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Abstract: Progestins are widely used for the treatment of gynecologic disorders and alone, or
combined with an estrogen, are used as contraceptives. While their potencies, efficacies and side
effects vary due to differences in structures, doses and routes of administration, little is known
about their effects on the endometrial transcriptome in the presence or absence of estrogen. Herein,
we assessed the transcriptome and pathways induced by progesterone (P4) and the three most
commonly used synthetic progestins, medroxyprogesterone acetate (MPA), levonorgestrel (LNG),
and norethindrone acetate (NETA), on human endometrial stromal fibroblasts (eSF), key players in
endometrial physiology and reproductive success. While there were similar transcriptional responses,
each progestin induced unique genes and biofunctions, consistent with their structural similarities
to progesterone (P4 and MPA) or testosterone (LNG and NETA), involving cellular proliferation,
migration and invasion. Addition of estradiol (E;) to each progestin influenced the number of
differentially expressed genes and biofunctions in P4 and MPA, while LNG and NETA signatures were
more independent of E,. Together, these data suggest different mechanisms of action for different
progestins, with progestin-specific altered signatures when combined with E,. Further investigation
is warranted for a personalized approach in different gynecologic disorders, for contraception, and
minimizing side effects associated with their use.
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1. Introduction

Progestins, compounds with progestational activity, include naturally occurring progesterone (Py)
and a variety of synthetic steroids [1,2]. They are widely used for contraception and the treatment of
endometriosis, endometrial hyperplasia, and endometrial cancer, and are also used for postmenopausal
hormone therapy [1-6]. Synthetic steroids that are structurally related to progesterone, testosterone,
and spironolactone constitute the main classes of progestins. Progestins are key constituents of many
contraceptives and either alone, or in combination with estrogens, are currently used by >660 million
women globally [6-8]. The contraceptive effects of synthetic progestins result from a mimicry of
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the actions of progesterone, including inhibition of ovulation and thickening of cervical mucus [6,9].
Additionally, they can counteract estrogen-driven endometrial proliferation in endometriosis and have
applications in postmenopausal hormone therapy and endometrial hyperplasia and cancer [1,3,10-13].
Recently, progestins have been implicated in the increased risk of HIV-1 acquisition, perhaps by
modulating the integrity and cellular functions of the female reproductive tract and impact on immune
functions, HIV-1 replication, and the vaginal microbiome [14,15]. However, “all progestins are not
equal” [1], as they have different structures that alter their affinities for the progesterone nuclear
receptor (PR), elicit unique intracellular signaling pathways and exhibit different potencies, metabolism,
pharmacokinetics, efficacy, side effects and off-target effects [2,9]. Patient hormonal status and progestin
dose, route of administration, formulation, combination with or without an estrogen, and duration
of use also contribute to different effects locally within the female reproductive tract (e.g., histology,
vascular integrity) [12,16], in other PR-expressing tissues, such as breast [2,6], and systemically [6,9].

The study of transcriptional regulation within endometrial tissue and cells in response to progestins
(with and without estrogens) has received limited focus [17-20], although they offer insights into
understanding the molecular and functional impact of these steroids. The current study examined the
transcriptome and related biological and functional pathways of human endometrial stromal fibroblasts
(eSF) in vitro, in response to different progestins with and without estradiol (E;). This cell type is
a central effector of endometrial physiology, homeostasis, and pathophysiology across a woman'’s
lifespan, including regulating endometrial cycling, receptivity to an implanting embryo, and generation
of the decidua of pregnancy [21,22]. Additionally, eSF exhibit abnormalities in endometriosis and
polycystic ovary syndrome, and they respond in situ during contraceptive and post-menopause
hormone therapy. Thus, the study of this cell type has promise to provide insights into why some
progestins have more efficacy, consequential side effects (e.g., breakthrough bleeding) [6,9] and
susceptibility to HIV acquisition [15]. Given the plethora of progestins and their diverse bioactivities,
herein, we focused on the most commonly formulated progestins in use today: medroxyprogesterone
acetate (MPA, structurally similar to progesterone (P;)) and levonorgestrel (LNG) and norethindrone
acetate (NETA)—structurally related to testosterone (Figure 1).

Progesterone (P,) Testosterone

Norethindrone acetate (NETA) Levonorgestrel (LNG)

Figure 1. Chemical structures of progestins used in the study. Chemical structures of progesterone,
testosterone, medroxyprogesterone acetate (MPA, a progestin structurally related to progesterone), and
two progestins structurally related to testosterone: norethindrone acetate (NETA) and levonorgestrel
(LNG).
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In the current study, we found that these progestins commonly display anti-inflammatory
and pro-angiogenic profiles, altered effects on extracellular matrix integrity and exhibited distinct
transcriptomic profiles depending on their subclass—i.e., structurally related to progesterone versus
testosterone and within progestin sub-classes. Notably, addition of estradiol (E;) moderated some
of the effects depending on the progestin, indicating that structural differences in the progestins are
important in gene regulation and interactions with other steroid hormones in the endometrium.

2. Results

2.1. Progestins Structurally Related to Progesterone and Testosterone Induce Distinct Gene Expression Profiles

Gene expression profiles of eSF in response to each progestin versus vehicle control revealed that
similar numbers of genes were differentially expressed in response to structurally related P4 and MPA;
whereas, more than twice the number of genes were differentially expressed in response to LNG and
NETA (Table 1). Moreover, LNG and NETA, structurally related to testosterone (Figure 1), affected
similar numbers of differentially expressed genes (DEG) (Tables 1 and 2). The top 30 DEG for each
progestin treatment are presented in Table 2 (see Supplemental Table S1 for the full list of DEG for each
progestin treatment).

Table 1. Number of DEG in comparisons of each progestin vs. vehicle in the absence or presence
of estradiol.

Up-Regulated Down-Regulated

Comparison DEG (FC > 1.5) DEG (FC > 1.5) Total DEG
LNG vs. Vh 249 304 553
Progestins without E; MPA vs. Vh 122 129 251
NETA vs. Vh 243 352 595
Py vs. Vh 55 61 116
E, E, vs. Vh 88 76 164
E,LNG vs. Vh 233 338 571
Progestins + E E,MPA vs. Vh 259 350 609
2 E,NETA vs. Vh 247 298 545
E,P4 vs. Vh 208 314 522

E;: estradiol; MPA: medroxyprogesterone acetate; LNG: levonorgestrel; NETA: norethindrone acetate; FC: fold
change; DEG: differentially expressed genes.

Notably, in the response of eSF to all progestins, regardless of type, there were several classical
progesterone-regulated genes, including secreted protein acidic and enriched in cysteine like 1
(SPARCLI), solute carrier family 7 member 8 (SLC7AS), olfactomedin (OMD), dikkopf 1 (DKK1),
forkhead binding protein 5 (FKBP5), and interleukin 1 receptor (IL-IR) (Table 2) [23]. However,
each progestin also differentially regulated unique genes compared to other progestins (full list in
Supplemental Table S1), which were further altered in the presence of E; (see below and Table 2).

