Skip to main content
. 2020 Jan 8;36(8):2401–2409. doi: 10.1093/bioinformatics/btaa003

Table 4.

Remote homology and fold detection performance on the SCOP 1.67 benchmark dataset compared with literature results from GPkernel (Håndstad et al., 2007), LSTM_protein (Hochreiter et al., 2007) and ProDec-BLSTM (Li et al., 2017)

Methods Superfamily level
Fold level
AUC AUC50 AUC AUC50
UDSMProt a GPkernel 0.902 0.591 0.844 0.514
LSTM_protein 0.942 0.773 0.821 0.571
ProDec-BLSTM 0.969 0.849
Fwd; from scratch 0.706 0.552 0.734 0.653
Fwd; pretr. 0.957 0.880 0.834 0.734
Bwd; pretr. 0.969 0.912 0.839 0.757
Fwd+bwd; pretr. 0.972 0.914 0.862 0.776

Fwd/bwd, training in forward/backward direction; pretr., using language model pre-training. The best-performing classifiers are marked in bold face.

a

Results established in this work.