Skip to main content
. 2020 Jan 8;36(8):2401–2409. doi: 10.1093/bioinformatics/btaa003

Table 3.

GO prediction performance on a dataset based on a time-based split as in (Kulmanov and Hoehndorf, 2019; You et al., 2018b) in comparison to literature results collected by DeepGOPlus (Kulmanov and Hoehndorf, 2019)

Methods Fmax
Smin
AUPR
MFO BPO CCO MFO BPO CCO MFO BPO CCO
Single Naive 0.306 0.318 0.605 12.105 38.890 9.646 0.150 0.219 0.512
DiamondScore 0.548 0.439 0.621 8.736 34.060 7.997 0.362 0.240 0.363
DeepGO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696
DeepGOCNN 0.409 0.383 0.663 11.296 36.451 8.642 0.350 0.316 0.688
Ensemble DeepText2GO 0.627 0.441 0.694 5.240 17.713 4.531 0.605 0.336 0.729
GOLabeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700
DeepGOPlus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726
UDSMProt a Fwd; from scratch 0.418 0.303 0.655 14.906 47.208 12.929 0.304 0.284 0.612
Fwd; pretr. 0.465 0.404 0.683 10.578 36.667 8.210 0.406 0.345 0.695
Bwd; pretr. 0.465 0.403 0.664 10.802 36.361 8.210 0.414 0.348 0.685
Fwd+bwd; pretr. 0.481 0.411 0.682 10.505 36.147 8.244 0.472 0.356 0.704
Bwd+bwd; pretr. + DiamondScore 0.582 0.475 0.697 8.787 33.615 7.618 0.548 0.422 0.728

Note: Best overall results (highest Fmax and AUPR; lowest Smin) are marked in bold face and best single-model results are underlined.

Fwd/bwd, training in forward/backward direction; pretr., using language model pre-training.

a

Results established in this work.