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Abstract: Microorganisms have begun to develop resistance because of inappropriate and extensive
use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these
pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have
attracted growing attention because of their remarkable mechanical strength, electrical properties, and
chemical and thermal stability for their potential applications in the field of biomedical as therapeutic
and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not
been fully investigated. The primary purpose of this research study is to investigate the antimicrobial
activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic
strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas
aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types
(double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate
(SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration
0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing
in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared
spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization
of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant
and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with
the microbial cells. The antimicrobial activity was determined by analyzing optical density growth
curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently
dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the
binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous
solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial
growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to
double-walled CNTs against selected pathogens.
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1. Introduction

Carbon nanotubes (CNTs), first discovered in 1991 by a Japanese scientist Sumio Iijima [1], are
currently considered to be a top-class topic in academic research institutions and several industrial
areas. Their impressive physicochemical properties are due to their incredible thermal and electrical
conductivity, strong mechanical strength, and high aspect ratio of nanotubes [2–8]. The antimicrobial
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activity of carbon nanotubes is strongly based on surface chemistry, which controls some critical factors
such as oxidation power or hydrophobicity [9,10]. This part deals with the intrinsic antimicrobial
characteristics of CNTs. Here, we comprise features that induce from standard CNTs pretreatment
methods; for instance, during purification concentrated oxygenating acids are sometimes used and,
at the same time, affect the surface morphology and chemistry of the respective materials. Intentional
covalent and non-covalent functionalization of materials during synthesis, which can be applied to
alter the antimicrobial features of CNTs. The aqueous dispersion of nanomaterials is another serious
issue, as it causes direct impacts on cell surface contact and bioavailability for the pathogen [11]. The
pretreatment of the carbon nanomaterials is a crucial step to disperse in an aqueous solution and the
introduction of additives that might be useful to stabilize the hydrophobic nature of CNTs in biological
medium or an aqueous dispersion [12].

The high aspect ratio of CNTs makes them vulnerable to form a bundle and entanglement.
The reason behind CNTs is formed bundle due to a strong van der Waals interaction between
nanotubes [7,13]. Such kind of interaction makes the dispersion of CNTs a challenging task by
the researchers. Thus, it is necessary to modify/functionalize the carbon nanotubes to enhance
their dispersion with the attachment of a functional group by the covalent or non-covalent method.
The non-covalent method of functionalization outweighs the covalent method of dispersion because of
graphene sheets π-π system (mean external surface area of tubes) remained intact, and the structural
properties of CNTs are un-affected [14]. Certainly, the non-covalent method of CNTs dispersion
by a surfactant solution is more suitable to use for enhancing dispersions of CNTs because of its
simple process of modification, including only probe sonication, centrifugation, and filtration for
the sake of preserving CNT’s properties and structures [11,12]. The hydrophobic chain group of
the applied surfactants can interact with the CNTs’ sidewalls by hydrophobic interactions and thus
anchor the molecules of surfactants to the carbon nanotubes, remaining hydrophilic head interacts
with the aqueous phase. The molecules of surfactants are strongly adsorbed on the CNTs surface
and inhibit their re-agglomeration so that dispersions of nanotubes could maintain colloidal stability
for several months [15,16]. Earlier studies have shown that CNTs are more effective in inhibiting the
growth of pathogens (such as V. parahaemolyticus and Escherichia coli) in their dispersed form than
CNT bundles [17,18]. The reason for the high effectiveness of individual nanotubes in inhibiting the
microbial growth after dispersion could be because of the increased surface contact chances with the
microbial cells (E. coli, S. typhimurium and P. denitrificants) [19]. The proposed antimicrobial activity of
CNTs depends on their state of dispersion.

This work focuses on the modification of CNTs via a non-covalent functionalization method and
determines the antimicrobial property of CNTs and also to study the antimicrobial mechanism of action
of CNTs on different selected pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella
pneumoniae, and fungal strain Candida albicans. According to our understanding, the antimicrobial
activity of DWCNTs to Klebsiella pneumoniae has not been investigated. We have been observed that
both CNT types (double-walled and multi-walled) have broad-spectrum antimicrobial effects. Also,
this study has provided such a single platform to discuss the biocompatibility of surfactant (SDBS) and
the antimicrobial activity of functionalized-CNTs to different selected pathogens. Previously, different
ranges of surfactants solution have been studied for the CNTs’ dispersion, such as sodium dodecyl
sulfate (SDS) [16], octyl phenol ethoxylate (Triton X-100) [20], hexadecyltrimethylam-monium bromide
(CTAB) [7,21], sodium dodecyl-benzenesulphonate (SDBS) [13], etc. The surfactant (SDBS) was applied
in this study to modify carbon nanotubes by attaching a functional group on the surface and improves
its aqueous phase dispersion. Besides that, the antimicrobial activity of CNTs (DWCNT and MWCNT)
treated with surfactant were also reported against selected pathogens. CNT’s antimicrobial activity
was observed after analyzing the OD growth curves and viable cell count.
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2. Materials and Methods

