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Abstract

Motivation: Most proteins perform their biological functions through interactions with other proteins in cells. Amino
acid mutations, especially those occurring at protein interfaces, can change the stability of protein–protein interac-
tions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the
binding affinity changes (DDGbind) caused by mutations can provide critical information for protein function annota-
tion and genetic disease diagnoses.

Results: We present SSIPe, which combines protein interface profiles, collected from structural and sequence hom-
ology searches, with a physics-based energy function for accurate DDGbind estimation. To offset the statistical limits
of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the pro-
file accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins,
where training and test datasets were stringently separated with the sequence identity between proteins from the
two datasets below 30%. The Pearson correlation coefficient between estimated and experimental DDGbind was 0.61
with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data
analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination
of the physical energy function with the new knowledge-based interface profile. SSIPe also considerably outper-
formed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized
pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities.

Availability and implementation: Web-server/standalone program, source code and datasets are freely available at
https://zhanglab.ccmb.med.umich.edu/SSIPe and https://github.com/tommyhuangthu/SSIPe.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions (PPIs) are of great importance to bio-
logical processes (De Las Rivas and Fontanillo, 2010; Jankauskaite
et al., 2018; Szklarczyk et al., 2017). They are the key component of
all cellular signal transduction pathways (Yang and Liu, 2017), and
are essential for gene expression control (McKenna and O’Malley,
2002), enzymatic catalysis activation/inhibition (Bode and Huber,
1992) and the immune response (Li and Verma, 2002). The muta-
tion of amino acids at protein interfaces may have an effect on pro-
tein binding and further affect the function of protein networks in

the cell. In fact, amino acid mutations at protein–protein interfaces
are frequently implicated in many diseases, including cancer (Davies
et al., 2002; Greenblatt et al., 1994; Karapetis et al., 2008; Yates
and Sternberg 2013), highlighting the central importance of PPIs to
human health. The effect of mutations on binding free energy
change (DDGbind) is considered to be a significant component of the
overall disease effect (Kucukkal et al., 2015; Peng and Alexov,
2016). Therefore, an effective and efficient computational method
capable of estimating DDGbind upon amino acid mutation should be
useful to dissect the roles of specific interactions and develop poten-
tial therapeutics for diseases caused by missense mutations.

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2429

Bioinformatics, 36(8), 2020, 2429–2437

doi: 10.1093/bioinformatics/btz926

Advance Access Publication Date: 12 December 2019

Original Paper

http://orcid.org/0000-0002-1005-848X
http://orcid.org/0000-0002-2984-9003
https://zhanglab.ccmb.med.umich.edu/SSIPe
https://github.com/tommyhuangthu/SSIPe
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz926#supplementary-data
https://academic.oup.com/


There have been many approaches developed to predict DDGbind

values, which may utilize physical (Li et al., 2014, 2016; Pearce
et al., 2019), empirical (Guerois et al., 2002), statistical energy
potentials (Xiong et al., 2017) or some combination thereof
(Kortemme and Baker, 2002), introduce protein backbone flexibility
(Barlow et al., 2018; Benedix et al., 2009; Dourado and Flores,
2014) or even start from homology modeling structures (Dourado
and Flores, 2016), and employ machine learning techniques
(Berliner et al., 2014; Brender and Zhang, 2015; Dehouck et al.,
2013; Pires et al., 2014). Among these methods, the BindProfX algo-
rithm developed in our previous study shows great superiority to the
pure energy function-based methods (Xiong et al., 2017). Under the
assumption that amino acids with a higher degree of conservation in
the evolutionary analogs tend to have a greater contribution to the
binding affinity, BindProfX estimates DDGbind by using structure-
based interface profiles built from the multiple sequence alignments
(MSAs) of analogous PPIs identified from known protein–protein
complex databases. Furthermore, it has been shown that physics-
based scoring functions can complement the profile-based score to
further improve the prediction performance. This was demonstrated
by the fact that when combining BindProfX with an empirical en-
ergy function (FoldX), a high correlation of 0.73 was achieved be-
tween experimental and predicted DDGbind values based on 1131
single mutations (Xiong et al., 2017). Nevertheless, the non-
redundant interface library (NIL) used in BindProfX for the inter-
face structural analog collection is limited, containing only 24 962
interfaces. Thus, although pseudocounts were introduced to offset
the statistical limitations, the prediction accuracy is relatively low
for those complexes that have very few analogous interfaces in the
NIL (Xiong et al., 2017). Meanwhile, FoldX was specifically
designed to predict the fold stability change (Guerois et al., 2002),
which may reduce the sensitivity of DDGbind estimation specifically
when combined with the profile scores in BindProfX.