The unique and common molecular functions of each progestin effect on eSF were analyzed by
Ingenuity Pathway Analysis® (IPA) (Table 3).
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Table 2. Select differentially expressed transcripts and genes in each progestin vs. vehicle without and with estradiol.
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P4 vs. Vh E;P4 vs. Vh MPA vs. Vh E;MPA vs. Vh LNG vs. Vh E;LNG vs. Vh NETA vs. Vh E;NETA vs. Vh
Gene Gene Gene Gene Gene Gene Gene Gene
Symbol FC Symbol FC Symbol FC Symbol FC Symbol FC Symbol FC Symbol FC Symbol FC
SPARCL1 52 SPARCL1 41.8 SPARCL1 13.8 SPARCL1 32.6 SPARCL1 222 SPARCL1 23.6 SPARCL1 19.3 SPARCL1 24.3
SLC7A8 35 SLC7AS8 15.6 SLC7AS8 6.0 FKBP5 11.1 FKBP5 9.9 FKBP5 11.2 FKBP5 11.3 FKBP5 11.1
LCP1 34 GREB1 15.0 OMD 51 SLC7AS8 10.4 SLC7AS8 94 CNR1 8.8 SLC7A8 9.3 PARM1 9.1
FKBP5 29 LCP1 8.7 FKBP5 5.0 PARM1 10.2 CNR1 8.3 SLC7A8 8.7 CNR1 8.9 LCP1 8.0
GPX3 29 OMD 7.1 THSD7A 3.8 LCP1 9.3 LCP1 7.9 PARM1 8.6 PARM1 7.9 CNR1 7.9
IL1R1 2.7 FKBP5 7.1 IL1R1 35 OMD 8.9 PARM1 6.7 LCP1 8.1 LCP1 79 SLC7AS8 7.8
OMD 2.6 CNR1 6.7 LCP1 3.4 DKK1 8.1 OMD 6.5 OMD 7.1 MAOB 7.7 OMD 6.7
DKK1 24 GPX3 6.6 GPX3 3.1 CNR1 8.1 MAOB 6.5 MAOB 6.8 OMD 7.6 MAOB 6.1
MT-TA 2.3 THSD7A 6.0 CNR1 3.0 MAOB 6.9 GREB1 5.8 DKK1 6.3 DKK1 6.1 DKK1 5.7
THSD7A 22 MAOB 5.6 CRISPLD2 29 CRYAB 5.3 DKK1 55 GREB1 5.1 CRYAB 54 ENPEP 5.6
LPAR1 2.1 DKK1 5.6 LAMA2 2.8 ULK4 5.2 ULK4 4.8 CRYAB 5.0 ENPEP 4.6 PLCL1 49
SPSB1 2.1 IL1R1 49 CRYAB 2.7 ENPEP 5.1 CRYAB 4.7 IL1R1 4.7 IL1R1 4.5 ULK4 49
SEMA3C 2.0 C100rf10 4.8 LPAR1 2.6 THSD7A 5.0 IL1R1 44 THSD7A 44 CRISPLD2 4.3 CRYAB 4.8
SERPINE1 2.0 ABHD5 4.7 MAOB 2.6 PLCL1 4.7 PLCL1 4.2 LPAR1 4.3 ALDH1A3 4.2 ALDHI1A3 4.7
APOD 2.0 IMPA2 4.6 ABCC9 2.5 GREB1 4.6 LPAR1 4.1 ALDH1A3 4.3 PLCL1 4.2 ITPR1 44
TOX -1.8 HSD17B2 -3.8 ETV1 -2.7 DACH1 -4.4 TNFRSF19 -4.4 DACH1 —4.2 TNFRSF19 -4.3 CLDN11 42
ARHGAP29 -1.8 LYPD1 -4.1 NDNF -2.7 CD34 -44 CHRM2 -44 MXRA5 -45 CD34 -43 CD34 -4.2
CXCL12 -1.9 NCKAP5 —4.2 FIX1 -2.8 TOX -4.5 CD34 —4.4 TGFBI —4.5 F2RL2 —4.5 TNFRSF19 —44
DACHI1 -2.0 CHRM2 —4.2 HPSE2 -3.0 TGFBI -5.1 LYPD1 -4.8 TNFRSF19 -4.6 TOX -4.7 LYPD1 -4.6
GUCY1A3 -20 FGF7 —44 HSD17B2 -3.1 LYPD1 -54 PRELP -5.1 LYPD1 -47 TGFBI -4.8 TOX -4.7
TNFRSF19 2.0 CD34 —4.5 NCKAP5 -3.1 GBP4 -5.6 GBP4 -5.2 NCKAP5 -6.1 FIX1 -4.9 GBP4 -4.7
ITGAS -22 EGR2 -4.8 CHRM2 -3.2 CCL2 -6.0 TGFBI -5.2 PRELP -6.1 NDNF -49 NCKAP5 5.1
CHRM2 -2.3 MXRA5 -5.0 GBP4 -3.2 NCKAP5 -6.3 NCKAP5 -52 ETV1 -6.2 NCKAP5 -5.0 CCL2 -5.1
ETV1 -2.3 NDNF -5.0 SFRP1 -34 PRELP -6.3 NDNEF -5.6 CCL2 -6.2 GBP4 -5.1 NDNF -5.4
LYPD1 -24 TGFBI -54 CST1 -34 NDNEF —-6.6 FJX1 -5.9 GBP4 -6.4 PRELP -5.7 PRELP -5.4
GBP4 -24 ETV1 -5.7 LYPD1 -3.5 SFRP1 -6.8 CCL2 -6.4 NDNF -6.5 CCL2 -6.2 SFRP1 -55
NDNF -25 GBP4 -6.3 MMP3 -3.6 FIX1 -7.7 ETV1 -6.5 FIX1 -6.8 ETV1 -6.4 ETV1 -6.0
KRT19 -2.6 CXCL12 -7.2 KRT19 -3.7 ETV1 -8.0 SFRP1 -6.8 SFRP1 -6.8 SFRP1 -6.4 FJX1 -6.3
SFRP1 -2.6 CCL2 -74 CD34 -3.8 HSD17B2 -8.6 HSD17B2 -7.1 MMP3 -8.1 MMP3 -6.5 MMP3 -6.8
CD34 -29 SFRP1 -84 CCL2 -4.8 MMP3 -9.0 MMP3 -7.5 HSD17B2 -9.5 HSD17B2 -7.0 HSD17B2 -7.7

Ej: estradiol; P4: progesterone; MPA: medroxyprogesterone acetate; LNG: levonorgestrel; NETA: norethindrone acetate; Vh: vehicle; FC: fold change.
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Table 3. Common and unique molecular functions of progesterone and testosterone structurally related

progestins in the absence or presence of E;.

Progestins vs. Vh &

Progestins + E; vs. Vh & Predicted

E; vs. Vh & Predicted Activation

Predicted Activation Activation
Molec'ular z>2 Molecular functions z>2 Molecular functions z>2
functions
Angiogenesis l S;}:hzll?;egﬁrggs l Colony formation l
Binding of Cell movement of tumor Proliferation of smooth
endothelial cells cell lines ! muscle cells l
Cell viability Chemotaxis l Inflammatory response |
Cell viability of Colony formation of Cell movement of blood
tumor cell lines * ! tumor cells ! cells !
Endothelial cell Cytostasis of tumor cell Cell movement of
development ! lines ! endothelial cells !
Proliferation of Differentiation of Migration of
P4 endothelial cells fibroblasts ** ! endothelial cells !
Secretion of lipid T Formation of skin l Leukocyte migration l
Growth of connective Response of tumor cell
tissue Tt ! lines !
Homing of cells l Quantity of Ca2 + l
Import of D-glucose T
Internalization of
carbohydrate T
Invasion of cells ** l
Invasion of tumor cell
lines ** !
Migration of breast cancer
cell lines ** !
Migration of cells
Migration of colorectal
cancer cell lines ¢
Migration of tumor cell
lines ** !
Proliferation of
connective tissue cells !
Proliferation of lung
cancer cell lines !
Proliferation of smooth
muscle cells l
Transcription
Cell viability of Cell movement of
tumor cell lines * ! carcinoma cell lines
Differentiation of Cell movement of
fibroblasts ! sarcoma cell lines !
Growth of tumor 1 Colony formation 1
Import of D-glucose T Colony formation of cells |
MPA | Migration of Differentiation of
sarcoma cell lines ! fibroblasts t* !
Migration of tumor Growth of connective
cells T tissue ** !
g)(l)ind- Efgoma l Invasion of cells ++ l
Sphere formation Invasion of tumor cell
of tumor cell lines ! lines ** !
Migration of breast cancer
cell lines ** !
Migration of sarcoma
cell lines !
Migration of tumor cell
lines *+ !
Sphere formation of .

tumor cell lines
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. . E; vs. Vh &
Progestins vs. Vh & Predicted Activation Progestins + AE 2 VS .Vh & Predicted Predicted
ctivation e .
Activation
. . Molecular
Molecular functions z>2 Molecular functions z>2 . >
functions

Adhesion of lymphoma cell lines ! Activation of DNA l

endogenous promoter
Apoptosis T Apoptosis T
Binding of lymphoma cell lines * | E::il&g of lymphoma cell l
Cell death T Cell death ** T
Cell death of tumor cell lines T Cell death of tumor cell lines T
Cell movement of carcinoma cell Cell movement of carcinoma
lines * ! cell lines ** !
Cell movement of epithelial cell Cell movement of sarcoma
lines * ! cell lines ** !
Cell movement of sarcoma cell Cell movement of tumor cell
lines * ! lines ** !
Cell movement of tumor cell Cell proliferation of
lines * ! carcinoma cell lines ** !
Cell proliferation of carcinoma Cell viability of tumor cell
cell lines * ! lines ** !
Cell viability of tumor cell lines * | Chemotaxis ** 1