2.1. Collection and Purification of CNT Samples

DWCNTs and MWCNTs were obtained from (NE Scientific Enterprise, Kuala Lumpur, Malaysia)
with a median outer diameter of 2–4 nm, length 10–20 µm, and purity 90% for DWCNTs and a median
outer diameter of 10–15 nm, length ~100 µm, and purity > 95% of MWCNTs. They synthesized the
samples using the chemical vapor deposition method. The method used for the purification of CNTs
is as follows. 100 mg of raw CNTs (DWCNTs and MWCNTs) were heated at 450 ◦C for 90 min at
room temperature. After heating, CNTs were inserted into a conical flask comprising 6 M HCl for the
eradication of metallic catalyst (Ni, Fe, etc.). Later, a membrane filter was used for the filtration of the
acidic solution, and the filtered nanomaterials were shifted into a conical flask containing 3 M NaOH
and further heated at temperature (100 ◦C) under reflux to eliminate the aluminium oxides [11]. Again,
the suspension was passed through the membrane filter, and then distilled water used to wash the
filtered nanomaterials until pH becomes neutral. Finally, CNT samples were kept in an oven for drying
at 55 ◦C.

2.2. Preparation of Surfactant-Modified CNTs

10 mg of CNTs after purification were suspended with 0.05 wt.% of sodium dodecylbenzene
sulfonate (SDBS, purchased from Sigma-Aldrich, St. Louis, Missouri, USA) solution. The chemical
structure of SDBS has been shown in (Figure 1). The CNT dispersion was ultrasonicated for 30 min to
acquire the SDBS-adsorbed CNT surface, as seen in Figure 2. The resulting suspension was centrifuged
for 1 h at 10,000 rpm. The upper supernatant fluid was collected for the characterization purpose with
UV-vis spectroscopy. Otherwise, a membrane filter (0.45 µm) was used to filter the solution and then
distilled water used to wash the filtered nanomaterials until pH becomes neutral, and the suspension
was dried in an oven at 55 ◦C [13].
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2.3. Characterization of Surfactant-Modified CNTs

The technique UV-vis spectroscopy was applied to determine the absorbance capacity of CNTs in a
surfactant solution, operated at 600 nm. During the initial stage, a pure 0.05% SDBS solution was used
for the baseline correction to subtract their absorbance from CNTs’ dispersions. In the second stage,
the SDBS-treated CNT was investigated with a corresponding concentration of SDBS. Transmission
electron microscopy (TEM, Hitachi Limited, Tokyo, Japan) was used to observe the dispersion of CNTs
after treated with the surfactant solution.

For this purpose, prepared suspension of CNTs was re-dispersed in distilled water (DW) at 0.5 mg/mL
concentration, and a drop (10 µL) from the mentioned concentration was placed on a transmission
electron microscopy (TEM) grid coated with carbon [13]. Then the image can be seen under TEM.

2.4. Preparation of Bacterial Cultures

In this experimental study, microbial strains such as Gram-positive bacteria Staphylococcus aureus
ATCC 25923, Gram-negative bacteria Pseudomonas aeruginosa ATCC 15692, Klebsiella pneumoniae ATCC
43816, and fungal strain Candida albicans ATCC 10231 were used to observe the inhibitory effects of
CNTs. The Luria-Bertani (LB, Oxoid) broth was used for the growth of bacterial strains at 37 ◦C in a
shaking incubator with constant agitation at 220 rpm for 15–16 h. Yeast cells were grown on yeast
peptone dextrose (YPD, Oxoid) at 28 ◦C under constant agitation at 220 rpm for 30 h. The microbial
culture was passed through the centrifuge machine at 6000 g for 2 min [22]. The cells were washed
three times with NaCl (0.9%) for the eradication of constituents from the growth medium and residual
macromolecules. The cells were resuspended with 0.9% NaCl for further use.