In this study, we developed a new approach, SSIPe, which collects
not only the interface structural analogs but also sequence homologs
from the STRING PPI database (Szklarczyk et al., 2017). To alleviate
the issues caused by the uniform pseudocounts used in BindProfX, we
introduced a new amino acid type-specific pseudocount technique with
their parameter values optimized through simulated annealing Monte
Carlo optimization (Kirkpatrick et al., 1983). Moreover, given the com-
plementarity of profile- and physics-based approaches, a recently devel-
oped physical energy function, EvoEF, which was specifically
optimized for protein–protein binding interactions (Pearce et al., 2019),
was combined with SSIPe to further improve the accuracy and robust-
ness of the algorithm. To examine the strengths and weaknesses of the
pipeline, SSIPe was evaluated on large-scale experimental data contain-
ing 2204 mutations from 177 proteins collected from SKEMPI 2.0
(Jankauskaite et al., 2018), where the training and test datasets were
stringently separated with sequence identities between proteins from
the two datasets below 30%. The SSIPe predictions correlated well
with the experimental data, achieving a Pearson correlation coefficient
(PCC) of 0.61 with a root-mean-square-error (RMSE) of 1.93 kcal/mol.
We compared SSIPe with nine other state-of-the-art approaches for
DDGbind estimation, where SSIPe exhibited the best performance across
the overall dataset. For single mutations, SSIPe significantly outper-
formed other methods, except MutaBind (Li et al., 2016), which may
benefit from using a large portion of the test data here in its training
set. Moreover, the SSIPe score calculation is sufficiently fast once the
structure and sequence profiles are constructed from their correspond-
ing databases, allowing for high-throughput DDGbind estimation.

2 Materials and methods

2.1 The SSIPe algorithm
The DDGbind estimation by SSIPe is a linear combination of two
parts, DDGSSIP from the interface profiles and DDGEvoEF from the
physical energy (Fig. 1). The interface profiles are comprised of
structure- and sequence-based profiles. For the structural profile,
SSIPe first identifies interface structural analogs from the NIL li-
brary using iAlign (Gao and Skolnick, 2010), where the resultant

interface MSA is used to calculate the structure-based interface pro-
file. Here, the interface residues are defined as those on one
protein chain that have at least one non-hydrogen atom within 5 Å
of the other chain. Protein interface similarity is determined by IS-
score (see Supplementary Text S1), which varies in the range (0, 1],
where a larger value indicates a higher similarity.

For the sequence profile, the two monomeric sequences from the
query dimer are split and searched separately against the STRING PPI
database (Szklarczyk et al., 2017) using three iterations of PSI-BLAST
(Altschul et al., 1997) with an E-value cutoff of 0.001. The identified
homologous sequences for the two binding partners are then joined
together into the composite sequence-based MSA using the link scores
given in STRING. Since STRING contains PPIs from experimental
data as well as computational predictions, a link score is used as a
measure to quantify the confidence that two proteins interact, where
the confidence is low, medium, high or very high, if the link score is in
the range (0, 0.4), [0.4, 0.7), [0.7, 0.9) or [0.9, 1.0], respectively
(Szklarczyk et al., 2017). A sequence pair with a link score above a
given threshold is added to an intermediate sequence-based MSA. A
homologous sequence identified for one partner may interact with sev-
eral homologous sequences obtained for the other, which can result in
redundancy in the MSA if all the matching pairs are included. To
eliminate redundancy, only the pair of sequences with the highest link
score or the pair with the highest interface residue coverage is retained
if two or more sequence pairs have an identical link score. Next, the
interface residue alignment is extracted from the full-length sequence
alignment, where the interface residue positions are those identified
by iAlign. The extracted interface MSA is used to construct the
sequence-based interface profile. The structural and sequence interface
profiles are then combined to calculate the DDGSSIP value.

For the second component, the previously developed physical energy
function, EvoEF (Pearce et al., 2019), is used to build and optimize the
mutant models and to calculate DDGEvoEF. The DDGSSIP and DDGEvoEF

are then linearly combined to estimate the final DDGbind (DDGSSIPe).