LNG Chemotaxis * 1 Colony formation ** 1
Colony formation * l Colony formation of cells ** l
Colony formation of cells * l gﬁg{:z formation of tumor !
Colony formation of tumor cell Differentiation of fibroblasts
lines ! o !
Colony formation of tumor cells * | Srowth of connective tissue l
Differentiation of fibroblasts * 1 Growth of malignant tumor ** |
Growth of connective tissue * l Growth of tumor ** l
Growth of malignant tumor * 1 Homing of cells ** l
Growth of tumor * 1 Invasion of cells ** l
Homing of cells * 1 Invasion of tumor cell lines ** |
Invasion of cells * 1 Microtubule dynamics 1
Invasion of tumor cell lines * ! Icvellllg]rf:e(;tf f breast cancer !
Migration of breast cancer cell . Migration of cells ** .
lines *
L. Migration of sarcoma cell

Migration of cells * l lines ** !
Migration of colorectal cancer cell Migration of tumor cell lines
lines ! ad !
Migrition of prostate cancer cell L Necrosis ** 1
lines
Migration of sarcoma cell lines * l Organization of cytoplasm l
Migration of tumor cell lines * l Organization of cytoskeleton l
Necrosis 1 Proliferation of connective !

tissue cells **
Phosphorylation of L-tyrosine ! E;(;l;feratlon of lung cancer cell l
Proliferation of cancer cells l Proliferation of smooth !

muscle cells
Proliferation of connective tissue
cells * ! ! !
Proliferation of smooth muscle Sphere formation of tumor
cells * ! cell lines ** !
Proliferation of tumor cells * 1 Transcription 1
Rearrangement of cytoskeleton * l Transcription of RNA l
Sphere formation of tumor cell .

lines *
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of 22

. . E; vs. Vh &
Progestins vs. Vh & Predicted Activation Progestins + E; Vs .Vh & Predicted Predicted
Activation e ..
Activation
. . Molecular
Molecular functions z>2 Molecular functions z> . >
functions
Binding of lymphoma cell lines * Adhesion of lymphoma cell lines |
Cell movement of carcinoma cell . Binding of lymphoma cell
lines * lines **
C'ell n:ovement of epithelial cell . Cell death ** 1
lines
Cell movement of carcinoma
Cell movement of muscle cells 1 . l
cell lines **
Cell movement of sarcoma cell lines * | Cell r‘novement of epithelial l
cell lines
Cell movement of smooth muscle . Cell movement of sarcoma cell L
cells lines **
Cell movement of tumor cell lines * l Cell movement of smooth l
muscle cells
Cell proliferation of carcinoma cell . Cell movement of tumor cell L
lines * lines **
. Cell proliferation of carcinoma
Cell survival 1 cell lines ** 1
s Cell viability of tumor cell
Cell viability 1 lines ** 1
Cell viability of tumor cell lines * 1 Chemotaxis ** 1
NETA| Chemotaxis * 1 Colony formation ** 1
Colony formation * l Colony formation of cells ** l
Colony formation of cells * l Er?izny formation of tumor cell l
Colony formation of tumor cells * 1 Cce(;};n:z formation of tumor !
Cytostasis of tumor cell lines 1 Differentiation of fibroblasts ** |
Differentiation of fibroblasts * 1 Growth of connective tissue ** 1
Growth of connective tissue * 1 Growth of malignant tumor ** 1
Growth of malignant tumor * 1 Growth of tumor ** 1
Growth of tumor * 1 Homing of cells ** 1
Homing of cells * 1 Invasion of cells ** 1
Import of D-glucose T Invasion of tumor cell lines ** l
Invasion of cells * . Mlgrit:on of breast cancer cell L
lines
Invasion of tumor cell lines * 1 Migration of cells ** 1
Microtubule dynamics . >IE\;Ilgratlorl of sarcoma cell lines L
Migration of breast cancer cell lines * | Migration of tumor cell lines ** |
Migration of carcinoma cell lines 1 Necrosis ** T
Migration of cells * 1 Proliferation of cancer cells 1
. - Proliferation of connective
Migration of prostate cancer cell lines l tissue cells ** l
Migration of sarcoma cell lines * 1 Proliferation of tumor cells ** 1
Migration of smooth muscle cells l 151512:1:* formation of tumor cell l
Migration of tumor cell lines * l
Migration of vascular smooth muscle L
cells
Proliferation of connective tissue .
cells *
Proliferation of lung cancer cell lines l
Proliferation of smooth muscle cells * 1
Proliferation of tumor cells * 1
Rearrangement of cytoskeleton * l
Sphere formation of tumor cell .
lines *
Transcription l
Transcription of RNA l

Ez:

estradiol; Py: progesterone; MPA: medroxyprogesterone acetate; LNG: levonorgestrel; NETA: norethindrone
acetate; Vh: vehicle; |, Decreased; T, Increased; +: Common between P4 and MPA; *: Common between LNG and
NETA; ++: Common between P4+E2 and MPA+E2; **: Common between LNG+E2 and NETA+E2; Bold: Common
in each progestin without or with E2.
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The eSF response to P, revealed that six molecular functions were decreased compared to vehicle
control, including angiogenesis, endothelial cell development and proliferation, and cell viability and
the secretion of lipid were increased. In response to MPA, cell viability, fibroblast differentiation, and
tumor growth were decreased. Only one common function, decreased cell viability, was shared between
P4 and MPA treatments of eSF (Table 3). When eSF cells were treated with progestins structurally similar
to testosterone, there were considerably more altered molecular functions than in the P, and MPA
treated groups (Table 3). With LNG treatment of eSF, 37 molecular functions were regulated, including
increased apoptosis and cell death and decreased cell movement, proliferation, migration, growth,
and colony formation. Similar results were observed with NETA, wherein 41 molecular functions
were regulated, including decreased cell movement, viability, survival, growth, invasion, proliferation,
and migration. When comparing LNG and NETA treatment groups, 28 common molecular functions
were observed, including decreased cell movement, cell migration, cell proliferation and cell viability,
among others (Table 3).

2.2. Estrogen Enhances Progestin-Specific Effects on Gene Expression

The combined treatment of E, with progestins resulted in higher numbers of differentially
expressed genes compared to progestins alone (except for NETA), especially in the group structurally
similar to progesterone (Table 1). Supplemental Table S1 and Table 2 contain the full gene lists and
the top 15 up- and down-regulated genes in all groups, respectively. Of the 116 DEG in eSF treated
with P4 versus vehicle control, 112 DEG (96.5%) were also differentially expressed in E;+P4 versus
control. Of the 251 DEG expressed in eSF treated with MPA, 224 DEG (89.2%) were also expressed in
the Ey+MPA treatment group. In contrast, LNG and NETA exhibited similar effects (to each other) on
changes in gene expression in the presence or absence of E; (Tables 1 and 2). Of the 553 DEG in eSF
treated with LNG versus vehicle control, 511 DEG (92.4%) were also expressed in response to E;+LNG
versus control. Of the 595 DEG resulting from NETA treatment, 502 DEG (84.3%) were also expressed
in the E;+NETA treatment group.

The Venn diagrams (Figure 2) show the number of upregulated and downregulated DEG in
common and unique for each progestin treatment, with or without E; versus vehicle control.
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Figure 2. Venn diagram of differentially expressed genes among the four progestins alone or in
combination with E;. Upper panel shows Venn diagrams of up-regulated DEG for each progestin
versus Vehicle alone (left panel), or in combination with E; (right panel). Lower panel shows Venn
diagrams of down-regulated genes for each progestin versus vehicle alone (left panel), or in combination
with E; (right panel). Fold change (FC) > 1.5 and Benjamini-Hochberg adjusted p < 0.05.

