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Abstract: Rice (Oryza sativa) responds to various abiotic stresses during growth. Plant-specific NAM,
ATAF1/2, and CUC2 (NAC) transcription factors (TFs) play an important role in controlling numerous
vital growth and developmental processes. To date, 170 NAC TFs have been reported in rice, but their
roles remain largely unknown. Herein, we discovered that the TF OsNACO006 is constitutively expressed
in rice, and regulated by H,O,, cold, heat, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin
(GA), Na(l, and polyethylene glycol (PEG) 6000 treatments. Furthermore, knockout of OsNAC006
using the CRISPR-Cas9 system resulted in drought and heat sensitivity. RNA sequencing (RNA-seq)
transcriptome analysis revealed that OsNAC006 regulates the expression of genes mainly involved
in response to stimuli, oxidoreductase activity, cofactor binding, and membrane-related pathways.
Our findings elucidate the important role of OsNAC006 in drought responses, and provide valuable
information for genetic manipulation to enhance stress tolerance in future plant breeding programs.
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1. Introduction

Rice (Oryza sativa) is one of the most important food crops for humans, and different abiotic
stresses can affect plant growth and crop performance [1,2]. Salinity stress has a strong negative
influence on plant growth [3,4]. Drought represents an extreme environment, and causes irreversible
damage to rice growth and lowers crop yield and quality [5-7]. High temperature can impact rice
flowering and can also reduce crop yield [8]. Plants have evolved various mechanisms to reduce the
harmful effects of abiotic stresses [9], including regulating transcription factors (TFs) [10-12].

In rice, 2408 TFs have been identified and classified into 56 families, data provided by Plant
Transcription Factor Database v3.0, Center for Bioinformatics, Peking University. Many TFs belonging
to AP2/ERF (APETALAZ2/ethylene-responsive factor), bZIP (basic region/leucine zipper motif), NAC,
MYB (v-myb avian myeloblastosis viral oncogene homolog) and WRKY families are believed to function
in abiotic stress responses [11,13-16]. Among them, NAM, ATAF1/2, and CUC2 (NAC) TFs are a unique
class in plants [17]. Many NAC TFs are involved in plant growth and development, and in responses to
biotic and abiotic stresses [18,19]. Overexpressing AtNAC07, AtNAC019, and AtNAC055 can enhance
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tolerance to drought in Arabidopsis thaliana [20]. Arabidopsis ANAC092 (also known as AtNAC2 or
ORET1) is associated with the regulation of ethylene and hormone signaling, and overexpression can
alter lateral root number, growth, and development [21]. Overexpression of the millet TF OsNAC67 can
increase rice tolerance to high salt and drought [22], while overexpression of ZmSNACI can enhance
the tolerance of maize to drought [23].

CRISPR/Cas9 gene editing technology is gradually applied to many genes related to rice breeding,
which is of great significance for agricultural breeding [24]. The traditional transgenic technology is
based on T-DNA insertion technology, and the vector transferred into the plant will not disappear [25].
CRISPR/Cas9-mediated genome editing has attracted people’s attention not only because of its
simplicity, accuracy, and efficiency, but also because of its ability to produce non-transgenic plants [26].
The mutant plants that had produced the required mutations can lose the CRISPR/Cas9 vectors through
several generations of character isolation. With the emergence of CRISPR/Cas9 gene editing technology,
it is convenient for us to understand the gene function of plants. The new generation of breeding
technology based on CRISPR/Cas9 editing system is gradually maturing.

In this work, we cloned the rice NAC TF-encoding gene OsNAC006 (LOC_Os01g09550) and
present evidence that mutations of this gene confer drought and heat sensitivity.

2. Results

2.1. Expression Profiling and Subcellular Localization of OsNAC006

We analyzed the expression profiles of eight representative tissues (root, stem, and leaf from
seedlings, and root, stem, sheath, leaf, and panicle from the heading stage). RNA was extracted
from different tissues and RT-qPCR was performed to determine the expression pattern of OsNAC006.
The results indicated that OsNAC006 was expressed in both seedling and heading stages in all tissues,
with highest levels in stems and leaves (Figure 1A).

pOsNAC006::eGFP and eGFP (negative control) plasmids were infiltrated into rice protoplasts
to examine the subcellular localization of OsNAC006. Confocal micrographs showed that the
OsNACO006::eGFP fusion protein was localized to the nucleus, alongside the nuclear marker NLS::eGFP.
Thus, the OsNACO006 protein is localized to nuclei in cells (Figure 1B).