2.2 DDGSSIPe calculation
2.2.1 Profile-based DDGSSIP calculation

The DDGSSIP score for a multiple mutation (DDGSSIP i;AWT ;hfð
AmutigÞ) is simplified as the sum of those for each single mutation
(DDGSSIP i;AWT ;Amuth ið Þ):

DDGSSIP i;AWT;Amuth if gð Þ¼
X

i;AWT;Amuth i2 i;AWT;Amuth if g
DDGSSIP i;AWT;Amuth ið Þ;

(1)

where i;AWT;Amuth i and i;AWT;Amuth if g stand for a single and mul-
tiple mutation, respectively. AWT and Amut are the mutant and

Fig. 1. SSIPe pipeline for mutation-induced DDGbind estimation
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wild-type amino acid types at position i, respectively. The DDGSSIP

upon a single mutation is calculated using the following logarithm:

DDGSSIP i;AWT;Amuth ið Þ ¼ �kln
Nobs Amut; ið Þ þNpseudo Amut; ið Þ
Nobs AWT; ið Þ þNpseudo AWT; ið Þ ;

(2)

where k is a coefficient and Nobs Amut; ið Þ and Nobs AWT; ið Þ are the
observed counts for the mutant and wild-type amino acids at pos-
ition i in an interface MSA (iMSA). In addition, pseudocounts
Npseudo Amut; ið Þ and Npseudo AWT; ið Þ were introduced to offset the
statistical limitations.

The observed counts are calculated by combining the structural
analogs identified by iAlign from the NIL and the sequence homo-
logs identified by PSI-BLAST from the STRING PPI database:

Nobs A; ið Þ ¼ NiAlign A; ið Þ þw1NPSI�BLAST A; ið Þ; (3)

where w1 is the weight used to combine the structural and sequence
profiles.

As shown in Equation (4), the pseudocount for amino acid A at
position i is a combination of a fixed-number (Nfix Að Þ), gap-
dependent (Ngap A; ið Þ) and evolutionary pseudocount (Nevo A; ið Þ),
which are defined in Equations (5)–(7), where a Að Þ, b Að Þ and c Að Þ
are amino acid type-specific pseudocount coefficients that were
determined as outlined in the subsequent sections, and A can be any
amino acid type. Note, in SSIPe, a Að Þ, b Að Þ and c Að Þ are amino
acid-specific constant values; for different amino acid types, the a’s,
b’s and c’s may or may not take identical values.

Npseudo A; ið Þ ¼ Nfix Að Þ þNgap A; ið Þ þNevo A; ið Þ; (4)

Nfix Að Þ ¼ a Að Þ; (5)

Ngap A; ið Þ ¼ b Að Þngap ið Þ; (6)

Nevo A; ið Þ ¼ c Að Þ
X20

x¼1

Nobs x; ið ÞM x;Að Þ
Ntot ið Þ

: (7)

In Equation (6), ngap ið Þ is the number of gaps at position i in the
iMSA. In Equation (7), Nobs a; ið Þ and Ntot ið Þ are the observed counts
for the amino acid type x and for all types at position i, respectively.
M x;Að Þ is the probability of the amino acid x mutating to A, which
is taken from the interface probability transition matrix (iPTM, see
Supplementary Table S1) (Xiong et al., 2017).

The observed counts and pseudocounts are also used in
BindProfX, but the observed counts are only collected from the NIL
while the optimized pseudocounts are uniform rather than amino
acid-specific (i.e. a ¼ 25, b ¼15 and c ¼ 5 in BindProfX). Despite
its ability to outperform many other methods, there are some issues
with BindProfX. One issue is that the observed counts are very few
for some query complexes because the interface structural profiles
are constructed by searching the small NIL database. In such situa-
tions, the estimation accuracy is not sufficiently reliable. This is
demonstrated by the fact that the PCC was 0.68 between experimen-
tal and estimated DDGbind values for the overall BindProfX dataset,
but it was only 0.32 for those targets with two or fewer structurally
similar interfaces (Xiong et al., 2017). This indicates that a larger
number of reliable interface analogs is needed to increase estimation
accuracy. Another problem is caused by the uniform pseudocounts.
For instance, in situations where no similar interfaces can be
obtained (i.e. Nobs AWT; ið Þ ¼ 1 and Nobs Amut; ið Þ ¼ 0), Npseudo

Amut; ið Þ �Npseudo AWT; ið Þ ¼ c M AWT;Amutð Þ �M AWT;AWTð Þ½ � < 0
almost always holds, because M AWT;Amutð Þ is usually less than
M AWT;AWTð Þ based on the iPTM. Thus, DDGbind calculated by
Equation (2) is almost always a positive value, which results in
biased estimation in the cases when no or few interface analogs are
identified. As shown below, the introduction of an extra sequence-
based interface profile and amino acid-specific pseudocounts can al-
leviate these issues.

