [1] . Concerns on

ublic health were dispersed on a global scale about potentially

nfected countries. The virus might have been generated by animal

opulations and transmitted via the Huanan wholesale market [2–

] albeit not proven, while clinical findings demonstrated that in-

ernational spread was caused mainly by commercial air travel [4–

] . The WHO declared SARS-CoV-2 a pandemic on March 11, 2020.

hroughout the globe, huge effort s were in progress to limit the

pread of the virus and find medications and vaccines. However,

he scientific community could not fully comprehend the dynam-

cs of the spread [8–10] . 

Several outbreaks of infectious diseases have occurred in the

ast with immense impact on public health. For instance, the Se-
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ere Acute Respiratory Syndrome (SARS) occurred in 2003, the

wine flu in 2009 and the Middle East Respiratory Syndrome Coro-

avirus (MERS) in Saudi Arabia in 2012, which still survives at

 sub-critical level causing some peaks [11–14] . Additionally, the

bola epidemic emerged between 2014 and 2016 and caused over

8,0 0 0 cases in West Africa [15] . Its temporal decline coincided

ith the outbreak of Zika virus in Brazil [16] . Consequently, the

utbreak of severe pathogens such as the aforementioned, require

lobal interdisciplinary efforts in order to decode key epidemiolog-

cal features and their transmission dynamics, and develop possible

ontrol policies. 

Insights from mathematical modelling can be extremely benefi-

ial. Indeed, dealing with infectious diseases from a mathematical

ngle could reveal inherent patterns and underlying structures that

overn outbreaks. Stakeholders utilize available data from current

nd previous outbreaks in order to forecast infection rates, iden-

ify how to restrict the spread of diseases, and eventually intro-

uce vaccination policies that will be most effective. Epidemiology

s essentially a biology discipline concerned with public health and

s such, it can be heavily influenced by mathematical theory. Most

henomena observed at population level are often very complex

nd difficult to decode just by observing the characteristics of iso-

ated individuals [17] . Statistical analyses of epidemiological data

elp to characterize, quantify and summarize the way diseases

pread in host populations. Interestingly, mathematical models ap-

ear as efficient ways to explore and test various epidemiologi-
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cal hypotheses, mostly due to the existence of ethical and practi-

cal limitations when deducting experiments on living populations.

Models provide conceptual results on e.g., the basic reproduction

number, threshold effects or herd immunity. One additional ele-

ment of epidemiological modeling is the link with data via sta-

tistical methods. Although simple epidemiological models are of-

ten used, viral and bacterial infections commonly require increased

complexity. There are many models in the literature on single epi-

demics, endemic diseases and spatiotemporal disease dynamics.

The aim is to develop robust public health policies in defining op-

timal vaccination strategies. 

Our study presents for the first time a new stochastic math-

ematical model for describing infectious dynamics and tracking

virus temporal transmissibility on 3-dimensional space (earth).

This model can be adjusted to describe all past outbreaks as well

as CoViD-19. As a matter of fact, it introduces a novel approach to

mathematical modelling of infectious dynamics of any disease, and

sets a starting point for conducting simulations, forecasting and

nowcasting investigations based on real-world stereographic and

spherical tracking on earth. 

In short, a single epidemic outbreak as opposed to disease en-

demicity occurs in a time span short enough not to have the de-

mographic changes perturbing the dynamics of contacts among in-

dividuals. The most popular mathematical model in this category is

the Susceptible-Infected-Recovered (SIR) epidemic model, in which

all individuals of a finite population interact in the same man-

ner. Individuals at time t are susceptible (S), infected (I) or re-

covered (R). The final size of the epidemic will strongly depend

upon the initial conditions of the number of susceptible and in-

fected individuals as well as the infection parameter. The final size

distribution of the simple SIR model in most cases is bimodal pre-

senting two local maxima. This bimodal feature is caused by two

likely scenarios; either the epidemic dies out quickly infecting few

individuals, or it becomes long-lasting and substantial. However,

stochasticity in the form of random walk transmission mechanisms

related to spreading processes has never been explored in epidemi-

ology widely [18–20] . For example, in computer science, some arti-

ficially created viruses propagate randomly by a plethora of online

communication channels. To the best of our knowledge, we are the

first to scrutinize extensively the role of random walks in epidemic

spreading and provide the proper mathematical arsenal to model it

robustly. Interestingly, random walk paths converge in distribution

to Brownian motions [21] . In this work, we assume that a biologi-

cal carrier of virus Y is at position X ( t ) at any given time t . We call

this the inaugural contamination focal point on earth. 

The path defined by its motion is considered infectious. X t , t ≥ 0

is supposed to follow a Brownian motion on a 2-dimensional

sphere S 2 of radius a , i.e the sphere in R of dimension 3. We

consider this a proxy for earth, spreading via spherical and stere-

ographic coordinates. Next, using the Laplace-Beltrami operator

we construct the Brownian motion infectious process on the 2-

dimensional sphere, using spherical and stereographic coordinates

as local coordinates. We evaluate explicitly certain quantities re-

lated to generated diffusion processes. In what follows, we com-

pute the transition and transmission density for the X t , t ≥ 0, and

we derive the stochastic differential equations that govern the in-

fectious disease dynamics for X t , t ≥ 0 in those local coordinates.

We continue with the calculation of expectations of outbreak exit

times in time and space of specific domains, possessing certain

symmetries. Moreover, the moment generating functions are pro-

duced. In mathematical terms, we derive the stochastic reflection

principle on S 2 for the infectious disease transmission process. Re-

flection points can be extremely useful to calculate the distribution

functions of certain temporal quantities related to the dynamics.

Additionally, we evaluate boundary local times of first hitting of

the outbreak for an epidemic or a hybrid endemic-epidemic model.
ence, biological carrier(s) of a virus (infectious individuals) are

racked at any given time on earth coordinates, and the path(s)

efined by each infectious dynamical motion. In the following two

hapters we present a thorough literature review and a state-of-

he-art analysis in order to pose clearly our novel approach opti-

ally among the various methodologies followed thus far. 

The rest of paper is organized as follows: Section 2 provides a

rief literature review, past and recent, of mathematical epidemi-

logy. Section 3 presents the state-of-the-art, and focal concepts

nd term definitions required to introduce our novel model. It also

tates which category the new model falls into, according to the

fficial taxonomy of the various methodologies already utilized so

ar in the relevant literature. Next, section 4 exposes in detail the

athematical formulation of the model. Lastly, Section 5 discusses

roposed policies and future paths of research, and concludes. 

. Literature review 

The beginning of mathematical modeling in epidemiology dates

ack to 1766, when Bernoulli developed a mathematical model to

nalyze the mortality of smallpox in England [22] . Bernoulli used

is model to show that inoculation against the virus would in-

rease the life expectancy at birth by about three years. A revi-

ion of the main findings and a presentation of the criticism by

’Alembert, appears recently in Dietz and Heesterbeek [23] . Lam-

ert in 1772 as well as Laplace in 1812 extended the Bernoulli

odel by incorporating age-dependent parameters [24,25] . How-

ver, further systematic research was absent until the beginning of

he twentieth century with the pioneering work of Ross in 1911,

hich is considered the inaugural study of modern mathemati-

al epidemiology [26] . Ross used a set of equations to approxi-

ate the discrete-time dynamics of malaria via a mosquito-based

athogen transmission [27] . Importantly, the past century has wit-

essed the rapid emergence and development of substantial theo-

ies in epidemics. In 1927, Kermack and McKendrick [28] derived

he celebrated threshold theorem, which is one of the key results

n epidemiology. It predicts – depending on the transmission po-

ential of the infection – the critical fraction of susceptibles in the

opulation that must be exceeded if an epidemic is to occur. Ker-

ack and McKendrick published three seminal papers, establish-

ng what is called the deterministic compartmental epidemic mod-

lling [29–31] , wherein they addressed the mass–action incident in

isease transmission cycles, assuming that the probability of infec-

ion of a susceptible is analogous to the number of its contacts

ith infected individuals. This deterministic representation was in

ine with the Law of Mass Action [32] introduced by Guldberg and

aage in 1864 and renders the basic most commonly used SIR

odel, which assumes homogeneous mixing of the contacts and

onservation of the total population and low rates of interaction.

acDonald extended Ross’s model to explain in depth the trans-

ission process of malaria. Utilizing modern computer power, the

athematical model for the dynamics and the control of mosquito-

ransmitted pathogens provided robust results in real-word appli-

ations. Overall, the family of models they introduced is known by

ow as Ross–MacDonald models [33] . Moreover, the classic work

f Bartlett [34] examined models and data to explore the factors

hat determine disease persistence in large populations. Arguably, a

andmark book on mathematical modelling of epidemiological sys-

ems was published by Bailey [35] and highlighted the importance

f public health decision making [36] . Given the diversity of infec-

ious diseases studied since the middle of the 1950s, an impressive

ariety of epidemiological models have been developed. In addi-

ion, we should highlight the 19th century works by Enko [37–39] ,

ho first published a probabilistic model for describing the epi-

emic of measles, yet in discrete time. This model is the precur-

or of the popular Reed-Frost chain binomial model introduced by
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rost in 1928 in biostatistics’ lectures at Johns Hopkins University

40] . It assumes that the infection spreads from an infected to a

usceptible individual via a discrete time Markov chain, and set the

asis of contemporary stochastic epidemic modelling, on which we

ill also focus in our present work. 