We also assessed whether and how OsNAC006 contributes to the responses to abiotic stress and
hormone treatment. OsNACO006 transcript levels were increased significantly following H,O,, NaCl,
and PEG-6000 treatments, but both high and low temperature stress caused OsNAC006 expression levels
to rise then fall. Following hormone treatment, OsNAC006 expression levels peaked at 3 and 6 h after
IAA and GA;j; treatment, respectively, while ABA treatment caused a lasting elevation in expression
level (Figure 1C). The expression of OsNAC006 varied in response to different abiotic stresses.
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Figure 1. Expression profile analysis of OsNACO006. (A) Detection of OsNAC006 expression in various
tissues and organs of rice using RT-qPCR. Four-week-old seedlings were used to harvest root, sheath
and leaf samples at the seedling stage. Plants in stages before the heading stage were used to harvest
root, stem, sheath, leaf and panicle samples at the reproductive growth stage. Error bars indicate
the standard error (SE) based on three biological replicates. (B), Nuclear localization of OsNAC006
protein in the rice protoplast. NLS, Nuclear localization signal. Scale bar = 20 pm. (C) Expression
levels of OsNACO006 under various abiotic stresses and hormone treatments. Four-week-old seedlings
were subjected to treatment with cold (4 °C), heat (42 °C), PEG 6000 (20%, w/v), NaCl (200 mm), H,O,
(1%), IAA (100 um), ABA (100 um) and GA3 (100 um). The relative expression level of OsNAC006
was measured by RT-qPCR at the indicated times. Error bars indicate SE based on three independent
biological replicates.

2.2. Creation of OsSNAC006 Mutant Plants

The functions of NAC TFs in rice are poorly understood. We, therefore, explored the biological
function of OsNAC006 inrice. To explore the possible role of OsNACO006 in stress responses, we generated
OsNAC006 loss-of-function lines using the CRISPR-Cas9 system. An sgRNA was designed for targeting
the OsNACO006 gene based on gene sequence information from plantTFDB (http://planttfdb_v3.cbi.pku.
edu.cn). The sgRNA was cloned into the CRISPR-Cas9 T-DNA vector and transformed into plants
to generate OsNAC006-sgRNAO1 at the first exon of the OsNAC006 gene (Figure 2A). Ten TO lines
were analyzed by enzyme digestion, and six biallelic mutations and one heterozygous mutation were
identified (Figure 2B). Sanger sequencing analysis showed that the mutations included insertion of
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a single base pair (+1 bp/+1 bp), a single base pair deletion (-1 bp/-1 bp), and a large fragment
deletion (-55 bp/-55 bp; Figure 2C). We examined the sgRNA and chose four high-probability
off-target sites for the sgRNA assay for further investigations. However, we did not identify any
mutations across potential off-target sites by Sanger sequencing of PCR products (Supplemental Table
S1). We also screened plants that did not carry vectors in the T2 generation by further propagation and
experimentation to exclude the influence of carriers. Seedlings of both OsNAC006 mutants and WT
exhibited similar growth and development dynamics under standard growing conditions. (Figure 2D).