2.5. Evaluation of Surfactant Biocompatibility

Here, 100 mL of bacterial and fungal cultures were used with different concentrations of surfactant
solution dissolved in LB and YPD medium in order to determine the biocompatibility of surfactant
(SDBS). After treatments, microbial growth was observed by determining the optical density growth
curve at 600 nm after every 1 h interval for bacterial strains and 2 h intervals for fungal strain. The
interaction between surfactant and microbial cells was examined by treating microbial cells with
varying concentrations of SDBS in the medium of YPD and LB. All the CNT antimicrobial experimental
studies were carried out at pH > 7.

2.6. Treatment of Bacterial Cells with CNTs

Ten-fold serial dilutions (1:10) of cell suspensions were made in 0.9% NaCl to achieve the microbial
cell suspension at concentrations of ~107 to 108 CFU/mL. 150 µL of microbial suspensions were added
into the centrifuge tubes. The CNTs (20 µL), such as DWCNT and MWCNT with desired concentration
(20, 40, 60, 80, 100 µg/mL) were introduced into the Eppendorf tubes. The cell suspensions (150 µL) as
a control sample were added into the DI water (20 µL). The Eppendorf tubes were kept spinning on a
mixer at 170 runs per minute (rpm) for 1 h.

2.7. Measurements of Optical Density (OD)

After treatment for 1 h, the mixtures were taken into the tubes and kept into the 5 mL of YPD and
LB medium. In a shaking incubator, the bacterial strains were incubated at 37 ◦C with continuous
agitation at 220 rpm. Yeast cells were incubated at 28 ◦C under the same constant agitation at 220 rpm.
The spectrophotometer was used to measure the optical density at 600 nm after passing every 60 min.
As a function of growth time, optical density growth curves were achieved by plotting OD values.
The initial viable cell number is directly related to the time corresponding to exponential growth in
a sample, which is called growth time. The longer growth time requires to enter the exponential
growth phase if the initial viable number of cells is lower in the samples. Hence, the exponential time
appearance of growth could be employed as an indicator of the initial viable number of cells in a
sample, thus elucidating the functionalized CNTs’ antimicrobial properties to the pathogens.
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2.8. Determination of Viable Cell Number

First, the cells were treated with various concentrations of functionalized CNTs (DWCNTs and
MWCNTs), and a reduction in the number of viable cells was assessed through the conventional method
of surface plating. The CNTs-cell and control specimens were diluted (1:10) with 0.9% NaCl solution.
The viable cell number from each sample was evaluated by the surface plating of appropriate dilution
(0.1 mL) onto the agar plates, such as cetrimide agar plates for Pseudomonas aeruginosa, brain heart
infusion (BHI) agar plates for Staphylococcus aureus, MacConkey agar and yeast peptone dextrose (YPD)
plates for Klebsiella pneumoniae, and Candida albican. After 24 h of bacterial and 48 h of fungal incubation,
colonies were counted at 37 ◦C for bacterial strains and 28 ◦C for fungal strain; thus, reduction in the
number of viable cells was determined as colony-forming units per milliliter (CFU/mL) [22].

2.9. SEM Imaging

The biological samples were prepared, and determined the structural changes of microbial cells,
treated or not with CNTs (DWCNT and MWCNT) using scanning electron microscopy (SEM). The
CNT-cell specimens were passed through a 0.2 microns pore-sized membrane filter (Millipore), quickly
fixed with 2.5% of glutaraldehyde for one hour at 25 ◦C and then post-fixed with osmium tetroxide
(1%) after three washes in PBS for one hour at 4 ◦C. For dehydration, biological samples were passed
through the graded series of ethanol (30%, 50%, 70%, 80%, 90%, 95%, and 100% v/v) and dried the
samples at 25 ◦C [23]. After drying, the samples were sputter-coated with gold and observed the
morphological changes of microbial cells treated or not with CNTs (DWCNTs and MWCNTs) by field
emission scanning electron microscopy (FE-SEM, Hitachi Limited, Tokyo, Japan).

2.10. Statistical Analysis

All experimental studies were conducted in triplicate. These values are expressed as the mean
± standard deviation (SD). Single-factor analysis of variance (ANOVA) was applied to evaluate the
statistical significance of results, and p-value < 0.05 was considered significant.