The P4 and MPA treatments upregulated 52 common genes, with only 2 genes uniquely expressed
in P4 alone and 1 in MPA alone. LNG and NETA resulted in the upregulation of 223 common genes,
with 22 and 20 genes uniquely upregulated in LNG or NETA, respectively. Overall, there were 50 genes
commonly upregulated by all four progestins. The number of upregulated genes increased with the
addition of E,, particularly in P4 and MPA, with 23 uniquely upregulated genes in the P4 and 10 genes
in MPA. Altogether, there were 158 genes in common among all four progestins when combined with
E; (vs. 50 genes in the absence of E). Similarly, the majority of downregulated genes in P, treatment
were in common with MPA (55 genes). LNG and NETA induced more DEG than MPA and P4, with 285
downregulated genes in common between LNG and NETA. In addition, the addition of E, increased
the number of downregulated genes—particularly in P, and MPA. These data demonstrated that the
addition of E; affected up- and down-regulation and increased the total number of common DEG in
all four treatments to 224 genes, compared with 55 downregulated genes in progestins without the
addition of E;. The lists of unique genes and pathways with and without E; treatment are shown in
Table 4 and Supplemental Table S1.
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Table 4. Unique molecular functions and genes of each progestin without or with addition of E;.

10 of 22

Unique Py Unique Py, Ep Unique MPA Unique MPA+E; Unique LNG Unique LNG+E; Unique NETA Unique NETA+E;
Molec.ular - Molec.ular 252 Moleo?ular Mole.cular 52 Molec.ular 232 Molec.ular 2>2  Molecular functions z3> 2 Mole.cular 252
functions functions functions functions functions functions functions

. . . Activation of

. . Formation Migration of Cell movement of

Angiogenesis | of skin 1 tumor cells T Cell death T endogenous 1 muscle cells 1
promoter
Binding of N
endothelial 1 [mport of T Non'—melanoma 1 Necrosis T Organization of 1 Cell survival 1
cells D-glucose solid tumor cytoplasm
End(?etl}llehal L Inter(r)lfa lization 1 Phosphorylation L Organization of L Migration of .
development carbohydrate of L-tyrosine cytoskeleton carcinoma cell lines
Proliferation
of . Migration of smooth .
endothelial muscle cells
cells
Secretion 1 Migration of vascular .
of lipid smooth muscle cells

Proliferation of lung
cancer cell lines
Transcription

Unique Up- and Down-Regulated Genes

2 loci exclusively
in “P4 vs. Vh”

1 loci exclusively in
“MPA vs. Vh”

23 loci exclusively
in “E2P4 vs. Vh”

10 loci exclusively
in “E2MPA vs. Vh”

2 loci exclusively in
“E2LNG vs. Vh”

22 loci exclusively in
“LNG vs. Vh”

20 loci exclusively in “NETA
vs. Vh”

13 loci exclusively
in “E2NETA vs. Vh”

ABCA1, ABCG1

Up-regulated Genes

IRS1, PTS, ITGB1BP1,
LAMA3, DPH3,
MRAS, JMY, MFSD5,
PPP2CB, CCT5,
B3GALT4, DTNA,
HSD17B11, TUBB2A,
CNTN3, C200rf194,
CORIN, PRKCDBP,
KIF13A, UNG,
SLC22A23, FMN1,
POLD4

CH25H

P2RY1, SETMAR,
HSPB1, BLVRB,
RN7SKP283,
ZDHHCY,
TMEM120A,
CDC25B, TMEDI0,
PDEIA

TCEAL1|TCEAL3,
OAT, TCEALS,
CDC42SE2, FAM199X,
TRIM63, STK3, REV3L,
SIDT2, GADD45A,
PDESA, NXPE3, PGR,
GM2A, ATL3,
TUBB2A, MORF4L2,
SETMAR, TCEAL4,
ATL1, PXK, PRTG

ARHGAP10, SMPD2

SNORD13, ABLIM1,
GALNT10, TMEM120A,
LARGE, IRS1, TBCB, BLVRB,
CHST7, ALOX5AP, KCNJS8,
HSPB1, TANGO2, ZNF438,
ZNF438, CHCHD10, SLC35E3,
ARLS8A, COX17, AGPATS,
TIPARP

NXPE3, SIDT2,
SLC38A11, AGPATS,
STX2, RHOQP?,
BCAT2, SNTB2,
YBX3,CHCHDI0,
ATL3, C90rfo1, CST3
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Table 4. Cont.

11 0f 22

11loci exclusively

42 loci exclusively

1 loci exclusively in

18 loci exclusively

17 loci exclusively in

8 loci exclusively in

67 loci exclusively in “NETA

4 loci exclusively in

in “P4 vs. Vh” in “E2P4 vs. Vh” “MPA vs. Vh" in “E2MPA vs. Vh” “LNG vs. Vh” “E2LNG vs. Vh” vs. Vh” “E2NETA vs. Vh”

IFI16, PTMAP4, CROT,
TOP2B, SYDE2, IRF1, CNN2,

BIVM, ORC2, NPAT, PAK1, RHBDD2, FARP1,

CNOT6LICNOT6LP1, CDK2, PCNXL4, CNOT2,

NQO1, LRRC37A4P, ZNF483, CNNM1, ATP1A1,

CREB5, ZNF462, TANC1, TNFRSF10B, MACF1,

SMADS5, DLCI, CCDC109B, PTPN14,

GRIA3, SMC5, TGFBRAP1, HMGN1P30,

CACNA2D1, MACF1, FAM46C, TRIMS5, CREBS5, TFAM,

Cl4orfl, NUCKSI, CACNAILC, ABCG1, f{géﬁ ;{“ﬁﬁ% PTDSS1, PPP1CC, TERF1,

NEFM, PLEKHA5 FHL3, NF1P3, RASLIIA. ANGPTL PONXLA GABPA HNRNPA1, HNRNPA1P10,

TNERSF10B, CNN3, PTMAP4, TMEM51, 50 i I NRC6B. POMTDR RNU6-674P, DUSP7, CH25H, i oy

ZNF704 NEO1, CDK19, FAM46C PMEPAI1, ARL15, ’ ’ / ’ TSHZ1, METAP1, ARL15, ' ’

Down-regulated Genes

HNRNPA1, LPHN1,
CDH11, MXRA5P1
MASP1, HNRNPAT,
TFAM, HNRNPA1,
PPP1CC, ZKSCANS,
COL6A3, TFDP2,
TSPYL2, LRRCSC,
FAM171B, TLE4,
CH25H, TMEMY7,
SLC7A11, PCDH18

CNNM1, RPL22L1,
BAZ2B, PTMAP4,
ZNF33B, NES,
TMEM25, CADM4

NPYIR, CKS1B, MBIP,
FIGNL2, CADM4,
PHLDA1, WBPIL,
LOXL2, ACSL4

CDK2, SNRK, STRA®6,
CEP57

HNRNPA1P7, TBC1DS,
RUNXIT1, ESR1, SALL2,
PNISR, DGKH, HNRNPA1P6,
EPHA5, NEO1, CCDC125,
BAZ2B, ZNF713, C21orf91,
CEP57, ZNF721, PDGFD,
ADCY4, ZNF286A, IL17RD,
SMC5

GABPA, FZD6, RBFOX2,
DTWD1, PCDH1S,
RNU6-1152P, ZKSCANS,
LINC00597, ZNF217

PDE9A, TM7SF2

E,: estradiol; P4: progesterone; MPA: medroxyprogesterone acetate; LNG: levonorgestrel; NETA: norethindrone acetate; Vh: vehicle; |, Decreased; T, Increased.
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2.3. Molecular Biofunctions

The numbers of molecular and cellular functions of DEG were also increased when E, was added
to progestin treatments of eSF, mainly for progestins structurally related to progesterone (Table 3).
Twenty-one molecular functions were uniquely affected when E, was added to P4, compared to
7 molecular functions affected by P4 alone (Table 3). Notably, E; increased biofunctions involving the
internalization of carbohydrate and the import of D-glucose and decreased cell movement, migration,
invasion, and tumor cell colony formation, differentiation of fibroblasts, and gene transcription. When
E; was combined with MPA, the cellular functions that decreased included cell movement, invasion
and migration. Common molecular functions in the MPA treatment with and without E; included
decreased fibroblast differentiation, and cell migration. Six shared molecular functions were observed
between P4+E; and MPA+E,, including decreased fibroblast differentiation and cell growth, invasion
and migration (Table 3). In contrast, addition of E; to the progestins structurally related to testosterone
resulted in fewer affected molecular functions than without E; (Table 3). Of the 36 molecular functions
affected in LNG+E;, 29 of them were common to LNG alone, including increased apoptosis and
necrosis, and decreased cell growth, viability, migration and proliferation, and colony formation.
In NETA+E,, there were 31 cellular and molecular functions altered, of which 26 were common to
NETA alone. These included decreased cell movement, growth, invasion and migration, and colony
formation (Table 3). Twenty six molecular functions were common between LNG+E; and NETA+E,
treatments, including decreased fibroblast differentiation and cell growth, invasion and migration
(Table 3). Notably, eSF treatment with E; alone resulted in decreased molecular functions of colony
formation, proliferation of smooth muscle cells, migration of endothelial cells and leukocytes, and the
inflammatory response (Table 3).