A C _
WT: GCAGCTGGTCCTCCGACCG-CGGCGECG
OsNACQ06-sgRNAD1 OsNAC008 #OsNAC006-sgRNAO1-01
AGCTGGTCCTCCGACCGCGGLGG (Os0190191300) allele-1:  GCAGCTGGTCCTCCGACC--CGGCGGEE -1bp
O T allele-2:  GCAGCTGGTCCTCCGACC--CGGCEGCE -1bp
#0OsNAC006-sgRNAD1T-02
B allele-1:  GCAGCTGGTCCTCCGACCGECGGLGECE +1bp
allele-2:  GCAGCTGETCCTCCGACCGLCGECEGCE +1bp
WT OSNAC006-sgRNAO1 #0OsNAGC006-sgRNAC1-03
allele-1: GCAGCTGETCCTCCGACCG-CGECGECE  WT
Bsth - + + + + + + + + + + + allele-2:  GCAGCTGETCCTCCEACCG-CGGCGECE  WT
#0sNAC006-sgRNAO1-04
allele-1:  ----- -55bp
allele-2:  ----- -55bp

#0sNACO006-sgRNAD1-05
allele-1:  GCAGCTGETCCTCCGACCGaCGECGECG +1bp
allele-2:  GCAGCTGGETCCTCCGACCGaCGECGECG +1bp
#0sNACO006-sgRNAD1-06
allele-1:  GCAGCTGGTCCTCCGACCG-CGGCGGCG  WT
allele-2:  GCAGCTGGTCCTCCGACCG-CGGCGECG  WT
#0OsNACO006-sgRNA01-07
allele-1:  GCAGCTGETCCTCCEACCGGCGECEECE +1bp
allele-2:  GCAGCTGETCCTCCGACCGGCGECEGCG +1bp
#OsNAC006-sgRNAD1-08
allele-1:  GCAGCTGETCCTCCEACCE--GECEECE -1bp
allele-2:  GCAGCTEETCCTCCGACCE--GECGECE -1bp
#0OsNAC006-sgRNAD1-09

allele-1:  ----- -58bp
allele-2:  ----- -55bp
+1bp//+1bp -1bp/i-1bp -55bp/i-55bp #OSNAC006-sgRNACT-10
allele-1:  GCAGCTERETCCTCCGACCG-CRECGECE  WT
WT OsNACO06-sgRNAO1 allele-2:  GCAGCTGGTCCTCCGACCG-CGGCGECE  WT

Figure 2. Using the CRISPR-Cas9 system to create mutants. (A) Design of sgRNA sites for
OsNAC006 exons. (B) Single-strand conformation polymorphism analysis of 11 independent
OsNAC006-sgRNAO01 TO lines. M, Markers; WT, Wild-type. (C) Sanger sequencing of the target
site in OsNACO006-sgRNAOQ1 T0 lines. (D) Phenotypic analysis of OsNAC006 TO mutant lines.

2.3. OsNACO006 Mutants are Sensitive to Drought and Heat Stress

Following abiotic stress treatments, OsNAC006 mutant expression profiles showed that growth
was inhibited following drought and high temperature stress (Figure 3A,D). Further analysis revealed
no differences in NBT or DAB staining between WT and 0snac006_1 plants under standard conditions.
However, after drought or heat stress, NBT and DAB staining showed that O,- and H,O, levels were
elevated in 0snac006 mutant plants (Figure 3B,E). The chlorophyll content was also significantly lower
in mutant plants after stress treatment. Additionally, the activities of antioxidant enzymes (SOD, POD,
and CAT) were decreased, and malondialdehyde (MDA), an indicator of membrane lipid peroxidation,
was more abundant in osnac006 mutant plants (Figure 3C,F). These results imply that 0snac006 may
function in drought and heat tolerance by weakening the antioxidant response that is triggered to
counteract oxidative stress, and by mediating photosynthesis under drought and heat stress conditions.
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Figure 3. The drought-sensitive phenotype of 0snac006 mutants. (A) Phenotypic analysis of OsNAC006
T1 mutant lines under drought stress. (B) Levels of O,—and HyO, in WT and OsNAC006 T1 mutant
lines subjected to drought stress. Drought-stressed leaf samples were incubated in nitro-blue
tetrazolium (NBT) or diaminobenzidine (DAB) solution. (C) Chlorophyll content after 20-day salt
stress. Superoxide dismutase (SOD) activity after 20-day drought stress. Catalase (CAT) activity after
20-day drought stress. Peroxidase (POD) activity after 20-day drought stress. Malondialdehyde (MDA)
content after 20-day drought stress. H,O, content after 20-day drought stress. O,— production rate after
20-day drought stress. Bars represent the mean + SE of three independent experiments. (D) Phenotypic
analysis of OsNAC006 T1 mutant lines under heat stress. (E) Levels of O;— and HyO, in WT and
OsNAC006 T1 mutant lines subjected to heat stress. Heat-stressed leaf samples were incubated in
nitro-blue tetrazolium (NBT) or diaminobenzidine (DAB) solution. (F) Chlorophyll content after 4-day
heat stress. Superoxide dismutase (SOD) activity after 4-day heat stress. Catalase (CAT) activity after
20-day salt stress. Peroxidase (POD) activity after 4-day heat stress. Malondialdehyde (MDA) content
after 20-day drought stress. H,O, content after 4-day heat stress. O,— production rate after 4-day heat
stress. Bars represent the mean =+ SE of three independent experiments. » and * * represent significant
differences at p < 0.05 and p < 0.01 compared to WT.