2.2.2 Physics-based DDGEvoEF calculation

EvoEF is a physics-based energy function designed to describe the
atomic interactions in proteins and was originally implemented in
our protein design protocol EvoDesign (Pearce et al., 2019). It con-
sists of five energy terms, which model the van der Waals energy
(EVDW) (Jones, 1924a, 1924b), electrostatic interactions (EELEC),
hydrogen-bonding interactions (EHB), desolvation energy (EDESOLV)
(Lazaridis and Karplus, 1999) and reference energy of a protein se-
quence (EREF).

EEvoEF ¼ EVDW þ EELEC þ EHB þ EDESOLV � EREF: (8)

The mathematical formula of each energy term has been
described in detail in previous work (Huang et al., 2019; Pearce
et al., 2019) and is listed in Supplementary Text S2 for the complete-
ness of the description. In EvoEF, the binding energy of a dimeric
protein complex that consists of component monomers A and B is
calculated by DGbind ¼ EEvoEF;AB � EEvoEF;A � EEvoEF;B, where
EEvoEF;AB, EEvoEF;A and EEvoEF;B are the energies of the complex and
component monomers, respectively. The binding free energy change
is then calculated by DDGbind ¼ DGmut

bind � DGwt
bind; where DGmut

bind and
DGwt

bind are the binding energies of the mutant and wild-type com-
plex, respectively.

2.2.3 Linear combination of DDGSSIP and DDGEvoEF

The DDGSSIPe score is a linear combination of DDGSSIP and
DDGEvoEF and is calculated as follows:

DDGSSIPe ¼ w2DDGSSIP þw3DDGEvoEF þw4; (9)

where DDGSSIP and DDGEvoEF are calculated as outlined above. w2,
w3 and w4 are the weights used to balance the two terms toward ex-
perimental DDGbind values.

2.3 Algorithm parameters and parameterization
2.3.1 Overview of parameters

Since SSIPe involves multiple components and procedures, here we
give an overview of all the parameters in the SSIPe method. To cal-
culate DDGSSIP, pseudocount parameters a Að Þ, b Að Þ and c Að Þ, coef-
ficient k and weight w1 needed to be optimized. The observed count,
Nobs A; ið Þ, is derived from the structural profile identified by iAlign
and the sequence profile by PSI-BLAST; there were four cutoff
parameters that needed to be optimized for profile construction.
Additionally, the weights of the energy terms in EvoEF also needed
to be optimized.

To construct the iAlign profile, the IS-score cutoff (CIS�score)
was optimized to obtain a proper number of interface structural
analogs, as too high of a cutoff results in very few structural ana-
logs being detected, while too low of a cutoff can lead to inclusion
of non-analogous interfaces (Xiong et al., 2017), both of which
decreases the estimation performance. We also optimized the
parameters for constructing the PSI-BLAST sequence profiles.
STRING provides a link score ranging from 0 to 1 for each PPI to
show the confidence that a pair of proteins interact. We first deter-
mined this link score cutoff (Clinkscore), where our expectation was
that a relatively high cutoff value should be set to obtain reliable
PPIs. To remove sequence redundancy from the sequence-based
iMSA, which can result in a large bias in DDGbind estimation, we
set a maximum sequence identity cutoff (CmaxID). Moreover, we use
a minimum sequence identity cutoff (CminID) to remove sequences
that have very low identity to the query protein to make the se-
quence profiles more reliable.