The unique versus common molecular biofunctions in the absence or presence of E; are indicated
in Table 3, based on the structurally related progestin groups.

2.3.1. Unique Molecular Biofunctions

Molecular functions that were unique for each progestin, as well as the upregulated and
downregulated genes in each function, in the absence and presence of E, are presented in Table 4.
Note that these were unique between progestin-alone groups (P4 vs. MPA vs. LNG vs. NETA) and
unique between progestin plus E, groups (P4+E; vs. MPA+E, vs. LNG+E; vs. NETA+E,). Unique
biofunctions for each progestin involved decreased angiogenesis and endothelial cell-related functions
in P4, increased tumor cell migration and decreased tumor formation in MPA, increased cell death and
necrosis in LNG, and decreased transcription, cell survival, vascular smooth muscle cell movement and
migration in NETA. In the presence of E, only P4+E; and LNG+E, (but not MPA+E; and NETA+E,)
showed unique biofunctions, which were different from those of unique P4 and LNG without E;
(Table 4).

2.3.2. Common Molecular Biofunctions

Table 5 reflects the molecular biofunctions commonly shared among all four progestin treatments
with and without E,, as well as the genes involved in each biofunction based on progestin treatments.
In the absence of E; (progestin alone treatments), only one molecular function, decreased cell viability,
was common among all progestin treatments (Table 5).

In contrast, with the addition of E;, six biological functions were common to all four treatments,
including decreased fibroblast differentiation, growth of connective tissue, and the invasion and
migration of cells and tumor cells (Table 5). Interestingly, the one common DEG in all biofunctions and
in all groups, with or without E,, was the chemokine CCL2 (bolded in Table 5). Two DEG, CCL2 and
IL-6, were common among all biofunctions and across all progestin treatment groups in the presence
of E,.



Int. ]. Mol. Sci. 2020, 21, 2625

13 of 22

Table 5. Common biofunctions and associated differentially expressed genes between progestins

without and with addition of E;. E;: estradiol; P4: progesterone; MPA: medroxyprogesterone acetate;

LNG: levonorgestrel; NETA: norethindrone acetate; Vh: vehicle; DEG: differentially expressed genes.

Common Functions between
Progesterone and Testosterone
Structurally Related Progestins

(Predicted Activation, z-score>2)

Common DEG Progestins Related to
Progesterone (P;/MPA)

Common DEG Progestins Related to
Testosterone (LNG/NETA)

Cell viability of tumor cell lines

-E2 (Decreased)

ABCA1, AK5, APOE, CCL2, CD200,
DUSP6, FKBP5, GUCY1A3, INSR, KRT19,
MAPK3K4, NTE3, SMAD3, TOX, ZBTB16

AK5, AKAP13, APOE, ASAH1, BCL6, BDNF,
BEX2, CASP1, CAV1, CCL2, CCND1, CD200,
CDH2, CTGF, CXCL12, DNM1, DUSP6,
FGFR1, FKBP5, GDF15, GUCY1A3, HMOX1,
ID4, IL6, INPP5A, INSR, IRS2, IMJD1C, KIT,
KRT19, LIMK2, MAP3K4, MCOLN1, NFATS5,
NR1D1, NRP1, NTF3, PGRMC1, PIK3R1,
PLAU, PLK2, POLB, PTPN11, PTPRK,
SMAD3, TOX, TRIB2, UGCG, VEGFA, WEET,
ZBTB16

Differentiation of fibroblasts
(Decreased)

CCL2, CD44, DKKI1, F2RL1, IL6, PDE5A

CCL2, DKK1, F2RL1, IL6, PDE5A

+E2
Growth of connective tissue
(Decreased)

CCL2, CCND1, CD44, CDH13, CTGF,
CXCL12, FGF1, FGF7,, FGF9, FOXO1,
GREM1, IGFBP4, IL6, PDE5A, PDGFD,
PLAU, PTPRK, RUNX1T1, SFRP1, SMAD3,
SPRY2, THRB, TMPO, WNT2

CCL2, CCND1, CD83, CDH13, CTGF,
CXCL12, FGF1, FGF7, FGF9, FGFR1, FOXO1,
GREM], IGFBP4, IL6, PDE5A, PDGFC,
PLAU, PRDX4, PTPRK, RUNX1T1, SFRP1,
SMAD3, SPRY2, THRB, TMPO, WNT2

Invasion of cells (Decreased)

ABLIM1, BDKRB1, BDNE, CAV1, CCL2,
CCND1, CD44, CDH13, CDH2, CFH,
CNR1, CTGF, TSB, CTSH, CTSL, CXCL12,
DKK1, DOCK4, DRAM1, DUSP6, EENB3,
ELMOI, ETV1, ETV4, ETV5, FHL2, FUTS,
GDF15, HMOX1, HTRAL1, IL6, IRS2, JUNB,
JUP, KIT, KRT19, LCP1, LIMA1, LIMK2,
LPAR1, MGAT5, MMP16, MMP3, MSI2,
NFAT5, NRP1, NRP2, PDLIM1, PIK3R1,
PLAU, PTPRK, RECK, RGS4, SATBI,
SEMASA, SERPINE1L, SFRP1, SMAD3,
SPARCL1, SPRY?2, SPSB1, TCF4, TFAP2C

ACSLA, BDKRB1, BDNFE, CAV1, CCL2,
CCND1, CDH13, CDH2, CFH, CNR1, CTGF,
CTSB, CTSH, CTSL, CXCL12, DIAPH?2,
DKK1, DOCK4, DPYSL3, DRAM1, DUSP6,
EFNB3, ELMOL1, ESR1, ETV1, ETV4, ETV5,
FGFR1, FHL2, FUT8, GDF15, HMOX1,
HTRA1, ID4, IL6, IRS2, JUNB, JUP, KIT,
KRT19, LCP1, LIMA1, LIMK2, LOXL2,
LPAR1, MGAT5, MMP3, MSI2, NFAT5, NRP1,
NRP2, PDLIM1, PGR, PIK3R1, PLAU,
PTPRK, RECK, RGS4, SATB1, SEMABA,
SERPINE1, SFRP1, SMAD3, SPARCLL,
SPRY2, SPSB1, TCF4, TEAP2C, TGFB3,
TGFBI, TMPO, VEGFA, ZBTB16

Invasion of tumor cell lines
(Decreased)

ABLIM1, BDKRB1, BDNE, CAV1, CCL2,
CCND1, CD44, CDH13, CDH2, CFH,
CNR1, CTGF, CTSB, CTSH, CXCL12, DKK1,
DOCK4, DRAM1, DUSP6, EENB3, ELMO1,
ETV1, ETV4, ETV5, FHL2, FUTS, GDF15,
HMOX1, HTRA1, IL6, IRS2, JUNB, KIT,
KRT19, LCP1, LIMA1, LIMK2, LPARI,
MGAT5, MMP16, MMP3, MSI2, NFAT5,
NRP1, NRP2, PDLIMI, PIK3R1, PLAU,
PTPRK, RECK, SATB1, SEMA5A, SFRP1,
SMAD3, SPARCL1, SPRY2, SPSB1, TCF4

ACSL4, BDKRB1, BDNF, CAV1, CCL2,
CCND1, CDH13, CDH?2, CFH, CNR1, CTGF,
CTSB, CTSH, CXCL12, DIAPH?2, DKK1,
DOCK4, DPYSL3, DRAM1, DUSP6, EENB3,
ELMOL1, ESR1, ETV1, ETV4, ETV5, FGFR1,
FHL2, FUTS, GDF15, HMOX1, HTRAL1, ID4,
IL6, IRS2, JUNB, KIT, KRT19, LCP1, LIMAL1,
LOXL2, LPAR1, MGAT5, MMP3, MSI2,
NFATS5, NRP1, NRP2, PDLIM1, PGR, PIK3R1,
PLAU, PTPRK, RECK, SATB1, SEMAS5A,
SFRP1, SMAD3, SPARCL1, SPRY2, SPSB1,
TCF4, TFAP2C, TGFB3, TGFBI, TMPO,
VEGFA