Moving to the 21st century, we mention some interesting

orks; Xing et al., [41] introduced a mathematical model on H7N9

nfluenza among migrant and resident birds, domestic poultry and

umans in China. In this study they concluded that temperature

easonality might be a source of the disease, yet they suggested

or the first time that controlling markets could help controlling

utbreaks. Lee and Pietz [42] developed a mathematical model

or Zika virus using logistic growth in human populations. Sun

t al., [43] proposed a transmission model for cholera in China and

bserved that reducing the spread requires extensive immuniza-

ion coverage of the population. Nishiura et al. [44] developed a

ika mathematical model which exhibited the same dynamics as

engue fever, and Khan et al. [45] introduced a model whereby

 saturation function describes well the typhoid fever dynamics.

ui and Zhang [46] , developed a modified SIR model demonstrat-

ng nonlinearities in recovery rates. Their model exhibited a back-

ard bifurcation phenomenon, which in turn implied that a plain

eduction of the reproduction number less than one, was not ren-

ered sufficient to stop the disease spread. Li et al. [47] constructed

 multi-group brucellosis model and found out that the best way

o contain the disease is to avoid cross infection of animal pop-

lations. Moreover, Yu and Lin [48] identified complex dynamical

ehaviour in epidemiological models and particularly the existence

f multiple limit cycle bifurcations using a predictor-prey model.

hi et al. [49] proposed an HIV model with a saturated reverse

unction to describe the dynamics of infected cells. Additionally,

onyah et al. [50] developed a SIR model to study the dynamics of

uruli ulcer and suggested policy measures to control the disease.

astly, Zhang et al. [51] developed a model with a latent period of

he disease wherein the person is not infectious with saturated in-

idence rates and treatment functions, called SEIR epidemic model.

. State-of-the-art analysis and definitions 

The SIR model is the basic one used for modelling epidemics.

ermack and McKendrick created the model in 1927 [29] in which

hey considered a fixed population with only three compartments,

usceptible (S), infected (I) and recovered (R). There are a large

umber of modifications of the SIR model, including those that in-

lude births and deaths, the SIR without or with vital dynamics,

 model where upon recovery there is no immunity called SIS and

here immunity lasts for a short period of time, called SIRS model.

urthermore, a model where there is a latent period of the disease

nd where the person is not infectious is indentified as SEIS and

EIR respectively, or where infants can be born with immunity is

amed MSIR. Also, we mention the herd immunity model [52,53] . 

Overall, the transmission mechanism from infective populations

o susceptibles is not well-comprehended for many infectious dis-

ases. Interactions in a population are very complex, hence it is

xtremely difficult to capture the large scale dynamics of disease

pread without formal mathematical modeling. An epidemiological

odel uses microscopic effects - the role of an infectious individ-

al - to forecast the macroscopic behavior of disease spread via a

opulation. 

Deterministic models do not incorporate any form of uncer-

ainty and as such, they can be thought to account for the mean

rend of a process, alone. On the other hand, stochastic models de-

cribe the mean trend as well as the variance structure of the un-

erlying processes. Two basic types of stochasticity are commonly

sed: demographic and environmental. Within the context of de-

ographic stochasticity, all individuals are subject to the same po-
ential events with the exact same probabilities but differences in

he fates of population individuals. Disease propagation in large

opulations obeys to the weak law of large numbers, thus effects

f demographic stochasticity can be decreased significantly, and

any times a deterministic model becomes more suitable. How-

ver, random events cannot be neglected and a stochastic model

an be equally appropriate. Environmental stochasticity involves

ariations in the probability associated with an exogenous event.

odel parameters of stochastic models are characterized by proba-

ility distributions, whilst for fixed parameter values deterministic

odels will always produce the same results, except when chaotic

ehaviour emerges. 

In the classic SIR model it is assumed that the individuals leave

he infectious class at a constant rate and even if this assumption

eems most intuitive, it is not always the most realistic, regard-

ng the duration individuals stay infective [54–56] . Usually, ran-

om variables describe the time of recovery since infection. For

iscrete random variables (e.g., number of individuals) it is easy

o define a probability distribution, whilst for continuous variables

he time of recovery since infection is modelled. Often, in this last

ategory it is not possible to fix a probability as there is infinity

f such times. Hence, we first define a cumulative distribution and

hen express a probability density function from this cumulative

istribution. Infectious periods are exponentially distributed with

 mean infectious duration, however as frequently real data does

ot back up this assumption, we rather use constant duration. To

ccount for such more realistic distributions, the assumption that

he probability of recovery does not depend on the time since in-

ection, is often relaxed. Then, a common method of stages can be

sed to replace the infective compartment by a series of successive

nes, each with an exponential distribution of the same parameter,

eading to a total duration of the infectious period modelled by a

amma distribution [17] . 

Epidemic models presented above describe rapid outbreaks dur-

ng which normally the host population is assumed to be in a con-

tant state. For longer periods, deaths and births feed the popula-

ion with new susceptibles, possibly allowing the disease to per-

ist at a constant prevalence. This state renders an endemic state

n the population [17] . In this case, we account for birth and death

ate of the host population, whereby a good approximation is that

he population size N = S + I + R is constant. When determinis-

ic dynamics prevail a threshold on the value of the basic repro-

uction number exists. Conditions regarding this number guaran-

ee the disease persistence, but in epidemic models such persis-

ence can be dependent upon the magnitude of the stochastic fluc-

uations around the steady-state equilibrium. Furthermore, many

imes diseases are in an endemo-epidemic state. As endemic mod-

ls exhibit damped oscillations which converge toward an endemic

quilibrium, this equilibrium can be weakly stable with perturba-

ions (intrinsic or extrinsic), which excite and sustain the inherent

scillation behaviour [57] . This behaviour is due to heterogeneity

hat is added temporally to the coefficient of transmission, spa-

ially in the context of meta-populations, or by cohorts for age-

tructured models. Lastly, heterogeneity can be added statistically

n case of stochastic versions. For example, a stochastic version of

he endemic SIR model can utilize a Markov process, in which the

uture is independent of the past given the present, with a state

pace defined by the number of individuals in each of the three

lasses, and changes in the state space characterized by probabilis-

ic transition events. And as future events are independent on past

vents, the time to the next event follows a negative exponential

istribution. 

Over the years, a vast number of mathematical modeling ap-

roaches has been proposed, tackling the problem from differ-

nt perspectives. The prevailing taxonomy proposed by Siettos and

usso [58] encompasses three general categories: (1) statistical
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Fig. 1. Updated taxonomy of mathematical models for contagious diseases (source [58] ). The new stochastic model lays in the intersection of categories (1) statistical 

methods and (2) state-space models of epidemic spreads. 
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methods of outbreaks and their identification of spatial patterns

in real epidemics, (2) state-space models of the evolution of a “hy-

pothetical” or on-going epidemic spread, and (3) machine learning

methods, all utilized also for predictability purposes vis-à-vis an

ongoing epidemic. In particular, the first category includes i) re-

gression methods [59–64] , ii) times series analysis, namely ARIMA

and seasonal ARIMA approaches [65–68] , iii) process control meth-

ods including cumulative sum (CUSUM) charts [69–74] and expo-

nentially weighted moving average (EWMA) methods [75,76] , as

well as iv) Hidden Markov models (HMM) [77,78] . The second cat-

egory incorporates i) “continuum” models in the form of differen-

tial and/or (integro)-partial differential equations [79–82] , ii) dis-

crete and continuous-time Markov-chain models [83–85] , iii) com-

plex network models which relax the hypotheses of the previous

stochastic models that interactions among individuals are instanta-

neous and homogeneous [86–91] , and iv) Agent-based models [92–

95] . Lastly, the third category includes well-known machine learn-

ing approaches widely used in computer science, such as i) arti-

ficial neural networks [96] , ii) web-based data mining [97,98] and

iii) surveillance networks [99] , to name a few. 

For the first time in the relevant literature, we introduce a new

stochastic model laying in the intersection of categories (1) and (2),

called “Stereographic Brownian Diffusion Epidemiology Model

(SBDiEM) ”. Fig. 1 presents a graphical overview of the models uti-

lized so far, and the “positioning” of our novel approach for mod-

elling infectious diseases. 

4. Mathematical formulation 

4.1. Preliminaries 

4.1.1. The n -Sphere S n 

Definition 4.1. Let n ∈ N 

∗ = { 1 , 2 , 3 , . . . } . The n -dimensional sphere

S n with center (c 1 , . . . , c n +1 ) and radius a > 0 is (defined to be)

the set of all points x = (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 satisfying (x 1 −
c 1 ) 

2 + . . . + (x n +1 − c n +1 ) 
2 = a 2 . Thus, 

S n = { (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 
∣∣ (x 1 − c 1 ) 

2 + . . . 

2 2 
+(x n +1 − c n +1 ) = a } w
.1.2. Stereographic projection coordinates 

efinition 4.2. We consider R 

n ⊂ R 

n +1 to be the hyperplane given

y x n +1 = 0 . For convenience, we will let ( x 1 , x 2 , . . . , x n , x n +1 )
e coordinates on R 

n +1 and ( ξ1 , ξ2 , . . . , ξn ) be coordinates

n R 

n ⊂ R 

n +1 . Let S n = { (x 1 , x 2 , . . . , x n +1 ) ∈ R 

n +1 
∣∣x 2 

1 
+ . . . + x 2 n +

(x n +1 − a ) 2 = a 2 } . The stereographic projection coordinates of S n is

he map � : S n − { 0 , 0 , . . . , 2 a } → R 

n given by 

( x 1 , x 2 , . . . , x n , x n +1 ) = 

(
2 ax 1 

2 a − x n +1 

, . . . , 
2 ax n 

2 a − x n +1 

)
. 