The pseudocounts (a Að Þ, b Að Þ and c Að Þ), parameters for
observed count calculation (CIS�score, Clinkscore, CmaxID, and CminID

and w1), and the coefficient k are all inter-dependent. In other
words, the choice of parameters for the observed count calculation
affects the optimal pseudocount values and the choice of a pseudo-
count model in turn impacts the optimization of the cutoff values. A
large number of parameters (e.g. all 60 amino acid-specific pseudo-
counts) may pose a high risk of overfitting for the SSIPe method,
which can cause an algorithm to achieve very good results during
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training but very poor results during validation and testing.
However, the difficulty was that we were uncertain how many pseu-
docounts would be most appropriate in the final SSIPe method.
Therefore, we compared five pseudocount models: (1) M0 with
three uniform pseudocount constants, a, b and c, which was used in
BindProfX; (2) M1 with 20 pseudocounts for a Að Þ; (3) M2 with 20
pseudocounts for a Að Þ and 20 for b Að Þ; (4) M3 with 20 pseudo-
counts for a Að Þ and 20 for c Að Þ and (5) M4 with 20 pseudocounts
for a Að Þ, 20 for b Að Þ and 20 for c Að Þ. We did not introduce models
with only b Að Þ or c Að Þ because it has been shown that these pseudo-
counts alone have a very modest effect when not combined with
a Að Þ (Xiong et al., 2017). The comparison of M0 with the other
four models can directly show the advantages and weaknesses of the
amino acid-specific pseudocount models. The pseudocount constant
values were optimized during the training procedure.

The physics-based energy function, EvoEF, was optimized in a
previous work, and here we re-optimized these weight parameters
and tested EvoEF utilizing the dataset splitting approach that was
used to train the SSIP model. In summary, a total of 14 physical en-
ergy weights (2 weights for EVDW, 1 for EELEC, 9 for EHB and 2 for
EDESOLV) for the four energy terms needed to be re-optimized.

2.3.2 Parameter optimization

In this section, we describe in detail how the cutoffs, pseudocounts,
coefficients and weights were optimized in SSIPe.

Optimization of cutoffs. Different pseudocount models may
have different optimal cutoff values for CIS�score, Clinkscore, CmaxID

and CminID. To fully utilize the training data, we performed 5-fold
cross-validation on the training set to determine the most appropri-
ate cutoff values for each pseudocount model. The experimental
training data was randomly split into five subsets of equal size by
protein clustering, where each pair of proteins from different subsets
shared a sequence identity less than 30%. Four subsets were used to
train the prediction model and the remaining subset was used for
model validation. This data splitting procedure was repeated five
times in order to validate the model across all training data points.
When the validation had been performed across all of the training
data, a loss, which was measured by the RMSE between the experi-
mental and validation DDGbind values, was calculated and recorded.
The 5-fold cross-validation processes were repeated 50 times and
the average RMSE was calculated. The optimal cutoffs were chosen
to be the values where the minimum average RMSEs were achieved.

For instance, during the determination of CIS�score, we only con-
sidered the observed counts obtained from the iAlign search. For a
given CIS�score value, the observed counts can be calculated using
Equation (3) and the pseudocounts and coefficient k can be opti-
mized using the training subsets. Specifically, the pseudocounts and
coefficient k were optimized by minimizing the RMSE of the esti-
mated DDGbind values against a set of training DDGbind data using a
simulated annealing Monte Carlo optimization procedure
(Kirkpatrick et al., 1983). The pseudocounts varied from [0, 500]
and k from (0, 20], as we found that these intervals were sufficiently
large, and the values were randomly initialized during optimization.
The highest and lowest temperatures were set to kT ¼ 0.001 and
0.0001, respectively, and the temperature decrease factor was set to
0.8. At each temperature, 50 000 Monte Carlo steps were performed,
where a move was accepted or rejected using the Metropolis criteria
(Metropolis and Ulam, 1949). Three simulated annealing cycles were
performed for the sake of convergence. The model with optimized
parameters was then evaluated on the remaining subset and an
RMSE was calculated after the complete cross-validation process
was finished. After 50 cycles, an average RMSE was obtained for a
given CIS�score cutoff. For each pseudocount model M0–M4, the
CIS�score varied from 0.3 to 0.9 in increments of 0.05 and the best cut-
off that yielded the lowest average RMSE was determined for each
model (Fig. 2A). Similarly, during the optimization of Clinkscore,
CmaxID and CminID, we only considered the observed counts from the
PSI-BLAST searches. The three cutoffs were optimized in the follow-
ing order: Clinkscore, CmaxID and then CminID (Fig. 2B–D).