3. Results and Discussion

Individually dispersed carbon nanotubes are active in the UV-vis spectral region. CNTs aggregates
do not absorb in this region [16]. Thus, CNTs dispersion can be characterized by using UV-vis
absorbance spectroscopy. Figure 3 indicates that purified CNTs were mixed in distilled water by
sonication (A, C) and SDBS-treated CNTs (B, D) for 30 min. Likewise, Figure 4A shows the dispersion
ability of SDBS-treated CNTs and p-CNTs analyzed using a UV-vis spectrophotometer at 600 nm. The
absorbance values were taken at 600 nm based on the previously reported studies [24–28].
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Figure 3. Carbon nanotubes suspension (a) sonication of multi-walled carbon nanotubes (MWCNTs) in
distilled water (DW), (b) sonication of MWCNTs in surfactant (SDBS), (c) sonication of double-walled
carbon nanotubes (DWCNTs) in DW, and (d) sonication of DWCNTs in surfactant (SDBS) for 30 min.
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spectroscopy (FTIR) spectra of purified-DWCNT (a), purified-MWCNT (b), DWCNT-SDBS (c), and
MWCNT-SDBS (d).

Figure 4B indicates the Fourier transform infrared spectroscopy (FTIR) spectra of pure CNTs
and SDBS modified-CNTs. Noticeably, the FTIR spectra of SDBS-modified CNTs sample elucidates
clear signs of functionalities as compared to pure CNT. However, it has been shown that the spectra
of DWCNTs treated with SDBS, the peak was appeared at 2945 and 851 cm−1, while the peak of
MWCNTs appeared at 2998 and 887 cm−1. The DWCNTs peaks at 1129 cm−1, whereas MWCNTs peaks
at 1171 cm−1 are allotted to ionic sulfonate SO3

−group. The occurrence of all these peaks shows the
CNTs’ functionalization by SDBS. Also, the peaks appeared at 3598 and 1725 cm−1 could be ascribed to
the trace water stretching vibration in CNTs. Besides, FTIR spectra demonstrate different peaks at 1242,
1319, 1382, and 1409 cm−1 originated from pure CNTs [29]. This spectrum confirms the recognition of
SDBS grafted on the surface of CNTs.
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It has been shown that solubility of both types of CNTs (DWCNTs and MWCNTs) was higher after
applying a surfactant solution than that in their pure form. The surfactant molecules adsorbed more
strongly on the surface of CNTs, which enabled them to suspend in water. This study showed that
the chemical structure of surfactant played a very important role in the dispersion of CNTs. For the
dispersion of nanotubes in water, the molecules of surfactant orient themselves in such a way that
hydrophobic tail groups move to the surface of nanotube, whereas hydrophilic head groups move
to the aqueous phase, causing a lowering interfacial tension of the nanotube/water [30]. Therefore,
the surfactants’ dispersing power depends on how strongly it adsorbs onto the surface of CNTs. This
surfactant (SDBS) consists of a benzene ring structure that adsorbs more firmly to the surface of graphite
because of the pi–pi stacking type of interaction [31,32]. In general, the hydrophobic tail groups tend
to stick on the surface of graphite because of the methylene units of hydrocarbon chains match well
with the graphitic unit cells [33]. Hence, the efficacy of adsorption and subsequently, surfactants’
dispersing power are significantly affected by the surfactants’ tail length. The longer tail shows more
steric hindrance and high spatial volume, therefore providing great repulsive forces among different
individual nanotubes [34]. Besides that, the surfactant could enhance the dispersion of nanotubes
containing unsaturated bonds on their tail groups [34].

3.1. Biocompatibility of Surfactant

It has been demonstrated that the applied surfactant (SDBS) provides a high level of CNTs
dispersion [20]. This surfactant was not involved in the antimicrobial activity of CNTs at lower
concentrations after investigation of its biocompatibility. The antimicrobial activity of surfactant
was studied by incubating selected pathogenic strains with the following surfactant concentrations:
0.05 wt.%, 0.5 wt.%, and 1 wt.% followed by the investigation of optical density (OD) growth, as shown
in (Figure 5). It has been shown that the antimicrobial property of surfactant (SDBS) depends on
concentration and treatment time [11]. It has been observed that a significant antimicrobial activity of
surfactant at 0.5 and 1 wt.% after 6 h of treatment with bacterial isolates and after 10 h treatment with
fungal strain. However, microbial treatments with the anionic surfactant with 0.05 wt.% have been
demonstrated to have no significant influence on the cell viability and the time required to reach the
exponential phase growth was almost similar as compared to the control sample. Furthermore, the OD
growth curves of incubated Staphylococcus aureus (Figure 5A) and Pseudomonas aeruginosa (Figure 5B)
with 0.05 wt.% of SDBS exhibited minor toxicity effect, while Klebsiella pneumoniae (Figure 5C), and
Candida albican (Figure 5D) results indicated that no significant toxic effect with the same concentration.