This map defines coordinates ( ξ1 , ξ2 , . . . , ξn ) on S n so that the

oint ( x 1 , x 2 , . . . , x n , x n +1 ) of S n has coordinates ( ξ1 , ξ2 , . . . , ξn ) ,

here 

1 = 

2 ax 1 
2 a − x n +1 

, . . . , ξn = 

2 ax n 

2 a − x n +1 

. 

he inverse map is given by 

x 1 = 

4 a 2 ξ1 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, . . . , x n = 

4 a 2 ξn 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, 

 n +1 = 

2 a 
(
ξ 2 

1 + . . . + ξ 2 
n 

)
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 
. 

.1.3. Spherical coordinates 

The points of the 2-sphere with center at the origin and radius

 may also be described in spherical coordinates in the following

ay: x 2 = a sin ϕ, where 0 ≤ ϕ < 2 π . 

S 2 = { x = ( a cos θ sin ϕ, a sin θ sin ϕ, a cos ϕ ) ∈ R 

3 
∣∣0 ≤ θ < 

 π, 0 ≤ ϕ ≤ π} i.e. 

 1 = a cos θ sin ϕ 

 2 = a sin θ sin ϕ 

 3 = a cos ϕ, 

here 0 ≤ θ < 2 π and 0 ≤ ϕ ≤ π . 
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.1.4. The Laplace-Beltrami operator 

efinition 4.3. A C ∞ differentiable manifold of dimension n is a

et M together with a family of one-to-one maps x α: U α → M of

pen sets U α ⊂ R 

n into M such that 

1. 
⋃ 

α x α(U α) = M. 

2. For each pair α, β with x α(U α) 
⋂ 

x β (U β ) = W 	 = ∅ , we have

that x −1 
α (W ) , x −1 

β
(W ) are open sets in R 

n and that x −1 
β

◦
x α, x −1 

α ◦ x β are C ∞ differentiable maps. 

3. The family { U α , x α} is maximal relative to conditions 1 and 2. 

Each pair ( x α , U α) is called a coordinate chart on M . (For more

etails see [100] ) 

efinition 4.4. A C r function f : M → R , where M is a C ∞ differ-

ntial manifold is a function f , such that f ◦ x α : U α → R is C r for

very cordinate chart ( x α , U α) on M . 

Let g = 

[
g i j 

]
be the Riemmanian metric tensor on a Riem-

anian manifold M . This means that, in any coordinate chart

( x 1 , x 2 , . . . , x n ) on M , the length element can be computed by 

 s 2 = 

n ∑ 

j=1 

n ∑ 

i =1 

g i j d x i d x j . 

iven local coordinates (x 1 , . . . , x n ) , we can easily compute the

atrix g = 

[
g i j 

]
by the inner product 

 i j = 

∂x a 

∂x i 
· ∂x a 

∂x j 

see [100] ). We denote by g ij the elements of the inverse matrix

 

−1 . 

efinition 4.5. The Laplace-Beltrami operator 
M 

associated with

he metric g is defined by 

M 

f = 

1 √ 

det(g) 
·
∑ 

i 

∂ 

∂x i 

( √ 

det(g) ·
∑ 

j 

g i j ∂ f 

∂x j 

) 

, (4.1) 

here f is a C r function on M . 

In this work we are interested in the case where M = S 2 ,

.e., the 2 -dimensional sphere. We will denote the corresponding

aplace-Beltrami operator of S 2 by 
2 or just 
 using the spherical

oordinates. If M = S 2 , i.e. 

 = S 2 = { x = ( a cos θ sin ϕ, a sin θ sin ϕ , a cos ϕ ) ∈ R 

3 | 0 ≤ θ < 

2 π, 0 ≤ ϕ ≤ π} , 
e have 

 θ = 

∂x 

∂θ
= ( −a sin θ sin ϕ, a cos θ sin ϕ, 0 ) 

 ϕ = 

∂x 

∂ϕ 

= ( a cos θ cos ϕ, a sin θ cos ϕ, −a sin ϕ ) 

M = S n = 

{ 

x = 

( 

4 a 2 ξ1 

ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, . .

x ξk 
= 

∂x 

∂ξk 

= 

( 

−8 a 2 ξ1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

−8 a 2 ξk +1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, . . . , 
(ξ

1

 = 

[
g i j 

]
= 

( 

x θ x θ x θ x ϕ 
x ϕ x θ x ϕ x ϕ 

) 

, 

.e., 

 = 

[
g i j 

]
= 

( 

a 2 sin 

2 ϕ 0 

0 a 2 

) 

nd 

 

−1 = 

[
g i j 
]

= 

⎛ 

⎝ 

1 

a 2 sin 2 ϕ 
0 

0 

1 
a 2 

⎞ 

⎠ . 

ence the Laplace-Beltrami operator of a smooth function f on S 2 

s 

2 f = 

1 

a 2 sin ϕ 

2 ∑ 

i =1 

∂ 

∂x i 

( 

a 2 sin ϕ 

2 ∑ 

j=1 

g i j ∂ f 

∂x j 

) 

, (4.2) 

here x 1 = θ and x 2 = ϕ. Thus 

2 f = 

1 

a 2 sin ϕ 

2 ∑ 

i =1 

∂ 

∂x i 

[
a 2 sin ϕ 

(
g i 1 f θ + g i 2 f ϕ 

)]
r 

2 f = 

1 

a 2 sin ϕ 

(
f θθ

sin ϕ 

+ f ϕ cos ϕ + f ϕϕ sin ϕ 

)
. (4.3) 

n case where the function f is independent of θ the Laplace-

eltrami operator of f is 

2 f = 

1 

a 2 sin ϕ 

(
f ϕ cos ϕ + f ϕϕ sin ϕ 

)
. (4.4) 

Generally the Laplace-Beltrami operator of a smooth function f

n S n is 

n f = 

1 √ 

det ( g ) 
·

n ∑ 

i =1 

∂ 

∂θi 

( √ 

det ( g ) ·
n ∑ 

j=1 

g i j ∂ f 

∂θ j 

) 

, (4.5) 

here 

et (g) = a 2 n 
n ∏ 

k =2 

( sin θk ) 
2(k −1) 

, (4.6) 

 

i j = 0 , if i 	 = j, g ii = 

1 

a 2 sin 

2 θi +1 · . . . · sin 

2 θn 

and θn = ϕ. 

If f is independent of θ1 , θ2 , ..., θn −1 , the Laplace Beltrami oper-

tor of f is 

n f = 

1 

a 2 

(
( n − 1 ) cot ϕ · ∂ f 

∂ϕ 

+ 

∂ 2 f 

∂ϕ 

2 

)
. (4.7) 

Using Stereographic projection coordinates, if M = S n , i.e. 

4 a 2 ξn 

2 
1 

+ . . . + ξ 2 
n + 4 a 2 

, 
2 a 
(
ξ 2 

1 + . . . + ξ 2 
n 

)
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 

) 

∈ R 

n +1 

∣∣∣∣∣, ξ1 , . . . , ξn ∈ R 

}

e have 

 

−8 a 2 ξk −1 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, 
4 a 2 

(∑ n 
i =1 ξ

2 
i 

− 2 ξ 2 
k 

+ 4 a 2 
)

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

, 

8 a 2 ξn ξk 

. . + ξ 2 
n + 4 a 2 ) 2 

, 
16 a 3 ξk 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

)
. 
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Hence 

g ii = 

16 a 4 

(ξ 2 
1 

+ . . . + ξ 2 
n + 4 a 2 ) 2 

and g i j = 0 , if i 	 = j. 

Thus we have 

g ii = 

(ξ 2 
1 + . . . + ξ 2 

n + 4 a 2 ) 2 

16 a 4 
, g i j = 0 , if i 	 = j, and √ 

det (g) = 

(4 a 2 ) n (
ξ 2 

1 
+ . . . + ξ 2 

n + 4 a 2 
)n . 

Therefore, the Laplace Beltrami operator of a smooth function f on

S 2 , using Stereographic projection coordinates is 


2 f = 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 

(
∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

)
(4.8)

4.1.5. Brownian motion on a riemannian manifold 

Definition 4.6. Let M be a Riemannian manifold (see definition

1.5 ) and 
 its corresponding Laplace-Beltrami operator. Any func-

tion P ( t, x, y ) on (0, ∞ ) × M × M satisfying the differential equa-

tion 

∂P 

∂t 
− 1 

2 


x P = 0 , (4.9)

where 
x is 
 acting on the x-variables and the initial condition

P ( t, x, y ) → δx (y ) as , t → 0 

+ (4.10)

(where δx ( y ) is the delta mass at x ∈ M ) is called a fundamental

solution of the heat Eq. (4.9) on M . 

The smallest positive fundamental solution of the heat

Eqs. (4.9) and (4.10) is the heat kernel on M . It has been proved by

J. Dodziak [101] , that the heat kernel always exists, and is smooth

in ( t, x, y ). Moreover the heat kernel possesses the following prop-

erties. 

1. Symmetry in x, y , that is 

P (t, x, y ) = P (t, y, x ) 

2. The semigroup identity: For any s ∈ (0, t ) 

P (t, x, y ) = 

∫ 
M 

P (s, x, z) P (t − s, z, y ) dμ(z) , 

where d μ is the area measure element of M. In polar coor-

dinates dμ = 

√ | g | dθ1 . . . θn , where θn = ϕ and | g | is given by

(4.6) . 

3. The total mass inequality, i.e., for all t > 0 and x ∈ M ∫ 
M 

P (t, x, y ) dμ(y ) ≤ 1 . (4.11)

In case where M is compact and smooth, there is only one so-

lution of (4.9) and (4.10) which is positive and satisfies ∫ 
M 

P (t, x, y ) dμ(y ) = 1 (4.12)

Definition 4.7. A process X t , t ≥ 0 is a Markov process if for any

t, s ≥ 0, the conditional distribution of X t+ s , given the informa-

tion about the process up to time t , is the same as the conditional

distribution of X t+ s , given X t . 