As shown in Figure 2, the optimal quartet (CIS�score, Clinkscore,
CmaxID, CminID) was (0.5, 0.8, 0.55, 0) for M0, (0.55, 0.8, 0.6, 0.3)

for M1, (0.5, 0.8, 0.5, 0) for M2, (0.5, 0.8, 0.75, 0) for M3 and
(0.5, 0.8, 0.75, 0.25) for M4, respectively. It can be seen from
Figure 2A and D that model M3 achieved the lowest cross-
validation RMSEs when structural and sequence profiles were used
separately. Compared with using sequence profiles alone, lower
RMSEs were achieved for all models using structural profiles alone
with the optimized cutoff parameters, suggesting that the structural
profiles might be more important for the SSIPe calculations (see
Fig. 2A and D).

Optimization of w1 and pseudocount model selection. A similar
procedure was used to optimize w1, which is the weight used to
combine the structure and sequence profiles; w1 was varied from 0
to 2 in increments of 0.05 and the value that achieved the lowest
average RMSE was selected. As shown in Figure 3, an appropriate
combination of sequence and structural profiles resulted in lower
RMSEs than the uncombined models (i.e. w1 ¼ 0). The optimal val-
ues of w1 were 1.30, 1.55, 1.50, 1.45 and 1.30 for models M0, M1,
M2, M3 and M4, respectively. It is noteworthy that the combination
of structural and sequence profiles caused M1 to achieve the lowest
RMSE at its optimal w1, suggesting that model M1 is the most ap-
propriate model when the combined profiles are used. Therefore,
pseudocount model M1 is used in the final SSIPe method.
Compared with the uniform pseudocount model, M0, used by
BindProfX, M1 lowered the RMSE by more than 0.1 kcal/mol when
using the optimized parameters (Fig. 3). With the optimal cutoffs for
model M1 applied, the average numbers of structural and sequence
analogs were 5.0 and 0.7 (Supplementary Table S2), respectively,
which also demonstrates that structural profiles are more important
than sequence profiles.

Optimization of pseudocounts and coefficient k in model M1.
The 20 amino acid-specific pseudocounts and coefficient k were fi-
nally optimized by minimizing the RMSE between experimental and
estimated DDGbind across the whole training set using the same
Monte Carlo procedure. The optimal value of k was determined to
be 5, and the optimal a Að Þ pseudocount constant values were 25,
27, 23, 24, 30, 25, 25, 27, 22, 33, 29, 23, 18, 22, 24, 23, 28, 28, 32
and 31 for Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met,
Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp and Tyr, respectively.

Optimization of EvoEF energy weights. The 14 energy weights
for the four energy terms were also optimized on the same training
dataset as used for the SSIP parameterization following the same
procedure as (Pearce et al., 2019). The newly optimized EvoEF
achieved a PCC of 0.50 with an RMSE of 1.94 kcal/mol on the train-
ing set and a PCC of 0.53 with an RMSE of 2.36 kcal/mol on the
test set. The optimal energy weights are listed in Supplementary
Table S3.

Fig. 2. Optimization of cutoffs for pseudocount models M0–M4. (A) CIS�score, IS-

score cutoff, (B) Clinkscore, the link score cutoff, (C) CmaxID, the maximum sequence

identity cutoff and (D) CminID, the minimum sequence identity cutoff
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Optimization of w2, w3;w4. The three weights were determined
by linear regression to minimize the RMSE between experimental
DDGbind and estimated DDGSSIPe on the training dataset. The opti-
mal values of w2, w3 and w4 were 0.734, 0.341 and 0.205, respect-
ively. A summary of the pseudocounts and parameters, not
including the EvoEF energy weights, is listed in Supplementary
Table S4.

2.4 Evaluation criteria
The performance of SSIPe DDGbind estimation was tested on a set of
734 non-redundant experimental DDGbind data points from 59
structures collected from the SKEMPI 2.0 database (Jankauskaite
et al., 2018) using the following metrics:

R ¼ n
Pn

i¼1 xiyi �
Pn

i¼1 xi

Pn
i¼1 yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1 x2
i �

Pn
i¼1 xi

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1 y2
i �

Pn
i¼1 yi

� �2
q

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � yið Þ2

n

s ;

8>>>>>><
>>>>>>:

(10)

where n is the number of mutations in the test set and xi and yi rep-
resent the experimental and predicted DDGbind values, respectively,
for the ith mutation; R and r correspond to the PCC and RMSE be-
tween the experimental and estimated values.