It can be concluded that negatively charged surfactant molecules do not interact with the negatively
charged lipid membrane of the pathogens, which prevents the lipid membrane permeability and
reduces the discharge of intracellular components, such as RNA and DNA, resulting in inhibiting
the destruction of pathogens. Though, the electrostatic repulsion presents between the negatively
charged surfactant molecules at low concentration and thus preserves the lipid membrane structures
of pathogens [17]. It has been observed that the surfactant is biocompatible after using at a low
concentration of 0.05 wt.%. This finding agrees based on the earlier studies conducted by [11,12]
reporting that cationic surfactants are more toxic antibacterial agents at pH > 7, whereas anionic
surfactants demonstrate antibacterial activity at pH < 7. In general, non-ionic nature of the surfactants
do not display antibacterial activity [21]. As a result, it can be analyzed that a lower concentration of
surfactant (SDBS) solution is appropriate for the dispersion of CNTs and additional toxicity studies of
these nanotubes.
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Figure 5. Optical density (OD) growth curves of incubated Staphylococcus aureus (A), Pseudomonas
aeruginosa (B), Klebsiella pneumonia (C), and Candida albican (D) with different concentration of SDBS.

3.2. Antimicrobial Activity of CNTs

The antimicrobial activity of CNTs (DWCNTs and MWCNTs) was evaluated by assessing the
growth curve of treated pathogens at OD600 nm. The OD growth curves of treated pathogens
compared with different concentrations of modified DW and modified MW nanotubes in Figures 6
and 7. In general, CNTs in bundles form do not produce any damage to the pathogens [20,34]. This
non-antimicrobial activity of CNTs can be attributed to the larger diameter of tubes and poor solubility
in the suspension as compared to modified CNTs [35]. It indicates that the proper dispersion of carbon
nanotubes plays a vital role in their interaction with pathogens, as seen in (Figure 2). Because of the
substantial vulnerability of surfactant (SDBS) to disperse carbon nanotubes, it was taken for further
determination of the antimicrobial activity of CNTs.

Besides, SDBS was used as a biocompatible surfactant to check the microbial interactions
with the nanotubes. The selected pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa,
Klebsiella pneumoniae, and fungal strain Candida albicans, were incubated with the desired concentration
of dispersed DWCNTs and MWCNTs in 0.05 wt.% surfactant. The impact of carbon nanotubes on
microbial cell growth was studied. The OD growth curves at OD600 nm for these isolates have been
shown in Figures 6 and 7. At concentrations of 20, 40, and 60 µg/mL, there was a significant increase in
all microbial cell growth following treatment with DW and MW carbon nanotubes for 24 h and 48 h.
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Figure 6. OD growth curves attained when 150 µL of ~107–108 CFU/mL Staphylococcus aureus (A),
Pseudomonas aeruginosa (B), Klebsiella pneumoniae (C), and Candida albican (D), treated with MWCNTs at
the following conditions and then grown in 5 mL of LB and YPD broth at 37 ◦C: treated with desired
concentration of 20, 40, 60, 80, and 100 µg/mL MWCNTs in DI water for 1 h. The cell suspension was
used as a control sample in DI water.

In contrast, carbon nanotubes with a concentration of 20 µg/mL were showed a maximum value
for microbial cell growth. Though nanotubes were significantly inhibited the microbial cell growth with
a concentration of 80 and 100 µg/mL. Pseudomonas aeruginosa and Klebsiella pneumoniae were showed
more susceptible to the carbon nanotubes with higher concentration. The results indicated that both
DW and MW carbon nanotubes were showed their antimicrobial activity after functionalized with
surfactant solution. As far as we know, there are limited published reports on the antimicrobial activity
of DWCNTs. The previous studies [22,36,37] tell us about the antimicrobial activity of single-walled
and multi-walled CNTs on different pathogenic strains, such as E. coli, Enterococcus faecium, and
Salmonella enteric, but still lack information on the antimicrobial activity of DWCNTs. This study
showed that DWCNTs possess the capacity to inhibit microbial cell growth and cause cell membrane
damage. However, it can be seen that the antimicrobial activity of MWCNTs is higher against the
pathogens as compared to DWCNTs. It may be due to the multiple layers of the graphene structure of
MWCNTs [38]. Thus, we observed that both types of functionalized CNTs contain broad-spectrum
antimicrobial effects.
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Figure 7. OD growth curves attained when 150 µL of ~107–108 CFU/mL Staphylococcus aureus (A),
Pseudomonas aeruginosa (B), Klebsiella pneumoniae (C), and Candida albican (D) was treated with DWCNTs
at the following conditions and then cultivated in 5 mL of LB and YPD broth at 37 ◦C: treated with
desired concentration of 20, 40, 60, 80, and 100 µg/mL DWCNTs in DI water for 1 h. The cell suspension
was used as a control sample in DI water.