Definition 4.8. The Brownian motion X t , t ≥ 0, on a Riemannian

manifold M is a Markov process with transition density function

P ( t, x, y ) the heat kernel associated with the Laplace-Beltrami op-

erator. 

Remark 4.1. In the case where M = S n , n ≥ 2, the transition den-

sity function P ( t, x, y ) of the Brownian motion X t depends only on t

t

nd d ( x, y ), the distance between x and y . Thus in spherical coordi-

ates it depends on t and the angle ϕ between x and y . Hence, the

ransition density function of the Brownian motion can be written

s 

 (t, x, y ) = p(t, ϕ) , (4.13)

here p ( t , ϕ) is the solution of 

∂ p 

∂t 
= 

1 

2 


n p = 

1 

2 a 2 

(
( n − 1 ) cot ϕ · ∂ p 

∂ϕ 

+ 

∂ 2 p 

∂ϕ 

2 

)
(4.14)

nd 

lim 

→ 0 + 
aA n −1 p(t, ϕ) · sin 

n −1 (ϕ) = δ(ϕ) . (4.15)

ere δ( · ) is the Dirac delta function on R and A n denotes the area

f the n-dimensional sphere S n with radius a . It is well known that

102] 

 n = 

2 π
n +1 

2 a n 

�( n +1 
2 

) 
, (4.16)

here �( · ) is the Gamma function. More precisely 

 n = 

2 π
n +1 

2 a n 

( n −1 
2 

)! 
for n odd (4.17)

 n = 

2 

n ( n 
2 

− 1)! π
n 
2 a n 

(n − 1)! 
for n even (4.18)

emark 4.2. The fact that S n is a compact and smooth manifold

mplies that (4.14) and (4.15) has a unique positive solution which

lso satisfies 
 

S n 
P (t, x, y ) dμ(y ) = 1 . (4.19)

urthermore, as t → ∞ , P ( t, x, y ) approaches the uniform density

n S n , i.e. P ( t, x, y ) → c , where 

 = 

1 

A n 
. 

In the sequel for typographical convenience we will write X t 

nstead of { X t } t ≥ 0. 

.2. Transition density function p(t, ϕ) of X t , t > 0 

In this section we shall represent the transition density func-

ion p ( t , ϕ) of the position X ( t ) of a biological carrier (infected in-

ividual) of virus Y at any given time t . For the next sections we

uppose that the infected individual is at position X ( t ) at any given

ime t , namely the path defined by its motion is considered infec-

ious. X t , t ≥ 0 describes a Brownian motion on a 2-dimensional

phere S 2 of radius a . From the (4.14), (4.15) and (4.17) the transi-

ion density function p ( t , ϕ) of X t is the unique solution of 

∂ p 

∂t 
= 

1 

2 a 2 sin ϕ 

(
∂ 2 p(t, ϕ) 

∂ϕ 

2 
sin ϕ + 

∂ p 

∂ϕ 

cos ϕ 

)
(4.20)

nd 

lim 

→ 0 + 
2 πa 2 sin ϕ · p(t, ϕ) = δ(ϕ) . (4.21)

The solution of the diffusion equation 

∂K(t, ϕ) 

∂t 
= 

1 

sin ϕ 

(
cos ϕ 

∂K(t, ϕ) 

∂ϕ 

+ sin ϕ 

∂ 2 K(t, ϕ) 

∂ϕ 

2 

)
(4.22)

ith initial condition 

lim 

→ 0 + 
2 π sin (ϕ) K(t, ϕ) = δ(ϕ) (4.23)
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s given by the function 

(t, ϕ) = 

1 

4 π

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√ 

2 t 
)
P 0 n ( cos ϕ) . (4.24)

ee [103] . Here P 0 n , n = 0 , 1 , 2 , . . . , is the associated Legendre poly-

omials of order zero, i.e. 

 

0 
n (x ) = 

1 

2 

n n ! 
· d n 

dx n 

[
(x 2 − 1) n 

]
(4.25) 

his fact implies the following 

roposition 4.1. The transition density function of the Brownian mo-

ion X t , t ≥ 0 on S 2 with radius a it is given by the function 

p(t, ϕ) = 

1 

4 πa 2 

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√ 

t 

a 

)
P 0 n ( cos ϕ) 

(4.26) 

roof. First we prove that p ( t , ϕ) satisfies the differential equa-

ion 

∂ p 

∂t 
= 

1 

2 a 2 sin ϕ 

(
∂ 2 p(t, ϕ) 

∂ϕ 

2 
sin ϕ + 

∂ p 

∂ϕ 

cos ϕ 

)
. 

e have that 

p(t, ϕ) = 

1 

a 2 
K 

(
t 

2 a 2 
, ϕ 

)
, 

here K ( t , ϕ) is given by the (4.24) , therefore 

∂ p(t, ϕ) 

∂t 
= 

1 

2 a 4 
∂K 

∂t 
, 

∂ p(t, ϕ) 

∂ϕ 

= 

1 

a 2 
∂K 

∂ϕ 

and 

∂ 2 p(t, ϕ) 

∂ϕ 

2 
= 

1 

a 2 
∂ 2 K 

∂ϕ 

2 
. 

owever from the (4.22) 

∂K 

∂t 
= 

1 

sin ϕ 

(
cos ϕ 

∂K 

∂ϕ 

+ sin ϕ 

∂ 2 K 

∂ϕ 

2 

)
, (4.27) 

ence 

 a 4 
∂ p(t, ϕ) 

∂t 
= 

1 

sin ϕ 

(
a 2 cos ϕ 

∂ p(t, ϕ) 

∂ϕ 

+ a 2 sin ϕ 

∂ 2 p(t, ϕ) 

∂ϕ 

2 

)
, 

.e. 

∂ p(t, ϕ) 

∂t 
= 

1 

2 a 2 sin ϕ 

(
cos ϕ 

∂ p(t, ϕ) 

∂ϕ 

+ sin ϕ 

∂ 2 p(t, ϕ) 

∂ϕ 

2 

)
. 

urthermore p ( t , ϕ) satisfies the 

lim 

→ 0 + 
2 π sin (ϕ) p(t, ϕ) = lim 

t→ 0 + 
2 πa 2 

1 

a 2 
sin (ϕ) K 

(
t 

2 a 2 
, ϕ 

)
nd if we set u = 

t 
2 a 2 

we imply that 

lim 

→ 0 + 
2 π sin (ϕ ) K 

(
t 

2 a 2 
, ϕ 

)
= lim 

u → 0 + 
2 π sin (ϕ ) K(u, ϕ ) = δ(ϕ) . 

herefore 

lim 

→ 0 + 
2 πa 2 sin (ϕ) p(t, ϕ) = δ(ϕ) . 
nd this complete the proof. � {
.2.1. Stochastic differential equation of the brownian motion in local 

oordinates 

We recall the following well-known fact 

heorem 4.1. Let 

(x ) = 

[
σ jk (x ) 

]
, with 1 ≤ j ≤ n, 1 ≤ k ≤ m, 

e such that a (x ) = σ (x ) · σ T (x ) is positive definite. If X t is the Ito

iffusion process 

 X t = b(X t ) d t + σ (X t ) d B t , (4.28)

hen, its generator A is given by the formula 

f (x ) = 

∑ 

i 

b i (x ) 
∂ f 

∂x i 
+ 

1 

2 

∑ 

i, j 

(σσ T ) i, j (x ) 
∂ 2 f 

∂ x i ∂ x j 
. 

Conversely, the operator A given above is the generator of dif-

usion (4.28) . For the proof see [104] . 

Case of spherical coordinates 

The generator of Brownian motion on S 2 in spherical coordi-

ates is 

f = 

1 

2 


2 f, 

.e. 

f = 

cos ϕ 

2 a 2 sin ϕ 

∂ f 

∂ϕ 

+ 

1 

2 

(
1 

a 2 sin 

2 ϕ 

∂ 2 f 

∂θ2 
+ 

1 

a 2 
∂ 2 f 

∂ϕ 

2 

)
. 

Therefore, the Brownian motion on S 2 in spherical coordinates

s the solution of the stochastic differential equation 

 X t = 

(
0 , 

cos ϕ(t) 

2 a 2 sin ϕ(t) 

)
d t + 

( 1 
a sin ϕ(t) 

0 

0 

1 
a 

) ( 

d B 1 (t) 
d B 2 (t) 

) 

, 

here 

 t = ( θ (t) , ϕ(t) ) . 

Case of sterographic projection coordinates 

Expressed in stereographic projection coordinates, the generator

f Brownian motion on S 2 is 

f = 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 

(
∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

)
. 

ence, the Brownian motion on S 2 in stereographic projection co-

rdinates is the solution of the stochastic differential equation 

 X t = 

⎛ 

⎝ 

( x 1 (t) 2 + x 2 2 (t)+4 a 2 ) 
4 a 2 

0 

0 

( x 2 1 (t)+ x 2 2 (t)+4 a 2 ) 
4 a 2 

⎞ 

⎠ 

( 

d B 1 (t) 
d B 2 (t) 

) 

, 

(4.29) 

here 

 t = ( x 1 (t) , x 2 (t) ) . 