2.4. OsNACO006 Knockout Alters the Transcriptome Profile of Rice

To identify genes potentially regulated by OsNAC006 during drought, we performed RNA-seq
experiments on 0snac006_1, osnac006_2, and WT plants to detect transcription profiling changes under
normal and drought stress conditions. The RNA-seq results showed that gene expression was altered
significantly under both stress conditions (Figure 4A,C). We selected eight genes that were significantly
up- or downregulated in 0snac006 mutant plants before and after drought treatment for gqRT-PCR
validation of the RNA-seq results. Expression levels of all eight genes were consistent with the RNA-seq
data, confirming the accuracy of the results (Supplemental Figure S1).
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Figure 4. Global gene expression changes in knockout OsNACO006 rice. (A) The most significant
clustering analysis of differentially expressed genes (DEGs) in WT and o0snac006 T1 mutant lines.
Targeted knockout of 0snac006 resulted in profound changes to gene expression, physiology,
and development compared with WT and controls without drought stress treatment. The colour
scale corresponds to log2 (FPKM) values of the genes. (B) Number of DEGs in WT, 0snac006_1 and
osnac006_2 T1 mutant lines, based on expression profiles obtained by RNA-Seq. Total RNA was
extracted from mixed samples from three separate plants. (C) DEGs shared by WT and 0snac006_1 and
WT and osnac006_2 lines before drought stress. (D) DEGs shared by WT and o0snac006_1 and WT and
osnac006_2 lines after drought stress. (E) Gene ontology (GO) classification of DEGs shared by WT
and osnac006_1 and WT and 0snac006_2 mutant lines under normal and drought stress conditions.
The x-axis shows user-selected GO terms, and the y-axis shows the percentage of genes (number of a
particular gene divided by the number of total genes).

Under standard conditions, there are 4832 genes upregulated and 1512 genes downregulated
in the osnac006_1 mutant compared with WT plants. By comparison, 1814 genes were upregulated
and 2833 genes were downregulated in the 0snac006_2 mutant (Figure 4B). After drought stress,
527 genes were upregulated and 1209 genes were downregulated in 0snac006_1, while 1412 genes were
upregulated and 1091 were downregulated in 0snac006_2 (Figure 4D). Six samples were tested using
the BGISEQ-500 platform, with an average yield of 6.58 Gb per sample. The average alignment rate
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for the sample comparison genome was 88.67%, compared with 76.27% for the comparison gene set,
and 570 new genes were predicted. A total of 32,482 genes were identified, including 31,922 known
genes and 560 newly predicted genes. A total of 15,871 new transcripts were detected, of which
12,778 were new alternative splicing isoforms of known protein-coding genes, and 570 were transcripts
of newly predicted protein-coding genes.

Venn diagram analysis revealed 1661 genes expressed in both WT and osnac006_1 or
osnac006_2 mutants, which may explain the effects of knocking out OsNAC006 on plants before
treatments (Supplementary Figure 52). After drought stress, the two mutants were compared with WT
plants, and 793 differentially expressed genes (DEGs) were identified (Supplemental Figure S2).