Migration of breast cancer cell
lines (Decreased)

CCL2, CCND1, CD44, CDH2, CTGF, CTSL,
CXCL12, DUSP6, FGF1, FGF7, GABI, IL6,
ITGA6, KRT19, NRP1, PIK3R1, PLAU,
SEMAB3C, SERPINE1, SMAD3, TFAP2C,
TGFB3, THRB, TNFRSF21

ACSL4, CCL2, CCND1, CDH2, CTGF, CTSL,
CXCL12, DUSPS, ESR1, FGF1, FGF7, GABI,
IL6, KRT19, NRP1, PGR, PIK3R1, PLAU,
SEMAS3C, SERPINE1, SLC16A4, SMAD3,
TFAP2C, TGFB3, THRB, TNFRSF21, VEGFA

Migration of tumor cell lines
(Decreased)

BDKRB1, BDNF, CAV1, CCL2, CCND1,
CD44, CDH13, CDH2, CTGF, CTSB, CTSH,
CTSL, CXCL12, DUSP6, EFNB3, ELMO1,
ETV4, ETV5, F2RL1, F3, FGF1, FGF7, FHL2,
GAB1, GDF15, HMOX1, HTRA1, GFBP4,
IL6, ITGA®6, ITPR1, JUP, KDR, KIT, KRT19,
LIMK2, LPAR1, LTBP2, MGAT5, MME,
MMP19, MMP3, MYO10, NRP1, NRP2,
NTE3, PDLIM1, PEAK1, PIK3R1, PLAU,
PLCL1, PTGER4, PTPN11, PTPRK, RAP2A,
RHOU, SEMA3C, SEMAS5A, SERPINE]1,
SMAD3, SPARCL1, SPRY2, SPSB1, TCF4,
TFAP2C, TGFB3, TGFBI, THRB, TMPO,
TNFRSF21

ACSL4, BDKRB1, BDNF, CAV1, CCL2,
CCND1, CDH13, CDH2, CTGF, CTSB, CTSH,
CTSL, CXCL12, DUSP6, EFNB3, ELMO1,
ESR1, ETV4, ETVS5, F2RL1, F3, FGF1, FGF7,
FGFR1, FHL2, GAB1, GDF15, HMOX]1,
HTRAT1, IGFBP4, IL6, ITPR1, JUP, KIT,
KRT19, LPAR1, LTBP2, MGAT5, MME,
MMP19, MMP3, MYO10, NRP1, NRP2, NTE3,
PDLIM1, PEAKI, PGR, PIK3R1, PLAU,
PLCL1, PTGER4, PTPN11, PTPRK, RAP2A,
RHOU, SEMA3C, SEMASA, SERPINE],
SH3PXD2B, SLC16A4, SMAD3, SPARCL1,
SPRY2, SPSB1, TBX3, TCF4, TFAP2C, TGFB3,
TGFBI, THRB, TMPO, TNFRSF21, VEGFA
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2.4. Assessment of Secreted Protein Levels of the Two Differentially Expressed Genes Common to All
Treatment Groups

The protein products of CCL2 and IL-6 genes were assessed because they were the only differentially
expressed genes common to all treatment groups, including progestins alone or combined with E,.
Moreover, vascular endothelia growth factor A (VEGFA) was assessed due to its important role in
angiogenesis and as it was found to be downregulated in five of the eight studied conditions.

Concentrations of secreted CCL2 and IL-6 in media conditioned by eSF after progestin and
progestin plus E; treatments were determined (Figure 3).
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Figure 3. Concentrations of secreted CCL2, IL-6 and VEGFA in media conditioned by eSF after progestin
and progestin plus E; treatments. (A) Secreted CCL2. (B) Secreted IL-6. (C) Secreted VEGFA. In all
cases, the figure shows the “amount” of secreted protein for each progestin and each progestin, plus E,
adjusted by cell number and total media. Pink-colored bars: progesterone (Py4); green-colored bars:
medroxyprogesterone acetate (MPA); blue-colored bars: levonorgestrel (LNG); yellow-colored bars:
norethindrone acetate (NETA); gray-colored bars: E, alone; white bars: vehicle. Error bars indicated
SD; * p < 0.05,** p < 0.01, *** p < 0.001.

All progestins, with or without E,, decreased secreted CCL2, IL-6 and VEGFA protein levels
compared to vehicle control (Figure 3A), consistent with the gene expression data (Table 6).

Table 6. Fold change of common DEG in all progestins in absence or presence of Ey. E,: estradiol; Py:
progesterone; MPA: medroxyprogesterone acetate; LNG: levonorgestrel; NETA: norethindrone acetate;

Vh: vehicle.
Progestins Related to Progesterone Progestins Related to Testosterone
(P4/MPA) (LNG/NETA)
Py vs. E;Psvs. MPAvs. EMPA  LNGvs. ELNG NETAvs. E;NETA
Vh Vh Vh vs. Vh Vh vs. Vh Vh vs. Vh
CCL2 -1.55 —7.44 -4.77 —6.04 —6.41 —6.25 —6.16 -5.08
IL6 -2.74 -1.93 —-2.53 -2.82 -2.93 -2.92 -2.83
VEGFA -1.76 -1.68 -1.78 -1.74 -1.51

The addition of E; did not significantly alter the progestin inhibitory effect on CCL2 protein
levels, except when combined with Py, resulting in a marked reduction of secreted CCL2 (Figure 3A).
All progestins decreased IL-6 levels, with P, and MPA having the least inhibitory effect (p < 0.05), and
combined treatment with E, further attenuated this effect (Figure 3B). E; alone stimulates VEGFA, but
progestins, alone or combined with E2, reduce its secretion (Figure 3C).
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3. Discussion

The endometrium in natural cycles responds in a programmed fashion to E; by induced cell
proliferation, followed by Ps-induced epithelial secretory transformation and stromal fibroblast
decidualization, preparing for pregnancy. In non-conception cycles, it sheds and regenerates anew
from epithelial and mesenchymal progenitors [24]. Normal endometrial homeostasis for growth,
differentiation, desquamation, and regeneration revolves around appropriate cellular hormonal
responses and paracrine interactions among the various cell types. Comprising this dynamic tissue are
epithelial, endothelial, immune, vascular smooth muscle and stem cells, and stromal fibroblasts [25].
Progesterone promotes an epithelial-like phenotype of the latter, transforming them to master
modulators of endometrial epithelial, vascular and immune function, acceptance of the conceptus,
and controlled hemostasis during menses. Progestational agents share some, but not all, of native
progesterone actions on eSF and are anticipated to have variable effects on this cell’s function in
normal endometrial tissue and alternative effects not observed with P, per se. Synthetic progestins
are widely used for contraception, to treat endometriosis and endometrial cancer, and have been
used in postmenopausal hormone therapy [1], and as a class, cause decidualization and atrophy of
the endometrium [11,16]. A common side effect, often leading to their discontinuation, is abnormal
uterine bleeding due to fragile endometrial vasculature [26] and overall altered signaling through
the endometrial nuclear progesterone receptor (PR) [1,2]. The current study undertook, for the first
time, an analysis of effects of synthetic progestins widely used in clinical practice on the human
eSF transcriptional program, to identify each progestin’s effects and associated molecular functions
relevant to normal and abnormal endometrial homeostasis. While we have identified the effects of
these contraceptives on the eSF molecular phenotype, whether these differentially expressed genes are
the direct or indirect targets of each progestins or reflect a transcriptional reprogramming in response
to these hormone treatments are yet to be determined by time course and mechanistic analyses.

3.1. Distinct Progestin-Induced Transcriptomes

In our comparison of the effects of four different and widely used progestins (P4, MPA, LNG
and NETA) on the eSF transcriptome alone and in combination with E,, we found distinct differences
between progestins structurally similar to progesterone (P4 and MPA) and those structurally similar
to testosterone (NETA and LNG). As anticipated, the gene expression signatures of P4 and MPA
treatments of eSF were more similar to each other and were different from signatures elicited by LNG
and NETA, which were similar to each other, but also had unique transcriptomic patterns.