.3. Expectations of exit times of X ( t ) 

We recall some basic definitions. 

efinition 4.9. A measurable space { �, F} is said to be equipped

ith a filtration { F t }, t ∈ [0 , + ∞ ) , if for every t ≥ 0 { F t } is a σ -

lgebra of subsets of � such that F t ⊂ F and for every t 1 , t 2 ∈
0 , + ∞ ) such that t 1 < t 2 , we have that F t 1 ⊂F t 2 . (i.e. { F t } is an

ncreasing family of sub σ -algebras of F). 

efinition 4.10. Let us consider a measurable space { �, F}
quipped with a filtration { F t }. A random variable T is a stopping

ime with respect to the filtration { F t }, if for every t ≥ 0 

 ω ∈ �| T (ω) ≤ t} ∈ F t . 
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Let X t be the Brownian motion in S n and D ⊂ S n a domain.

Then 

T = inf { t ≥ 0 | X t / ∈ D } 
is a stopping time with respect to F t = σ { X s | 0 ≤ s ≤ t} , called the

exit time on ∂D . 

Proposition 4.2. Let ϕ0 ∈ [0, π ) be fixed. We consider the set D in

S 2 , such that 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ [0 , ϕ 0 ) } . 
Of course, 

∂D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ = ϕ 0 } . 
If X t is the position of the biological carrier of the virus Y at a

given time t starting at the point 

A = (θ, ϕ) ∈ D, 

and 

T = inf { t ≥ 0 | X t / ∈ D } , 
then the expectation of T is given by 

E A [ T ] = 2 a 2 ln 

(
1 + cos ϕ 

1 + cos ϕ 0 

)
. (4.30)

Proof. Based on [105] , 

u (θ, ϕ) = E A [ T ] 

we have the unique solution of the differential equation 

1 

2 


2 u = −1 , (4.31)

with boundary condition as 

u (θ, ϕ 0 ) = 0 . 

Here 
2 is the Laplace-Beltrami operator on S 2 . By symmetry of D ,

it follows that the expectation value of T is independent of θ . From

(4.4) the differential Eq. (4.31) takes the form 

1 

2 a 2 

[
cot (ϕ ) 

du 

dϕ 

+ 

d 2 u 

dϕ 

2 

]
= −1 , (4.32)

with boundary condition 

u (ϕ 0 ) = 0 . (4.33)

Set 

f (ϕ) = 

du 

dϕ 

. 

hence from (4.32) 

1 

2 a 2 

[
cot (ϕ) f (ϕ) + 

df (ϕ) 

dϕ 

]
= −1 , 

or 

cos (ϕ) f (ϕ) + sin (ϕ) 
df (ϕ) 

dϕ 

= −2 a 2 sin (ϕ) , 

Thus 

f (ϕ) = − 2 a 2 

sin ϕ 

∫ ϕ 

0 

sin ω dω + 

c 1 
sin ϕ 

. 

Therefore, 

u (ϕ) = −2 a 2 
∫ ϕ 

ϕ 0 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 

ϕ 0 

1 

sin x 
dx + c 2 . (4.34)

However (see [104] ) 

u (ϕ) = E A [ T ] < ∞ , for ϕ ∈ [0 , ϕ 0 ) 
ence 

 1 = 0 . 

Furthermore, we have 

 (ϕ 0 ) = 0 , i.e. c 2 = 0 

hus, 

 (ϕ) = 2 a 2 
∫ ϕ 0 

ϕ 

∫ x 
0 ( sin ω) dω 

( sin x ) 
dx. 

onsequently, 

 

A [ T ] = 2 a 2 
∫ ϕ 0 

ϕ 

∫ x 
0 ( sin ω) dω 

( sin x ) 
dx. 

Thus 

 

A [ T ] = 2 a 2 
∫ ϕ 0 

ϕ 

1 − cos x 

sin x 
dx, 

r 

 

A [ T ] = 2 a 2 
(∫ ϕ 0 

ϕ 

1 

sin x 
dx −

∫ ϕ 0 

ϕ 
( cot x ) dx 

)
, 

ence 

 

A [ T ] = 2 a 2 
[ 

ln 

(
tan 

(
ϕ 0 

2 

))
− ln 

(
tan 

(
ϕ 

2 

))
− ln ( sin ϕ 0 ) + ln ( sin ϕ) 

] 
. 

inally, 

 

A [ T ] = 2 a 2 ln 

(
1 + cos ϕ 

1 + cos ϕ 0 

)
. (4.35)

�

roposition 4.3. Let ϕ 1 , ϕ 2 ∈ (0, π ), such that ϕ1 < ϕ2 , are both

xed. We consider the set D in S 2 , such that 

 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 1 , ϕ 2 ) } . 
e have, 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ = ϕ 1 or ϕ = ϕ 2 } . 
et X t be the position of the infectious individual Y is at a given time

 starting at the point 

 = (θ, ϕ) ∈ D, 

nd 

 = inf { t ≥ 0 | X t / ∈ D } , 
hen the expectation of T is given by 

 

A [ T ] = 

4 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

· ln 

( 

sin 

(
ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
) 

− ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) 

· ln 

( 

sin 

(
ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
) ] 

(4.36)

roof. According to [105] , E ϕ [ t ] satisfies the Poisson equation on D

ith Dirichlet boundary data. By uniqueness 

 (θ, ϕ) = E A [ T ] 

s the unique solution of the differential Eq. (4.31) , i.e., 

1 

2 


2 u = −1 , 

ith boundary condition 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 . 
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ere 
2 is the Laplace-Beltrami operator on S 2 . By the symmetry

f D , it follows that the expectation value of T is independent of

. From (4.4) the differential Eq. (4.31) takes the form (4.32) with

oundary condition 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 . (4.37)

Hence from (4.34) 

 (ϕ) = −2 a 2 
∫ ϕ 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 

ϕ 1 

1 

sin x 
dx + c 2 . 

owever 

 (θ, ϕ 1 ) = u (θ, ϕ 2 ) = 0 , 

.e. 

2 a 2 
∫ ϕ 1 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 1 

ϕ 1 

1 

sin x 
dx + c 2 = 0 

nd 

2 a 2 
∫ ϕ 2 

ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx + c 1 

∫ ϕ 2 

ϕ 1 

1 

sin x 
dx + c 2 = 0 . 

hus 

 1 = 2 a 2 

∫ ϕ 2 
ϕ 1 

∫ x 
0 sin ωdω 

sin x 
dx ∫ ϕ 2 

ϕ 1 
1 

sin x 
dx 

nd 

 2 = 0 . 

onsequently, 

 

A [ T ] = 2 a 2 

( ∫ ϕ 1 

ϕ 

∫ x 
0 sin ωdω 

sin x 
d x + 

∫ ϕ 2 
ϕ 1 

∫ x 
0 sin ωdω 

sin x 
d x ∫ ϕ 2 

ϕ1 
1 

sin x 
d x 

·
∫ ϕ 

ϕ 1 

1 

sin x 
d x 

) 

. 

amely, 

 

A [ T ] = 2 a 2 
(∫ ϕ 

ϕ 1 

( cot x ) dx −
∫ ϕ 2 
ϕ1 ( cot x ) dx ∫ ϕ 2 

ϕ 1 
1 

sin x 
dx 

·
∫ ϕ 

ϕ 1 

1 

sin x 
dx 

)
, 

ence 

 

A [ T ] = 

2 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

sin 
(

ϕ 
2 

)
cos 

(
ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 1 
2 

)
) 

· ln 

( 

sin 
(

ϕ 2 
2 

)
cos 

(
ϕ 1 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

− ln 

( 

sin 
(

ϕ 2 
2 

)
cos 

(
ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 1 
2 

)
) 

· ln 

( 

sin 
(

ϕ 
2 

)
cos 

(
ϕ 1 
2 

)
sin 

(
ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) ] 

, 

rom which we imply 

 

A [ T ] = 

4 a 2 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

)
[ 

ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 2 
2 

)
) 

· ln 

( 

sin 
(

ϕ 
2 

)
sin 

(
ϕ 1 
2 

)
) 

− ln 

( 

cos 
(

ϕ 1 
2 

)
cos 

(
ϕ 
2 

)
) 

· ln 

( 

sin 
(

ϕ 2 
2 

)
sin 

(
ϕ 1 
2 

)
) ] 

(4.38) 

�

roposition 4.4. We consider the 2-dimensional sphere S 2 of radius

. Let two circles pass through the North pole, such that in stereo-

raphic coordinates are represented by the parallel lines ξ2 = b and

2 = c, where b, c ∈ R , say b < c. We consider the set D in S 2 , whose

tereographic projection is 

 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (b, c) } . 
f course 

D = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = b or ξ2 = c } . 
f X t is the position of the carrier of virus Y at a given time t starting

t the point A, where the stereogrpaphic projection coordinates of A

re 

(ξ1 , ξ2 ) ∈ D. 

nd 

 = inf { t ≥ 0 | X t ∈ D } , 
hen, 

 

A [ T ] = f (ξ1 , ξ2 ) − 2 a 2 ln 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)
, (4.39)

here 

f (ξ1 , ξ2 ) 

= 

1 

π

∫ ∞ 

0 

g(ξ , c) exp 
(

πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
+ η

)2 
dη

1 

π

∫ ∞ 

0 

g(η, b) exp 
(

πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
− η

)2 
dη

(4.40) 

nd 

(ξ , t) = 2 a 2 ln 

(
(c − b) 2 ln 

2 | ξ | 
π2 

+ t 2 + 4 a 2 
)

(4.41)

roof. As we have seen the function 

 

A [ T ] = U(ξ1 , ξ2 ) 

atisfies the differential equation 

1 

2 


2 U = −1 

ith boundary conditions 

(ξ1 , b) = U(ξ1 , c) = 0 . 