These 1661 and 793 DEGs identified by comparison of 0snac006_1 and osnac006_2 with WT plants
were subjected to Gene Ontology (GO) enrichment analysis to identify the associated biological processes
(Figure 4E). DEGs related to the cellular component category were mainly associated with envelope,
organelle, and intracellular organelle function. DEGs related to the molecular function category were
mainly related to oxidoreductase activity, cofactor binding, and regulation terms. DEGs related to
the biological process category were mainly related to oxidation-reduction process, multicellular
organismal process, and response to stimulus terms. Among them, response to stimulus, organelle
part, and oxidoreductase activity were the most significantly differentially expressed (Figure 4E).

2.5. OsNACO006 Mediates Transcriptional Responses to Drought Stress

We identified 12 enriched regions through GO analysis of DEGs altered in both 0snac006_1 and
0snac006_2 mutants. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis
was carried out to further explore the biological functions of DEGs, especially those related to membrane
part, oxidoreductase activity, response to stimulus, and cofactor binding terms. The results showed that
plant hormone signal transduction, MAPK signaling, diterpenoid biosynthesis, carotenoid biosynthesis,
photosynthetic enzymes, photosynthesis, photosynthetic antenna proteins, ABC transporters, and starch
and sucrose metabolism were among the most affected pathways (Supplemental Figures S3-56).

We selected the most important genes of four pathways based on the KEGG results for heatmap
analysis. Heatmap analysis of membrane, oxidoreductase activity, response to stimulus, and cofactor
binding terms showed that DEGs belonged to various signaling pathways. Plant hormone and
MAPK signaling pathways were the most significantly influenced terms related to the response to
stimuli. Brassinosteroid insensitive 1 (OsBRI1; Os01g0718300) and 2 (OsBIN2; Os05g0207500), ethylene
receptor OsETR3 (Os02g0820900), auxin response factors OsARF12 (Os04g0671900) and OsARF19
(Os06g0702600), and ABA responsive element binding factor OsAREB8 (Os06g0211200) are the key genes
related to plant hormones (Figure 5A). Diterpenoid biosynthesis-related genes were also significantly
altered. Many genes associated with diterpenoid biosynthesis including OsGA200x1 (Os03g0856700)
can influence gibberellin-44 dioxygenase synthesis. OsHDY1 (Os03g0685000) is an enzyme related
to photosynthesis that participates in the electron transport chain and thereby influences the
oxidation-reduction process (Figure 5B). OsHPL3 (Os02g0110200), a hydroperoxide lyase, and OsAOS1
(Os03g0767000), part of a hydroperoxide dehydratase, bind heme iron, possess monooxygenase activity,
and both were significantly differentially expressed (Figure 5C). Membranes are dynamic structures
that are essential for cell viability and morphogenesis. They also provide a natural interface between the
environment and the cell. Diterpenoid metabolism and oxidoreductase activity related to membranes
were also affected by stress treatments (Figure 5D).
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Figure 5. Transcriptome analysis of genes systemically regulated in WT and 0snac006 T1 mutant lines
in response to drought stress. (A) Response to stimuli. (B) Oxidoreductase activity. (C) Membrane
part. (D) Cofactor binding. Logp fold change (FC) values for DEGs in WT and o0snac006_1 and
0snac006_2 mutant lines are shown before (drought—) and after (drought+) drought treatment.

3. Discussion

Drought stress is an important limiting factor in crop production. Approximately 20% of the
world’s agricultural land is affected by drought [27]. Previous studies showed that NAC TFs are unique
to plants, and not only regulate plant growth and development, but also play an important role in plant
stress resistance [28,29]. Various NAC TFs in rice participate in tolerance to extreme environmental
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conditions. Herein, we found that the Arabidopsis TF NAC016 promotes drought stress responses
by inhibiting AREB1 transcription. The nac016 mutants displayed higher drought tolerance, while
NACO016 overexpressing plants (NAC016-OX) exhibited lower drought tolerance [30]. The OsNAC2
overexpression line was sensitive to high salt and drought conditions. RNA interference (RNAi) can
be used to increase the tolerance of plants to high salinity and drought stress [10].