In the response of eSF to all progestins, regardless of type, several classical progesterone-regulated
genes were upregulated, including SPARCL1, SLC7AB, OMD, DKK1, FKBP5, and IL-1R and
down-regulated were CCL2, IL-6, transforming growth factor 31 (TGFf1), matrix metalloproteinase-3
(MMP3), and 173-hydroxysteroid dehydrogenase 2 (178HSD2) [23]. These genes are regulated via
P4:PR (ligand:receptor) binding with PR-mediated signaling, and the stimulation or silencing of gene
expression. That all four progestins had similar effects on transcription of classically P4-regulated
genes underscores the importance of PR in signaling by all progestins studied. However, the various
progestins stimulated and repressed unique genes, as well. The unique genes differentially regulated
by each of these progestins involved vastly different biofunctions that could potentially have distinct
effects on the endometrial function and progestin-induced endometrial changes. For example, Py
uniquely affects angiogenesis and endothelial cell development and proliferation, while unique genes
in MPA affect cell migration, and unique LNG genes affect cell death and necrosis, with NETA
affecting a wide range of biofunctions. This is likely due to different PR activation by each ligand
leading to altered gene transcription, perhaps their binding to other steroid hormone receptors, for
which these progestins have measurable affinity (see below), by altering the chromatin per se, and/or
by non-genomic pathways [27]. An example of the latter is the progestin R5020 that at picomolar
concentrations promotes the proliferation of rat endometrial stromal cells via ERK1-2 and AKT
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activation mediated by PR interaction with ER, resulting in the PR regulation of gene expression,
independent of hormone receptor binding to specific genomic targets [28].

3.2. Estrogen Effect on Progestin-Induced Transcriptome

The addition of E; considerably affected eSF gene expression profiles in response to Py and MPA;
whereas, when E; was combined with LNG and NETA, only a modest effect on their gene expression
signature profiles was observed. We note that, in this study, we have assessed the effects of estradiol
and not ethinyl Ej, a commonly used synthetic estrogen in oral contraceptives. This is because the focus
of the current study is on progestins and their effects in the absence/presence of E; priming/stimulation,
due to the known effects of E; on biological responses to progestins. We have used estradiol as
prototype, which addresses this question without potential pharmacological confounders beyond
physiologic estrogenic signaling. The potentially divergent actions of different estrogenic compounds
warrant a different experimental design.

Diverse molecular mechanisms may contribute to the distinct transcriptional responses to the
various progestins observed in the current study. Even subtle changes in progesterone structure or
synthetic progestins with progestational activity and varied binding affinities for PR and other steroid
hormone receptors (see below), and in the presence of E; binding to its cognate nuclear receptor and
by non-genomic pathways, can result in the altered regulation of gene expression.

The effects observed herein likely derive from the unique structures of progestins with their
additional chemical groups and conformations (Figure 1), that confer different binding affinities for
cognate nuclear receptors [1]. For example, MPA, NETA and LNG have a greater affinity for PR than
P4 (relative binding affinities of 115, and 150 and 50, respectively), and none of the synthetic progestins
studied herein have an appreciable affinity for ER [29]. The binding affinity to the androgen receptor
(AR) was reported to be higher for LNG and NETA than P4 [29]. However, in a steroid-receptor-deficient
COS-1 cell line, with transiently expressing human AR; MPA, NETA, and P4 had a similar affinity
to 5a-dihydrotestosterone (DHT) in binding to AR. However, NETA and MPA differed in inducing
classical and AR-selective promoters [30]. Interestingly, it has been suggested that MPA displays
greater glucocorticoid receptor (GR) agonist potency than P4 and NETA [31]. Moreover, MPA has
immunosuppressive effects mediated by GR, as demonstrated by MPA repressing expression of IL-2
mRNA in normal human lymphocytes through GR [32].

It is important to note that the number of genomic regions containing exclusive hormone-specific
response elements across the genome is limited, and many areas of the genome contain several response
elements [33], which may explain how the combinatorial recruitment of ER with PR could alter target
gene expression. Furthermore, progesterone-derived progestins binding to PR, MR and GR indicate
that these progestins may use different mechanistic pathways from those of progestins structurally
similar to testosterone, and subsequently have distinct differential combinatorial effects with ER.

3.3. Chemokines, Cytokines, and Angiogenic Factors

IL-6 and CCL2, encoding major pro-inflammatory cytokines, were the only two genes in common
in biofunctions of eSF treated with all progestins in the presence of E,. CCL2 (also called monocyte
chemoattractant protein-1 (MCP-1)) is a potent chemoattractant for monocytes and T cells [34], with
lesser effects on basophils [35] and natural killer cells [36]. The CCL2 gene is located in chromosome 17
and has a promoter region containing binding sites for AP-1 and NFKB, and is a major product of
macrophages and other cell types [37]. Of note, Arici et al. reported an anti-inflammatory phenotype
produced in eSF, when P, or MPA were added to these cells in vitro, specifically with regard to
down-regulation of the CCL2 protein and mRNA [34]. Importantly, the effect of MPA on CCL2
expression was reversed by the PR antagonist, RU486, demonstrating the PR-mediated regulation of
this chemokine (25). In the current study, in addition to P4 and MPA, LNG and NETA, progestins
structurally related to testosterone also down-regulated CCL2, in the absence or presence of E;. Of note,
CCL2 is highly expressed in peri-menstrual endometrium, when E; levels are low but is down-regulated
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at ovulation, when E; levels are high [38]. This regulation is consistent with the results obtained herein,
demonstrating that its down-regulation is mediated by PR and ER.

Down-regulation of CCL2 and IL-6 in eSF treated with progestins and E, suggests an
anti-inflammatory environment in human endometrium. It is noteworthy that the downregulation
of these two pro-inflammatory cytokines with all different progestin treatments is consistent with
the known anti-inflammatory effects of progestins on human endometrium in vivo [11,16,39]. Early
implantation is characterized by high levels of the pro-inflammatory T helper cells and cytokines such as
TNFa, IL-6, and IL-8 [40,41], and the upregulation of pro-inflammatory cytokines positively correlates
with IVF pregnancy outcomes [42]. Cytokines and chemokines such as IL-6 attract human trophoblast
cells and therefore affect successful implantation [42], and the balance of pro- and anti-inflammatory
cytokines and chemokines is required for proper endometrial tissue growth and remodeling [42,43].
Thus, downregulation of these cytokines has the potential to contribute to a sub-optimal environment
for implantation and endometrial homeostasis.

CCL2 activates STAT1 signaling [44], and in mammals, the JAK/STAT signaling pathway is the
principal pleiotropic cascade to transduce a wide array of cytokines and growth factors affecting
pathways for cell differentiation, proliferation, migration and apoptosis [45]. Since the CCL2 receptor,
CCR?2, is present in human vascular smooth muscle cells (VSMCs) [46] and since STAT1 signaling
induces VSMC proliferation [46], lowered CCL2 expression in eSF in response to progestins may
contribute to the decreased VSMC proliferation involved in endometrial blood vessel formation in the
proliferative phase, their growth and maintenance in luteal phase endometrium and potentially vessel
fragility—a known side effect causing breakthrough bleeding in women using these progestins [47,48].

Moreover, VEGFA mRINA and protein (Table 6, Figure 3C) were decreased in eSF treated with
progestins. By extrapolation, progestins could inhibit blood vessel formation in endometrium, leading
to an inhospitable environment for embryo implantation and breakthrough bleeding, the latter of which
is commonly associated with this class of drug [6,9]. Breakthrough bleeding in long term progestin-only
contraceptives users is due to a complex interplay of progestin effects on eSF and thrombin, tissue
factor, IL-8, and VEGE, resulting in aberrant angiogenesis and the enhanced fragility of endometrial
blood vessels [39]. While the current findings are consistent with the potential involvement of some
of these progestin-regulated molecules in these processes, the precise mechanisms underlying the
role of eSF in breakthrough bleeding in women on progestin-only preparations, as well as those with
combined estrogen-progestin preparations, await further study. Moreover, whether these findings
have implications for disorders with abnormal progesterone signaling, such as the endometrium of
women with endometriosis [49] and polycystic ovarian syndrome [50] remains to be determined.