ere, 
2 is the Laplace-Beltrami operator on S 2 expressed in stere-

graphic projection coordinates. Hence, the differential equation

akes the form 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 
·
(

∂ 2 U 

∂ξ 2 
1 

+ 

∂ 2 U 

∂ξ 2 
2 

)
= −1 , 

r 

∂ 2 U 

∂ξ 2 
1 

+ 

∂ 2 U 

∂ξ 2 
2 

= − 32 a 4 (
ξ 2 

1 
+ ξ 2 

2 
+ 4 a 2 

)2 
. (4.42) 

owever the function 

 1 (ξ1 , ξ2 ) = −2 a 2 ln (ξ 2 
1 + ξ 2 

2 + 4 a 2 ) 

atisfies the differential Eq. (4.42) . Thus 

(ξ1 , ξ2 ) = −2 a 2 ln (ξ 2 
1 + ξ 2 

2 + 4 a 2 ) + f (ξ1 , ξ2 ) 

here f ( ξ 1 , ξ 2 ) satisfies 

∂ 2 f 

∂ξ 2 
1 

+ 

∂ 2 f 

∂ξ 2 
2 

= 0 , 

ith boundary conditions 

f (ξ1 , b) = 2 a 2 ln (ξ 2 
1 + b 2 + 4 a 2 ) 

nd 

f (ξ1 , c) = 2 a 2 ln (ξ 2 
1 + c 2 + 4 a 2 ) . 

f we take the transformation of variables x = ξ1 and y = ξ2 − b and

et the function φ(x, y ) = f (ξ1 , ξ2 ) , then φ( x, y ) we satisfy 

∂ 2 φ

∂x 2 
+ 

∂ 2 φ

∂y 2 
= 0 , 
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∂
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with boundary conditions 

φ(x, 0) = 2 a 2 ln (x 2 + b 2 + 4 a 2 ) 

and 

φ(x, β) = 2 a 2 ln (x 2 + c 2 + 4 a 2 ) 

where β = c − b. Now let z = x + yi and w = exp 

(
πz 
β

)
, i.e. z =

β ln w 

π . Thus, if w = u + v i, u, v ∈ R then 

u = exp 

(
πx 

β

)
cos 

(
πy 

β

)
and v = exp 

(
πx 

β

)
sin 

(
πy 

β

)
. 

(4.43)

Introducing the function ψ(u, v ) = φ(x, y ) . It follows that ψ( u, v )

satisfies 

∂ 2 ψ 

∂ u 

2 
+ 

∂ 2 ψ 

∂ v 2 
= 0 , 

with boundary conditions 

ψ(u, 0) = 2 a 2 ln 

(
β2 ln 

2 
u 

π2 
+ b 2 + 4 a 2 

)
, for u > 0 

and 

ψ(u, 0) = 2 a 2 ln 

(
β2 ln 

2 | u | 
π2 

+ c 2 + 4 a 2 
)

, for u < 0 . 

This is the standard Dirichlet boundary value problem for the half

line, and it is well known that (see e.g. [106] ) its solution is given

by the Poisson integral formula for the half-plane: 

ψ (u, v ) = 

1 

π

∫ ∞ 

−∞ 

v ψ (ξ , 0) 

v 2 + (u − ξ ) 2 
dξ , 

or 

ψ(u, v ) = 

1 

π

∫ 0 

−∞ 

v g(ξ , c) 

v 2 + (u − ξ ) 2 
dξ + 

1 

π

∫ ∞ 

0 

v g(ξ , b) 

v 2 + (u − ξ ) 2 
dξ , 

where 

g(ξ , t) = 2 a 2 ln 

(
β2 ln 

2 | ξ | 
π2 

+ t 2 + 4 a 2 
)

. 

Notice that g(−ξ , t) = g(ξ , t) . Hence, 

ψ(u, v ) = 

1 

π
v 
∫ ∞ 

0 

(
g(ξ , c) 

v 2 + (u + ξ ) 2 
+ 

g(ξ , b) 

v 2 + (u − ξ ) 2 

)
dξ , 

where u, v are given in (4.43) . Therefore 

φ(x, y ) = 

1 

π
exp 

(
πx 

β

)
sin 

(
πy 

β

)∫ ∞ 

0 

g(η, c) 

exp 

(
2 πx 
β

)
sin 

2 
(

πy 
β

)
+ 

(
exp 

+ 

1 

π
exp 

(
πx 

β

)
sin 

(
πy 

β

)∫ ∞ 

0 

g(η, b) 

exp 

(
2 πx 
β

)
sin 

2 
(

πy 
β

)
+ 

(
exp 

(
πx 
β

)
cos

i.e. 

f (ξ1 , ξ2 ) = 

1 

π

∫ ∞ 

0 

g(η, c) exp 

(
πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2

c−

+ 

1 

π

∫ ∞ 

0 

g(η, b) exp 

(
πξ1 

c−b 

)
sin 

(
π(ξ2 −b) 

c−b 

)
exp 

(
2 πξ1 

c−b 

)
sin 

2 
(

π(ξ2 −b) 
c−b 

)
+ 

(
exp 

(
πξ1 

c−b 

)
cos 

(
π(ξ2 −b) 

c−b 

)
− η

)2

Finally 

E A [ T ] = f (ξ1 , ξ2 ) − 2 a 2 ln 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)
. 
�

cos 
(

πy 
β

)
+ η

)2 
dη

− η
)2 

dη, 

+ η
)2 

dη

.3.1. Hitting probabilities 

roposition 4.5. Let ϕ 1 , ϕ 2 ∈ (0, π ), such that ϕ1 < ϕ2 , are both

xed. We consider the sets D 1 , D 2 in S 2 , such that 

 1 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 1 , π ] } 
nd 

 2 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ [0 , ϕ 2 ) } . 
e have, 

D 1 = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ = ϕ 1 } 
nd 

D 2 = { (θ, ϕ) | θ1 ∈ [0 , 2 π) , and ϕ = ϕ 2 } . 
f X t is the position of the infected (I) at a given time t starting at the

oint 

 = (θ, ϕ) ∈ D 1 ∩ D 2 . 

nd in case 

 1 = inf { t ≥ 0 | X t / ∈ D 1 } , 

 2 = inf { t ≥ 0 | X t / ∈ D 2 } 
nd 

 = inf { t ≥ 0 | X t / ∈ D 1 ∩ D 2 } , 
hen the probabilities 

 r A { T = T 1 } and P r A { T = T 2 } 
re given by 

 r A { T = T 1 } = 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( ϕ 2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) (4.44)

nd 

 r A { T = T 2 } = 

ln 

(
tan ( ϕ 2 ) 
tan ( 

ϕ 1 
2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) . (4.45)

roof. It is known that (see [21] ), 

 (θ, ϕ) = P r A { T = T 1 } 

s the unique solution of the differential equation 

1 


n u = 0 , (4.46)

2 
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ith boundary condition 

 (θ, ϕ 1 ) = 1 and u (θ1 , . . . , θn −1 , ϕ 2 ) = 0 

ere 
n is the Laplace-Beltrami operator on S 2 . By the symmetry

f D , it follows that the probability value of T = T 1 is independent

f θ . From (4.7) the differential Eq. (4.46) takes the form 

1 

2 a 2 

[
(n − 1) cot (ϕ ) 

du 

dϕ 

+ 

d 2 u 

dϕ 

2 

]
= 0 , (4.47) 

ith boundary condition 

 (ϕ 1 ) = 1 and u (ϕ 2 ) = 0 . (4.48)

In we set 

f (ϕ) = 

du 

dϕ 

, 

ence from (4.47) 

1 

2 a 2 

[
cot (ϕ) f (ϕ) + 

df (ϕ) 

dϕ 

]
= 0 , 

r 

os (ϕ) f (ϕ) + sin (ϕ) 
df (ϕ) 

dϕ 

= 0 . 

Thus 

f (ϕ ) = 

c 1 
sin ϕ ) 

, 

.e. 

 (ϕ) = 

∫ ϕ 

ϕ 2 

c 1 
sin x 

dx + c 2 . (4.49)

owever, 

 (ϕ 1 ) = 1 and u (ϕ 2 ) = 0 , 

ence 

 1 = − 1 ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 

nd 

 2 = 0 . 

hus 

 (ϕ) = 

∫ ϕ 2 
ϕ 

1 
sin x 

dx ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 
. 

onsequently, 

 r A { T = T 1 } = 

∫ ϕ 2 
ϕ 

1 
sin x 

dx ∫ ϕ 2 
ϕ 1 

1 
sin x 

dx 
. 

r 

 r A { T = T 1 } = 

ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( ϕ 2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) (4.50) 

Moreover, 

 r A { T = T 2 } = 1 − P r A { T = T 1 } , 
ence 

 r A { T = T 2 } = 

ln 

(
tan ( ϕ 2 ) 
tan ( 

ϕ 1 
2 ) 

)
ln 

(
tan ( 

ϕ 2 
2 ) 

tan ( 
ϕ 1 
2 ) 

) . (4.51) 
�

roposition 4.6. We consider the 2-dimensional sphere S 2 of radius

. Let two circles pass through the North Pole, such that in stereo-

raphic coordinates are represented by the parallel lines ξ2 = b and

2 = c, where b, c ∈ R , with b < c. Next consider the sets D 1 , D 2 in

 

2 , for which the stereographic projections are 

 1 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (b, + ∞ ) } 
nd 

 2 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 ∈ (−∞ , c) } . 
f course, 