3.3. Microbial Viability Based on Concentration and Treatment Time

The reduction in the number of viable cells after being treated with varying concentrations of
SDBS-modified DWCNTs and MWCNTs, as seen in (Figure 8A,B). The antimicrobial property of
surfactant-modified CNTs depends on the concentration [39]. After 24 h treatment with 20, 40, 60,
80, and 100 µg/mL MWCNTs, the viability of cells was decreased by 35, 49, 64, 75 and 83 percent,
respectively, against Staphylococcus aureus. By contrast, the number of viable cells was decreased after
applied the same concentration of DWCNTs against Staphylococcus aureus. As the concentration of
both types of CNTs has increased, the reduction occurred in the viable cell number. Similarly, the
viability of the pathogens, such as Pseudomonas aeruginosa was decreased 45, 59, 71, 86, and 95 percent
by increasing concentration of MWCNTs, but the reduction has seen less in viable cells (Pseudomonas
aeruginosa) after applied DWCNTs. These findings verify the previous studies that MWCNTs exhibits
higher antimicrobial activity than DWCNTs [23,40].
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Figure 8. Antimicrobial activity of MWCNTs and DWCNTs on microbial cells based on concentration
and treatment time. Microbial viability assay was carried out after incubation of microbial cells
(~107–108 CFU/mL) with desired concentration (A,B) and treatment time at 100 µg/mL (C,D) of
MWCNTs and DWCNTs for 24 h in case of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella
pneumoniae and 48 h for Candida albicans. The survival of cells was examined by a colony counting
method and stated as a percentage with respect to microbial cells (untreated) incubated with DW. The
control was microbial cells treated with distilled water.
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By contract, SDBS-MWCNTs and SDBS-DWCNTs treatment were attained 39, 53, 69, 81, and
89 percent and 25, 35, 45, 66, and 73 percent reduction in viable cells number corresponding to the
concentration of 20, 40, 60, 80, and 100 µg/mL, respectively, against Klebsiella pneumoniae. However, the
viability of fungal strain, such as candida albican has been decreased 30, 44, 60, 72, and 80 percent and
15, 27, 35, 58, and 63 percent after 48 h of treatment with f-MWCNTs and f-DWCNTs. The number of
viable cells was decreased after treating samples with surfactant-modified DWCNTs and MWCNTs,
which showed the antimicrobial activity of these SDBS-modified CNTs. The reduction in viable
cells number also reflects observations of delayed exponential log phases of these samples treated
with surfactant-modified CNTs, confirming that f-MWCNTs exhibits more antimicrobial activity than
f-DWCNTs against pathogens. Furthermore, it has also been studied the effect of treatment time on
the reduction of microbial growth treated with f-CNTs. The decrease in the number of microbial
growth after being treated with surfactant-modified CNTs at 100 µg/mL concentration for different
treatment time has been shown in (Figure 8C,D). Both types of f-CNTs demonstrate a similar reduction
in the number of microbial growth with respect to treatment time, where a reduction in the number
of viable cells indicates a positive relationship with the treatment time. It was observed that a large
number of viable cells decreased as the treatment time increased. Also, the effect of treatment time on
microbial cell numbers was more obvious for f-MWCNTs. This indicates that the antimicrobial activity
of functionalized MWCNTs contains a strong treatment time dependence.

Figure 9 indicates the effect of control samples on the viability of pathogens examined by the colony
counting method, after being treated with different agents at a concentration of 100 µg/mL for 24 h and
48 h. It has been observed that both purified-CNTs and only the surfactant showed less inhibition
of microbial growth after overnight incubation, suggested that unmodified-CNTs did not show any
significant antimicrobial activity because nanotubes in bundle forms produce less antimicrobial effect
to the pathogens [41]. It has also been examined that changes occur in the number of viable cells after
pathogens treated under the same condition used to check the optical density (OD) growth curves. The
result is shown in Figure 9, where no significant decreases in the number of viable cells were observed
after treated with unmodified CNTs. The less antimicrobial efficiency of both types of CNTs can be
ascribed to their functional and structural properties. It is obvious that unmodified CNTs are very
hydrophobic in nature and hard to make its dispersion in aqueous solution because of van der Waals
forces [30].
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Based on the earlier reports [42,43], CNT’s antimicrobial mechanisms to the microbial cells were
due to the cell membrane damage through direct interaction with CNTs. Thus, the dispersion of CNTs
plays a very crucial role in the inactivation of microbial cells. Higher dispersion means CNTs strongly
interact with the cells and thus, the cell death rate is significantly higher [13]. In fact, a good dispersion
is very important premise for the CNTs to show higher microbial cells’ inactivation [41]. Hence, it
is rational to attain the result that unmodified-CNTs did not demonstrate the antimicrobial activity
to the pathogens. The surface modification of CNTs by non-covalent modification via surfactant
molecules not only helps to improve the dispersion of CNTs, but also increases their antimicrobial
activity [12]. The antimicrobial effect of surfactant solution (SDBS) has also been shown in (Figure 9).
The surfactant (SDBS) was also exhibited the inactivation of the selected pathogens after overnight
incubation. The rate of inhibition was observed 25, 35, 30, 21 percent, respectively.