3.4. Strengths and Limitations of This Study

This is the first study to assess the effects of four commonly used progestins, alone or in combination
with E; on the genome-wide transcriptome of normal human endometrial stromal fibroblasts, adjusting
for biopotency. The data support common and unique responses of this cell type to progesterone
and the other progestins studied herein in the absence or presence of estradiol that are relevant to
endometrial effects of these steroids widely used by women across the lifespan. The data provide
insights into potential mechanisms underlying breakthrough bleeding and other side effects commonly
encountered among women taking these medications. Of note, the current study was an in vitro
analysis, and while progestin biopotencies were similar, local effects in vivo can be modulated by
numerous confounders, including paracrine interactions among endometrial cellular components
as well as different bioavailability, metabolism, and pharmacodynamics of these steroids, ultimately
leading to composite effects at the cellular level as well as systemically. A limitation of our study is
that the effects of progestins on other cell types of endometrium are yet to be determined. We aim to
investigate the effect of these contraceptives in endometrial epithelial and immune cells, to gain better
insights into their effects on human endometrium. Another limitation is that the concentrations used
for the progestins were determined by dose-response experiments, to identify concentrations that elicit
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cellular responses. These are not similar to physiological concentrations and remain to be determined
in women using these contraceptives.

In conclusion, in vitro progestin effects on eSF alone or in combination with E,, differ from one
progestin to another, and those structurally similar to progesterone and testosterone more closely
align with their respective group effects on eSF gene expression. Despite these differences, there were
many genes and pathways shared among the different progestins. All four progestins (alone or in
combination with E;) decreased the expression of CCL2, prominently involved in immuno-regulatory
and inflammatory processes. The results overall indicate that progestins have an anti-inflammatory
effect, enhanced by E; on the eSF cell, contributing to an anti-inflammatory environment in the
endometrium. Notably, eSF in women with endometriosis and polycystic ovarian syndrome show
an abnormal response to P4, and whether different progestins display varied responses in these
populations warrants further analysis, potentially leading to more personalized progestin therapies
for women.

4. Materials and Methods

4.1. Samples

This study was approved by the Committee on Human Research of the University of California San
Francisco (UCSF) (IRB: 10-02786). Samples were collected from the UCSF/NIH Human Endometrial
Tissue and DNA Bank after written informed consent. For these studies, endometrial stromal
fibroblasts (eSF) were isolated from endometrial biopsies and established in primary culture, as
previously described [51]. Briefly, five eutopic endometrial biopsies were collected from women
without any gynecological abnormalities. Each tissue biopsy was digested separately using collagenase
and the tissue digests were then filtered using a 40micron cell strainer to separate the dissociated
eSF from endometrial glands and undigested tissue. The eSF from the filtered through fraction
were then established in monolayer primary culture and grown in medium supplemented with 10%
charcoal-stripped fetal bovine serum (FBS), as previously described [51]. Thus, a separate eSF primary
culture was established from each of the five different patient biopsies. For the hormone treatment
experiments, sub-confluent primary cultures (approximately 75% confluent) were harvested and
eSF seeded onto 24-well plates at 10° cells/well and grown in 10% serum-supplemented medium as
above until confluent. Confluent cultures were treated with the various steroid hormones in medium
supplemented with 2% charcoal-stripped FBS, according to our previously described protocol [52]. In
brief, cultures were pre-incubated in medium supplemented with 2% charcoal-stripped FBS without
hormones for 24 h. After 24 h, the culture medium was replaced with fresh medium containing steroid
hormones (E,, progestin, progestin plus E;) or vehicle control for 14 days, with media renewal every
three days. Concentrations of E; and P4 used were maximally effective concentrations, as shown before
for eSF in vitro decidualization [51]. Other progestins were used at concentrations equipotent to that of
P4, adjusted according to their reported transactivation biopotency relative to P4 [53]. Concentrations
of progestins, alone or in combination with 10 nM E;, were: 1 uM Py, 54.7 nM LNG, 0.294 uM NETA,
6 nM MPA and ethanol vehicle control (Vh, (0.1% ethanol)). After 14 days of treatment, eSF conditioned
media were collected for secreted cytokine analysis and cells were harvested by trypsinization, counted,
and frozen at -80°C until RNA extraction. Each sample was processed separately for RNA extraction
and microarray, without pooling samples derived from different patient biopsies.

To ensure proper cellular responsiveness to P4, the conditioned media from each sample after
14 days of treatment was used for the analysis of IGFBP1 protein levels by ELISA, in duplicate and
normalized to the cell count for each sample. IGFBP1 is a progesterone-responsive gene, and we
found its increased protein level in all treatments, and the highest with E,+P, treatment, as expected.
See Supplementary Figure S1.
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4.2. RNA Extraction and Whole Genome Microarrays

Cellular RNA was extracted using the NuceloSpin Tissue Kit (Marcherey-Nagel Inc, Bethlehem,
PA), according to manufacturer’s recommendations and stored at -80°C until use. RNA quality was
assessed using Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) and only samples with an
RNA integrity number (RIN) higher than 7 were considered of high quality and used for further
analysis by microarray. RNA samples were reverse transcribed to cDNA, followed by 2"? strand DNA
generation and cDNA generation. For microarray analysis, all hormone treatments for each of the five
cell lines were prepared according to Affymetrix (Santa Clara, CA) specifications and hybridized to the
Affymetrix Exon Expression Chip HuGenel_0-st-v1 gene array at the UCSF Genome Core facility, as
previously described [49].

4.3. Whole Genome Microarray Data Analysis

A gene expression microarray data analysis was conducted using GeneSpring GX software (Agilent
Technologies). The data from the raw CEL files were normalized together by RMA. The normalized
data were then used to identify differentially expressed gene between different comparisons across
the five biological replicates using ANOVA. To correct for multiple comparisons, we used the
Benjamini-Hochberg correction, and significance was determined at p-value < 0.05 and a fold change
(FC)) > + 1.5. Venn diagrams were used to assess common DEG among the four progestins, using
Venny 2.1.0 software [54]. Subsequently, all DEG lists for all comparisons were analyzed using IPA
software (Ingenuity LLC, Portola Valley, CA) [55], to identify common and unique pathways among
the different progestins. Pathways with a z-score > + 2.00 were considered to be significant.

4.4. Luminex Analysis

The validation of IL-6 (interleukin-6), CCL2 (C-C motif chemokine ligand 2 (monocyte chemotactic
protein-1)) and VEGFA (vascular endothelia growth factor A) gene expression for secreted proteins
was performed using multiplexed immunoassay analysis (Luminex, EMD Millipore, Burlington, MA,
USA) of these analytes in eSF conditioned media in the various treatment groups. These analytes
were selected because they were decreased in gene expression analyses and were common among
all comparisons (IL-6 and CCL2) or importance in angiogenesis (VEGFA) (see Results). Conditioned
media from treated eSF cells were centrifuged at 3000xg for five minutes to remove debris, and the
supernatant was used for Luminex analysis, according to the manufacturer’s instructions. Briefly,
conditioned media were incubated overnight in Luminex plates with antibody-coated fluorescent-dyed
analyte-specific microspheres, and bound analytes were resuspended in sheath fluid and analyzed on
a Bioplex bead sorter (Bio-Rad, Hercules, CA), adjusted by media volume and cell number. Statistical
significance of concentration differences of analytes in specific comparisons was determined as p < 0.05
by ANOVA after Bonferroni’s multiple comparison correction, using GraphPad Prism V.5.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/7/2625/
sl. Supplemental Table S1. Differentially expressed genes of each progestin vs. vehicle without and with addition
of E; (FC > 1.5). Highlighted rows are the common genes between each progestin without or with addition of
estradiol. E;: estradiol; pink: progesterone (P4); green: medroxyprogesterone acetate (MPA); blue: levonorgestrel
(LNG); yellow: norethindrone acetate (NETA); FC: fold change. Supplemental Figure S1. IGFBP1 protein level in
different treatments. Protein levels of IGFBP1, a progesterone target gene, was determined by ELISA in conditioned
media of n=5 eSF cell lines grown in culture and normalized to cell number. For each sample, each assay was done
in duplicate. Values for each progestin or progestin plus E; is the measurements from 5 samples with error bars.
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