D 1 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = b } 
nd 

D 2 = { (ξ1 , ξ2 ) | ξ1 ∈ R and ξ2 = c } . 
et X t be the position of the carrier of virus Y at a given time t start-

ng at the point A, and the stereographic projection coordinates of A

re 

(ξ1 , ξ2 ) ∈ D 1 ∩ D 2 . 

f 

 1 = inf { t ≥ 0 | X t / ∈ D 1 } , 

 2 = inf { t ≥ 0 | X t / ∈ D 2 } 
nd 

 = inf { t ≥ 0 | X t / ∈ D 1 ∩ D 2 } , 
hen 

 r A { T = T 1 } = 

c − ξ2 

c − b 
and P r A { T = T 2 } = 

ξ2 − b 

c − b 
. (4.52)

roof. It is known that (see [21] ) the function 

 (ξ1 , ξ2 ) = P r A { T = T 1 } 
s the unique solution of the differential equation 

1 

2 


2 u = 0 (4.53) 

ith boundary condition 

 (ξ1 , b) = 1 and u (ξ1 , c) = 0 . (4.54)

ere, 
2 , is the Laplace-Beltrami operator on S 2 expressed in the

tereographic projection coordinates. Hence from (4.8) the differ-

ntial Eq. (4.53) takes the form 

1 

2 

(
ξ 2 

1 + ξ 2 
2 + 4 a 2 

)2 

16 a 4 
·
(

∂ 2 u 

∂ξ 2 
1 

+ 

∂ 2 u 

∂ξ 2 
2 

)
= 0 , 

r 

∂ 2 u 

∂ξ 2 
1 

+ 

∂ 2 u 

∂ξ 2 
2 

= 0 . (4.55) 

rom (4.54) and (4.55) we see easily that 

 (ξ1 , ξ2 ) = 

c − ξ2 

c − b 
. 

herefore, 

 r A { T = T 1 } = 

c − ξ2 

c − b 
and P r A { T = T 2 } = 

ξ2 − b 

c − b 
. 
�
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4.3.2. Moment generating functions 

Proposition 4.7. Let ϕ 0 ∈ [0 , π) be fixed. We consider the set D in

S 2 , such that 

D = { (θ, ϕ) | θ ∈ [0 , 2 π) , and ϕ ∈ [0 , ϕ 0 ) } . 
Then, 

∂D = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ = ϕ 0 } . 
If X t is the infectious position at a given time t starting at the point 

A = (θ, ϕ) ∈ D, 

and 

T = inf { t ≥ 0 | X t / ∈ D } , 
then the expectation of exp (−λT ) is given by 

E A [ exp (−λT )] = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, (4.56)

where ν is such that ν(ν + 1) = −2 a 2 λ and P ν ( · ) is the Legendre

function 

P ν (z) = P −ν−1 (z) = 

1 

π

∫ π

0 

(z + 

√ 

z 2 − 1 cos ϕ ) νdϕ , 

where the multiple-valued function (z + 

√ 

z 2 − 1 cos ϕ) ν is to be de-

termined in such a way that for ϕ = 

π
2 it is equal to (the principal

value of) z ν (which is, in particular, real for positive z and real ν). 

Proof. If λ > − λ1 
2 , where λ1 is the first Dirichlet eigenvalue of

D ⊂ S 2 , then 

E A [ exp (−λT )] 

it satisfies the differential equation 

1 

2 


2 u = λu (ϕ) (4.57)

with boundary condition 

u (ϕ 0 ) = 1 . (4.58)

Here 
2 is the Laplace-Beltrami operator on S 2 . By the symmetry

of D , it follows that the expectation of exp [ −λT ] is independent of

θ . Hence u is independent of θ . From (4.4) the differential equation

(4.57) takes the form 

1 

2 a 2 sin ϕ 

(
du 

dϕ 

cos ϕ + 

d 2 u 

dϕ 

2 
sin ϕ 

)
= λu (ϕ) , 

i.e. 

d 

dϕ 

(
du 

dϕ 

sin ϕ 

)
−
(
2 λa 2 sin ϕ 

)
u (ϕ) = 0 . (4.59)

If we set 

z = cos ϕ, 

then 

du 

dϕ 

= − sin ϕ 

du 

dz 

and (4.59) transforms to 

(1 − z 2 ) 
d 2 u 

dz 2 
− 2 z 

du 

dz 
− 2 λa 2 u = 0 , 

or 

(1 − z 2 ) 
d 2 u 

dz 2 
− 2 z 

du 

dz 
+ ν(ν + 1) u = 0 . 

This is Legendre’s differential equation. However, u ( ϕ) is bounded

for all ϕ ∈ [0 , π ] and u (ϕ 0 ) = 1 . Therefore (see [106] ), the solution

of (4.59) is 

u (ϕ) = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, 
.e. 

 

A [ exp (−λT ) = 

P ν ( cos ϕ) 

P ν ( cos ϕ 0 ) 
, 

here ν is such that ν(ν + 1) = −2 a 2 λ. �

.4. Reflection principle 

heorem 4.2. Let X t be the position of the infectious carrier of virus

 at a given time t starting at the point 

 = (θ, ϕ) ∈ D, 

here 

 = 

{
(θ, ϕ) ∈ S 2 

∣∣θ ∈ [ 

f 

 = inf { t ≥ 0 | X t / ∈ D } , 
hen 

 r A { T < t } = 2 P r A { X t / ∈ D } . (4.60)

roof. 

 r A { T < t } = P r A { T < t, X t / ∈ D } + P r A { T < t, X t ∈ D } . (4.61)

owever, if X t 	∈ D then of course T < t . 

Thus, 

 r A { T < t, X t / ∈ D } = P r A { X t / ∈ D } . (4.62)

n the other hand, if we set 

˜ 
 t = 

{ 

X t , if t ≤ T 
ˆ X t , if t > T , 

hen by the strong Markov property of X t 

 r A { T < t, X t ∈ D } = P r A 
{

T < t, ˜ X t ∈ D 

}
, 

ut if ˜ X t ∈ D then X t 	∈ D . Hence, 

 r A { T < t, X t ∈ D } = P r A { T < t, X t / ∈ D } , 
r 

 r A { T < t, X t ∈ D } = P r A { X t / ∈ D } . (4.63)

herefore from (4.61) –(4.63) we obtain that 

 r A { T < t } = 2 P r A { X t / ∈ D } . 
�

.4.1. Applications of the reflection principle 

The reflection principle can help to calculate the distribution

unctions of certain exit times. 

Let X t be the position of the infected individual at a given time

 starting at the point N (0, 0) in spherical coordinates. If 

 = 

{ 
(θ, ϕ) ∈ S 2 

∣∣θ ∈ [0 , 2 π) , ϕ ∈ 

(
π

2 

, π
] } 

hen 

 r N { X t / ∈ D } = 

∫ π
2 

0 

∫ 2 π

0 

p(t, ϕ) a 2 sin (ϕ) d θd ϕ, 

.e. 

 r N { X t / ∈ D } = 2 πa 2 
∫ π

2 

0 

p(t, ϕ) sin (ϕ ) dϕ , 
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here p ( t , ϕ) is the transition density function of the Brownian

otion on S 2 of radius a . Hence from (4.26) 

 r N { X t / ∈ D } = 2 πa 2 
∫ π

2 

0 

1 

4 πa 2 
sin ϕ 

∑ 

n ∈ N 
(2 n + 1) exp 

(
−n (n + 1) 

√

a 

r 

 r N { X t / ∈ D } = 

1 

2 

+ 

1 

2 

∑ 

n ∈ N ∗
(2 n + 1) exp 

(
−n (n + 1) 

√ 

t 

a 

)∫ π
2 

0 

P 0 n ( co

owever for every n ∈ N 

∗

 n = 

∫ π
2 

0 

P 0 n ( cos ϕ ) sin (ϕ ) d ϕ = 

∫ 1 

0 

P 0 n (x ) d x. 

t is known that (see [106] ) 

 

0 
n (x ) = 

1 

2 n + 1 

d 

dx 

[
P 0 n +1 ( x ) − P 0 n −1 (x ) 

]
. 

owever, P 0 n (1) = 1 for every n ∈ R . Thus 

 n = 

1 

2 n + 1 

(
P 0 n +1 (1) − P 0 n −1 (1) − P 0 n +1 (0) + P 0 n −1 (0) 

)
, 

r 

 n = 

1 

2 n + 1 

(
P 0 n −1 (0) − P 0 n +1 (0) 

)
. 

t is also known that for every n ∈ N 

∗

 

0 
2 n (0) = (−1) n 

(2 n )! 

2 

2 n (n !) 2 
and P 0 2 n +1 (0) = 0 . 

hus, if n is even then I n = 0 . If n is odd, i.e. n = 2 k + 1 , then 

 n = 

1 

4 k + 3 

(
P 0 2 k (0) − P 0 2(k +1) (0) 

)
, 

.e. 

 n = 

(−1) n (2 k )! 