In this study, we discovered that OsNACO006 is expressed in the nucleus, and is induced by
various stresses, such as abiotic and hormone stress. We used the CRISPR/Cas9 system to generate
OsNAC006 knockout mutants to characterize the role of OsNAC006 in drought stress. OsNAC006
mutants displayed enhanced sensitivity to drought and heat stress, which lowered chlorophyll levels,
decreased POD and SOD enzyme activities, and elevated levels of MDA and other harmful oxidative
damage products. Plants have evolved a complex antioxidant system involving non-enzymatic and
enzymatic antioxidants [31,32]. Maintaining high levels of antioxidant enzymes such as POD, SOD,
CAT, peroxidase (POX), and ascorbate peroxidase (APX) to scavenge reactive oxygen species (ROS) is
associated with tolerance to stress.

Furthermore, we used RNA-seq to analyze widespread transcriptome changes under drought
stress. For RNA-seq analysis of OsNAC006 mutant plants, we focused on response to stimulus,
oxidoreductase activity, cofactor binding, and membrane terms (Figure 5C). The most significant
terms related to the response to stimulus subcategory were plant hormone and MAPK signal pathway
genes. Hormone regulation, homeostasis, and signaling are very important in plant regulation.
Some plant hormones exert strong effects on plant growth and development, such as auxins, GA, ABA,
and jasmonic acid (JA), while IAA can induce growth in shoots and roots. [33]. Because plants are
sessile, hormone-mediated regulation is needed to adapt to changes in the external environment [34].
Our KEGG pathway enrichment analysis revealed that many hormone biosynthetic pathways were
altered. Heatmap analysis also revealed that the MAPK signaling pathway was also affected.
MAPK signaling pathways are involved in the response to drought [35]. MKK3 and MPK6 were
activated by JA in Arabidopsis [36], and pathogen resistance (PR) is also activated by MKKS5 in response
to drought stress [37]. Regarding diterpenoid biosynthesis, carbon metabolism, photosynthesis,
and oxidoreductase activity were obviously affected by OsNAC006. Carbon metabolism is related to
respiration and photosynthesis to provide energy [38].

Many binding pathways were also affected by OsNAC006. Heme binding, iron binding,
and monooxygenase activity related to photosynthesis and respiration were altered. Previous studies
showed that cells must adjust central carbon metabolism (CCM) flux via a multi-level regulatory
mechanism that regulates gene expression and changes in growth conditions to rebalance the redox
ratio [39].

Photosynthesis is the main driving force for plant growth, and provides the necessary energy for
synthesizing organic compounds [40]. Many studies on increasing biomass production have focused
on identifying genes responsible for quantitative trait loci (QTLs) to improve photosynthesis [41,42].
Membranes are essential for cell viability, morphogenesis, and maintaining normal life activities [43].
The assembly of organelles involves thousands of genes that encode a complex network of metabolic,
signaling, and biosynthetic functions [44]. Heatmap results expand our understanding of the
mechanisms of drought stress.

In conclusion, our transcriptomic data provide evidence that OsNACO006 is essential for drought
resistance in rice. OsNACO006 is localized in the nucleus, and it is induced by various factors. OsNAC006
regulates the expression of genes related to responses to stimuli, oxidoreductase activity, cofactor
binding, and membrane pathways. The findings could prove valuable for genetic manipulation of
drought tolerance in future plant breeding programs.
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4. Materials and Methods

4.1. Plant Material and Growth Condition

The Japonica cultivar Nipponbare was employed in all transgenic experiments. RT-qPCR analysis
of OsNAC006 transcript levels was performed following eight different treatments. For RT-qPCR
analysis of OsNACO006 expression levels, we choose 4-week-old wild-type (WT) plants sown in pots
and grown in a light incubator at 28 °C under a 16 h 3000 lux/8 h dark cycle. For soil drought stress
treatment, evenly germinated WT and transgenic seeds were transplanted into soil and grown under
normal watering conditions for 4 weeks. Drought stress was then initiated by not irrigating for
7 days. For heat stress treatment, we grown plants at 42 °C under a 16 h 3000 lux/8 h dark cycle in a
light incubator.