In fact, modified-CNTs showed effective microbial cell inactivation compared to unmodified-CNTs.
Interestingly, it has been shown that unmodified-MWCNTs showed higher antimicrobial activity than
unmodified-DWCNTs. Also, it was obvious that the antimicrobial effectiveness of non-covalently
modified CNTs strongly based on the applied molecules of surfactant (SDBS). The stronger antimicrobial
efficiency of the surfactant molecules, the greater inactivation proficiency of the surfactant modified
CNTs. This work provides a single platform to discuss the biocompatibility of surfactant and
antimicrobial mechanisms of functionalized CNTs against different selected pathogens.

Figure 10 shows TEM images of purified-CNTs and SDBS-modified CNTs. The purified form of
carbon nanotubes are closely packed with each other individually (a, c), whereas CNTs, after treated
with SDBS become significantly untied, and highly dispersed in the surfactant solution without causing
any CNT’s structural damage (b, d). This demonstrates that surfactant (SDBS) plays an important role
in increasing the CNT’s dispersion power.
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Figure 11 reveals that FE-SEM images of microbial cells interact with surfactant-modified CNTs
(DWCNTs and MWCNTs). To explore the antimicrobial mechanisms of CNTs, FESEM was applied to
assess the morphological changes and image the microbial surface after treatment. It was observed that
control group microorganisms were intact in saline solution, and after 4 h of incubation maintained
their outer membrane structural integrity (Figure 11). While after 4 h of treatment with 100 µg/mL of
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CNTs (DWCNTs and MWCNTs), the images showed extensive interaction between CNTs and microbial
cell walls, causing damage to the outer membrane. The most obvious effects of CNTs were observed in
S. aureus; the surface structure of bacterium changed from smooth to corrugated and even entirely
disappeared (Figure 11).Materials 2020, 13, x FOR PEER REVIEW 15 of 19 
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Figure 11. SEM images of (A–C) Staphylococcus aureus, (D–F) Pseudomonas aeruginosa, (G–I) Klebsiella
pneumoniae, and (J–L) Candida albican microbial cells. The images refer to the untreated control group
and microbial cells exposed to 100 µg/mL f-DWCNTs and f-MWCNTs at 80,000 × magnification.
The arrows indicate the CNTs’ web.

The long CNTs, such as MWCNTs (Figure 11C) were observed wrapped around the surface of
S. aureus (A), which led to more severe cell wall damage than DWCNTs (Figure 11B). In general, CNTs
with long lengths provide more opportunity to wrap around the surface of pathogens and causing
cell wall damage [35]. The needle-like actions were also observed in bacteria treated with DWCNTs
(Figure 11B). Interestingly, with respect to Gram-negative bacteria, such as Pseudomonas aeruginosa and
Klebsiella pneumoniae (Figure 11D,G), it was observed that both CNTs wrapped around the surface of
bacteria and caused cell wall and membrane lysis (Figure 11E,F,H,I). According to our understanding,
no reports published on the antimicrobial activity of DWCNTs towards Klebsiella pneumoniae. We
found that CNTs contain broad-spectrum antimicrobial activity to all different selected pathogens.
Previously, it has been reported that carbon nanotubes stick to the surface of microbial cells because
of the electrostatic interactions [23]. The authors in [44] reported that microbial cells are more easily
attached to the nanotubes’ structures, but the relationship between cellular adhesion and surface
roughness of nanostructures still remains unclear.
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It has been investigated that CNTs contain different antimicrobial activity against Gram-negative
bacteria compared to Gram-positive bacteria due to different surface morphology of microbes.
The authors in [45] have been used the atomic force microscopy to investigate the mechanical
properties of microbial cell surface in aqueous solution. They reported that Gram-negative bacteria had
a harder surface as compared to Gram-positive ones. Thus, the mechanical properties and different
structural characteristics of the microbial cell wall could affect the antimicrobial activity of CNTs.