(k + 1)(k !) 2 2 

2 k +1 
. (4.65) 

rom (4.64) and (4.65) we get that 

 r N { X t / ∈ D } = 

1 

2 

+ 

1 

2 

∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(4 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.66) 

urthermore, if S (0, π ) namely the South Pole of S 2 , then 

 r S { X t / ∈ D } = P r N { ̂  X t / ∈ D } = P r N { X t ∈ D } = 1 − P r N { X t / ∈ D } . 
herefore 

 r S { X t / ∈ D } = 

1 

2 

− 1 

2 

∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(4 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.67) 

y using Theorem 3.2 , if T = inf { t > 0 | X t / ∈ D } , then 

 r S { T < t} = 1 −
∑ 

n ∈ N 
(−1) n exp 

(
− (2 n + 1)(2 n + 2) 

√ 

t 

a 

)

× (2 n )!(2 n + 3) 

2 

2 n +1 (n !) 2 (n + 1) 
. (4.68) 

.5. Local time estimation 

efinition 4.11. Let ϕ1 ∈ [0, π ]. We set 

 1 = { (θ1 , . . . , θn −1 , ϕ) ‖ θ1 ∈ [0 , 2 π) , θi ∈ [0 , π ] for 

i = 2 , . . . , n − 1 and ϕ ∈ (0 , ϕ 1 ] } , 
s a subset of S 2 . The reflected Brownian motion in D 1 is the diffu-

ion Y t whose generator is 
n in D 1 with Neuman boundary con-

ition at ∂D . 
1 
 

0 
n ( cos ϕ ) dϕ , 

in (ϕ ) dϕ . (4.64)

Roughly speaking Y t behaves like X t inside D 1 but when it

eaches the boundary, it is reflected back in D 1 . 

efinition 4.12. Let a fixed open set D ⊂ S n with C 3 −boundary ∂D .

f Y t is the reflected Brownian motion in D , and D δ the domain 

 δ = { x ∈ D : d(x, ∂D ) < δ} , 
e define the boundary local time L t of Y t , as 

 t := lim 

δ→ 0 + 

1 

2 δ

∫ t 

0 

1 D δ (Y s ) ds. 

t can be shown that the limit exist in the L 2 sense. 

.5.1. Boundary local time until first hitting 

roposition 4.8. Let ϕ 0 , ϕ 1 ∈ (0, π ), such that ϕ 0 < ϕ 1 , both fixed.

e consider the sets D , �0 in S 2 , such that 

 = { (θ, ϕ) | θ ∈ [0 , 2 π) and ϕ ∈ (ϕ 0 , ϕ 1 ) } . 
nd 

0 = { (θ, ϕ 0 ) | θ ∈ [0 , 2 π) } . 
et Y t be the reflected Brownian motion in �0 starting at the point 

 = (θ, ϕ) ∈ D 

f 

 = inf { t ≥ 0 | X t ∈ �0 } 
nd L t is the boundary local time of Y t , then, 

 

A [ exp ( λL T ) ] = 

1 
sin ϕ 1 

− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( ϕ 2 ) 

)
1 

sin ϕ 1 
− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) , if λ < 

1 

sin (ϕ 1 ) ln 
(

tan ( 
ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

)
(4.69) 

nd 

 

A [ exp ( λL T ) ] = + ∞ , if λ ≥ 1 

sin (ϕ 1 ) ln 
(

tan ( 
ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) . (4.70)

roof. It is known that the function 

(θ, ϕ) = E A [ exp ( λL T ) ] 

atisfies the differential equation 

2 z = 0 

ith boundary condition 

(θ, ϕ 0 ) = 1 

nd 

∂z 

∂ϕ 

(θ, ϕ 1 ) + λz(θ, ϕ 1 ) = 0 . 

s long as the function z is positive (see [107] ). Here 
2 is the

aplace-Beltrami operator on S 2 . By the symmetry of D it follows

hat E A [ exp ( λL T ) ] is independent of θ . From (4.2) the differential

quation takes the form 

ot (ϕ) 
dz 

dϕ 

+ 

d 2 z 

d 2 ϕ 

= 0 . (4.71)
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We have shown that the solution of (4.71) is 

z(ϕ) = c 1 

∫ ϕ 

ϕ 0 

1 

sin x 
dx + c 2 , c 1 , c 2 ∈ R . 

However, 

z(θ, ϕ 0 ) = 1 

and 

− ∂z 

∂ϕ 

(θ, ϕ 1 ) + λz(θ, ϕ 1 ) = 0 . 

Hence 

c 1 = 

λ

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 

and 

c 2 = 1 . 

Thus 

z(ϕ) = 

( sin ϕ 1 ) 
−1 − λ

∫ ϕ 1 
ϕ ( sin x ) −1 dx 

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 
. 

However, 

z(ϕ) > 0 if and only if λ < 

( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

. 

Therefore, 

E A [ exp ( λL T ) ] = 

( sin ϕ 1 ) 
−1 − λ

∫ ϕ 1 
ϕ ( sin x ) −1 dx 

( sin ϕ 1 ) −1 − λ
∫ ϕ 1 
ϕ 0 

( sin x ) −1 dx 
, 

if λ < 

( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

and 

E A [ exp ( λL T ) ] = + ∞ , if λ ≥ ( sin ϕ 1 ) 
−1 ∫ ϕ 1 

ϕ 0 
( sin x ) −1 dx 

i.e 

E A [ exp ( λL T ) ] = 

1 
sin ϕ 1 

− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( ϕ 2 ) 

)
1 

sin ϕ 1 
− λ ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) , 

if λ < 

1 

sin (ϕ 1 ) ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

)
and 

E A [ exp ( λL T ) ] = + ∞ , if λ ≥ 1 

sin (ϕ 1 ) ln 

(
tan ( 

ϕ 1 
2 ) 

tan ( 
ϕ 0 
2 ) 

) . 

�

5. Discussion and conclusions 

A worldwide multilevel interplay among a plethora of fac-

tors ranging from micro-pathogens and individual interactions to

macro-scale environmental, socio-economic and demographic con-

ditions, necessitate the development of highly sophisticated math-

ematical models for robust representation of contagious dynamics

of infectious diseases that would lead to the establishment of ef-

fective control strategies and prevention policies. 

Ethical and practical reasons defer from conducting enormous

experiments in public health systems, hence mathematical models

appear to be an efficient way to explore contagion dynamics. A key

aspect of epidemiological models is their link to real data, which is
f particular utility toward the design of vaccination policies. Two

ajor vaccination strategies exist currently, i.e., the mass vaccina-

ion, which is most applied, and the recently developed pulse vac-

ination which is used in an increasing number of countries. How-

ver, most vaccination strategies are imperfect in the sense that

hey decrease the number of cases, without however eradicating

he disease. 

Public-health organizations in the world use the epidemiolog-

cal models that fall in the three categories already presented in

his work, to evaluate disease outbreak policies for epidemics. As

e pointed out, many shortcomings exist for those models. All

he models already used in the literature assume that the host

opulation has constant size. However, this excludes diseases in

xponentially growing populations as in most developing coun-

ries, or disease-induced mortality as childhood diseases in de-

eloping countries e.g., malaria. Modeling infectious dynamics in

on-stationary host populations requires explicit modeling of the

ost population as well as of the disease per se. Models some-

imes can be highly complicated in order to improve best fit to

eal data. Nonetheless, very complex models do not always per-

orm optimally in real-world applications or in simulations. Real-

orld models allow for swift decision making, and suitable quan-

ification of the spatiotemporal dynamics of an outbreak. Multidis-

iplinary research efforts are speeding up, integrating the advances

n epidemiology, molecular biology, computational science and ap-

lied mathematics. Mathematical modeling allows better under-

tanding of the transmission process of infectious diseases in space

nd time, by setting forth rigorously the proper assumptions, the

ariables, the equations and their parameters. 

Due to the complexity of the underlying complex interactions,

ither deterministic or stochastic epidemiological models are built

pon incomplete information about e.g., the basic reproduction

umber, threshold effects, intensity of spread, precise data of in-

ected versus susceptible individuals, and other inaccuracies re-

arding the entire infectious network. Simulations or brute-force

omputational techniques have been implemented in that direc-

ion to provide approximate solutions with encouraging results.

evertheless, some of the underlying generating processes of the

utbreaks, such as the virus pathogenicity or variant social net-

ork topologies, ethnological characteristics and other quantities,

ay influence the spread of an outbreak. Simulations often prove

o be inefficient for the systematic analysis of an emergent epi-

emic. New rigorous mathematical modeling methodologies, such

s the one presented in this work for the first time, can be used

o address inherent incomplete data structure and hidden nonlin-

ar complex dynamics, with an aim to enhance forecastability in

ombating epidemic outbreaks. 

In the present study we introduced a novel approach for

urveillance and modeling of infectious disease dynamics, called

BDiEM. We explicitly described the mathematical framework un-

erpinning the implementation and conceptualization of our new-

ge epidemiological model. Our goal is to contribute to the arsenal

f models already developed so far. It can be of particular inter-

st, in light of a recent intensive worldwide effort to speed up the

stablishment of a global surveillance network for combating pan-

emics of emergent and re-emergent infectious diseases. Toward

his aim, mathematical modeling will play a major role in assess-

ng, controlling and forecasting potential outbreaks. We have to

etter understand and model the impact of numerous variables on

ontagious dynamics, ranging from the microscopic host–pathogen

evel, to individual and population interactions, as well as macro-

copic environmental, social, economic and demographic factors all

ver the world. 

As a path for future research, we intend to conduct simula-

ions, and empirical analyses based on real-time spatiotemporal

atasets, in case of past outbreaks of infectious diseases as well as
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or COVID-19. Furthermore, we plan to convey an extensive com-

arative evaluation investigation of SBDiEM vis-à-vis the three ma-

or categories set forth by the taxonomy of Siettos and Russo [58] ,

nd more specifically versus (1) statistical methods for epidemic

urveillance, (2) state-space models of epidemic spread and (3)

achine learning methods. In this way, the forecasting and now-

asting capabilities of the new model will be thoroughly explored.

e also intend to investigate embedding the proposed analytical

odel into integrated artificial intelligence systems in the near fu-

ure. 

Our novel methodology apart from offering a much better un-

erstanding of the complex and heterogeneous infectious disease

ynamics could enhance predictability of epidemic outbreaks as

ell as have potentially important implications for national health

ystems, stakeholders and international policy makers. 
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