4.2. OsNACO006 Expression Profile Analysis

To measure OsNAC006 expression levels following various abiotic stress and phytohormone
treatments, 4-week-old WT seedlings grown in a light incubator at 28 °C in Hoagland solution under
16 h 3000 lux/8 h dark conditions were treated with cold (4 °C), heat (42 °C), PEG 6000 (20%, w/v),
NaCl (200 mm), H,O, (1%), IAA (100 um), ABA (100 pm) and GA3 (100 um) [45]. Leaf tissue was
harvested after stress treatment and subjected to RT-qPCR analysis. Three biological replicates (three
independent WT plants for each abiotic stress treated sample) were examined to ensure reproducibility.

4.3. Subcellular Localization

In order to confirm the location of OsNAC006, the pZmUbi::OsNAC006-eGFP::HspT vector was
constructed and incorporated into rice protoplasts [46,47]. The plasmid encodes OsNAC006 fused to
green fluorescent protein (GFP), and the empty GFP vector NLS::eGFP served as a control.

4.4. Targeted Mutagenesis of OsNAC006

We used pZHY988, the CRISPR-Cas9 backbone vector, to generate targeted OsNAC006
mutants [48-50]. A single guide (sgRNA) oligonucleotide pair was designed and synthesized
(Supplemental Table S1). The expression vector was transformed into Agrobacterium tumefaciens strain
EHA105, and the resultant bacteria were used to infect rice calli [51,52]. Primers were designed and
synthesized for PCR analysis (Supplementary Table S1). Amplified products were cloned into each target
site, amplified by PCR, excised by restriction digestion with the corresponding enzymes, and positive
clones were selected for Sanger sequencing [53,54]. All resistant callus material used to detect mutations
was also used for off-target analysis. The online tool CRISPR-P (http://crispr.hzau.edu.cn/CRISPR2)
was employed to predict potential off-target sites of the sgRNA, and four potential off-target sites
were identified (Supplementary Table S2). We designed specific primers for further off-target analysis
(Supplementary Table S1). Amplified products were cloned, and 10 positive clones were selected for
Sanger sequencing.

4.5. Physiological Measurements

For phenotypic analysis of seedlings, WT and OsNAC006 mutant seeds were grown to the
4-week-old seedling stage in pots, then subjected to drought or heat stress. After 7 days of treatment,
physiological measurements were carried out as described in our previous study [12].

4.6. RNA-seq and Data Analysis

To investigate the function of OsNAC006 in drought stress, WT, 0snac006_1 (-55/-55) and
osnac006_2 (T/T) plants were used for RNA-seq analysis. Five-week-old plants grown under normal
conditions served as controls, and treated plants were grown for 4 weeks under normal conditions
and 1 week under drought conditions. We used a mixed sample method for RNA-seq. Total RNA
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was extracted from mixed samples from three separate plants. For each sample, such as osnac006_1
(—55/-55) under normal condition, we selected three separate plants and pooled these into one sample,
and this was complete one time. There were a total of three plants were sequenced for each of the four
treatments, a total of 12 plants. RNA-seq was carried out by Beijing Genomics Institute (Shenzhen,
China). Eight significantly up- and downregulated genes were selected for qRT-PCR to confirm
the accuracy of the RNA-seq data. Mutant lines were assessed before and after drought treatment,
and relative gene expression levels were normalized against the Actin gene. All assays for each gene
were performed in triplicate synchronously under identical conditions. And the RNA sequences have
been deposited into NCBI SRA database under accession number: PRINA603607.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/7/2288/
s1. Supplemental Table S1. Oligonucleotides used in this study; Supplemental Table S2. Off-target analysis of
OsNAC006-sgRNAO01; Supplemental Figure S1 Validation of the RNA-seq results by gRT-PCR. Supplemental Figure
S2 Venn diagram analysis of (DEGs) differentially expressed genes. Supplemental Figure S3 KEGG analysis of
DEGs related to the response to stimuli. Supplemental Figure S4 KEGG analysis DEGs related to oxidoreductase
activity. Supplemental Figure S5. KEGG analysis of DEGs related to cofactor binding. Supplemental Figure Sé6.
KEGG analysis of DEGs related to membrane functions.
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