Finally, SEM was carried out for the surface analysis of yeast cells (Candida albican) treated with
CNTs. Microscopic results showed that both types of CNT interact with the yeast cell (J) and form a
web-like structure, which leads to cause cell wall damage by punctuations entering inside treated cells
(Figure 11K,L). Thus, the data described here certainly argue that cell wall or membrane damage was
an early consequence, which in turn induced a reduction in colony-forming units (CFU). It is worth
mentioning that a different type of interaction occurs between CNTs and microbes, particularly depends
on not only surface functional group or/and length of carbon nanotubes, but also morphological
structure of microbial cells [23]. The authors in reference [42] reported that intrinsic antimicrobial
mechanisms linked with CNTs’ length-dependent wrapping and diameter-dependent piercing on the
microbial cell lysis.

However, it can be clearly observed at the edge that individually dispersed CNTs are attached at
one end of microbial cells, and strictly adhered to the other end, which acts as needles surrounding the
cells. In general, there are two reasons to increase the antimicrobial activity of carbon nanotubes. Firstly,
the presence of molecules of surfactant, which facilitates the increase of the surface area for microbial
interactions and favors the debundling of CNTs. Second, when a molecule of surfactant interacts with
the cells, it ruptures and penetrates the cell membrane and ultimately causes cell death [42]. Earlier
studies showed that CNTs after non-covalent modification had strong potential to adhere to the cell
membrane of pathogens due to strong van der Waals interactions between individual nanotubes [35].
With respect to SWCNTs, nanotubes can capture the microbial cells and cause cell death because of
direct interaction and physically punctures the outer membrane of the cells as a result [46–48].

Contrary to SWCNT, both DWCNTs and MWCNTs can also capture the microbial cells but do
not effectively kill the pathogens, which is probably because of the larger diameter of DWCNTs and
MWCNTs as compared to SWCNTs [49]. Akasaka and his colleague confirmed these findings that
MWCNTs with a diameter ~30 nm had a strong potential to stick or adhere to the outer membrane of
pathogens by physical sorption, which was not linked to the antimicrobial resistance [40]. Yang and
his colleague were also reported that covalently-modified MWCNTs with –COOH and OH groups
attached could form aggregates of cells without exhibited antimicrobial activity [22].

Concerning application potential, the benefits of killing or capturing pathogens by non-covalent-
modified CNTs apparently include three considerations as compared to other antimicrobial agents.
Firstly, it is identified that the mesopore volume of pristine CNTs and BET (Brunauer–Emmett–Teller) surface
area lies in between the area of 250 m2/g and 0.85 cm3/g [50]. Thus, CNTs can provide large surface
areas, which are able to immobilize the large biotic contaminants, such as bacteria and viruses. Secondly,
biological contaminants and surfactant-modified CNTs are able to form aggregates and gradually
deposit at the bottom [21]. This does not only purify the water phase rather also reduces the residual
of surfactant-modified CNTs as antimicrobial agents, preventing second contamination. Thirdly, the
surfactant-modified CNTs offer simultaneous inactivation and capture of biological contaminants, but
other carbon-based nanomaterials can also offer capture of biological contaminants [21].

4. Conclusions

In this study, the dispersion potential of surfactant-modified CNTs and their antimicrobial activity
to Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans
were investigated. Both types of CNT—DWCNTs and MWCNTs—can inhibit the growth of tested
pathogens. Particularly, CNTs may selectively damage the walls or membranes of microbes, depending
on not only the functional groups and length of nanotubes but also on the shapes of pathogens. Long
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CNTs may wrap around the surface of pathogens and increase the surface contact area with the cell
wall of microbes. The dispersion of CNTs was observed by UV–vis absorption, FTIR, and TEM images
indicate that SDBS-treated CNTs have the ability to disperse in the aqueous phase. However, optical
density growth curve and the number of viable cells confirmed that surfactant-modified CNTs showed
high antimicrobial activity. Besides, FESEM images indicated the strong type of interactions present
between SDBS-treated CNTs and microbial cells. The molecules of the surfactant bind on the surface of
graphene sheets, which helps to disperse nanotubes in aqueous solutions. The stronger dispersion
of CNTs increased its antimicrobial activity. MWCNTs contained higher antimicrobial activity as
compared to DWCNTs.
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