3 Results

3.1 Dataset construction
3.1.1 Dataset collection from SKEMPI 2.0

In this work, we performed our benchmark tests mainly on SKEMPI
2.0 (Jankauskaite et al., 2018). The original SKEMPI 2.0 database
contains 7085 mutation data entries from 345 structures. Among
these structures, 223 are two-chain complexes and the other 122
complexes have three or more chains. The chains considered are
taken from each data entry in SKEMPI 2.0, which may be the asym-
metric units or the biological assembly of a structure. For instance,
in a typical entry, ‘1AHW_AB_C; . . .; KC138A, DC139A; . . .’,
‘1AHW’ is the PDB code, ‘KC138A, DC139A’ stands for a double
mutation, ‘AB_C’ indicates the double mutation is located at the
interface between chains ‘AB’ and chain ‘C’. The other information
is not shown (denoted as ‘. . .’) for clarification. In this case, the
structure ‘1AHW’ is regarded as a three-chain complex. A structure
is regarded as a two-chain complex if and only if two chains are
listed in an entry. Moreover, we found that 287 mutation data
entries do not have disassociation constant value for either the wild-
type or mutant complexes. In the following, we describe how we
constructed datasets using 6798 (¼7085–287) mutations from 341
structures.

Technically, the SSIPe method only works for a two-chain pro-
tein complex because iAlign can only align dimeric interface residues
(Gao and Skolnick, 2010), and therefore we collected the datasets
from 4162 mutations performed on 222 two-chain complexes. Since
SSIPe focuses on interface residues, we further excluded 1390 muta-
tion entries from 46 structures where one or more mutant residues
were not in the interface. Here, an interface residue was defined as a
residue that had at least one non-hydrogen atom within 5 Å of the
other protein chain in the complex. After this filter, 2772 mutations
from 177 structures remained. Finally, the average DDGbind values
were calculated when there were multiple entries from different
experiments for an identical mutant in the same structure; this
resulted in further removal of 568 redundant mutations. As a result,
2204 mutants from 177 two-chain complexes were retained, includ-
ing 1666 single and 538 multiple mutants. The 177 proteins were
classified into 72 clusters using CD-HIT (Fu et al., 2012) with a se-
quence identity cutoff of 30%; the protein clusters are presented in
Supplementary Table S5. To benchmark SSIPe, we randomly
selected 2/3 of the mutation data (1470 mutations from 118 struc-
tures) as the training set (TrainSet), and reserved the other 1/3 of the
mutation data (734 mutations from 59 structures) as an independent
test set (TestSet1). Due to the clustering process, each structure in
the training set was ensured to have <30% sequence identity with
any structure from the test set. We performed 5-fold cross-
validation on TrainSet to select the most effective pseudocount
model and to optimize the algorithm parameters. We tested the gen-
eralizability of SSIPe’s performance on TestSet1.

There are in total 2636 mutations from 119 structures that have
three or more chains in SKEMPI 2.0. To consider these mutations,
we split the complexes into pairwise dimers and kept the mutations
only involved in the dimer interfaces. After excluding 807 non-
interface mutations as well as merging 957 redundant mutations
that focus on the same residues from multiple experiments, we
obtained a second set of 888 mutation data from 153 split ‘dimers’
(86 unique structures). Again, all protein structures in this set
(TestSet2) were ensured to be non-redundant with those from the
TrainSet and TestSet1 with a sequence identity <30%.

3.1.2 Dataset collection from CAPRI

The 26th round of the blind prediction experiment CAPRI (Janin
et al., 2003) provided an opportunity to evaluate the performance of
SSIPe for predicting the effects of mutations on PPIs, in comparison
with 22 other groups (Moretti et al., 2013). The CAPRI experiment
contained two targets, T55 and T56, which are complexes of de
novo designed influenza inhibitors (HB36.4 and HB80.3) bound to
hemagglutinin (HA). Both T55 and T56 contain 285 interface muta-
tions at 15 positions. The 22 groups predicted the effects of muta-
tions on binding and the predicted results were compared with
experimental yeast display enrichment data obtained using deep
sequencing (Whitehead et al., 2012). The complexes of T55 and
T56 have not been crystallized, but relevant structures with a hand-
ful of mutations are available. Structure models of T55 and T56
were constructed by introducing a mutation (NC64K) on HA-
HB36.3 (PDB code: 3R2X, chains: A, B and C) and five mutations
(KG12G, IG17L, IG21L, KG35A and KG42S) on HA-HB80.4 (PDB
code: 4EEF, chains: A, B and G) using EvoEF (Pearce et al., 2019).
Clearly, T55 and T56 are three-chain complexes, and following the
same procedure used to construct TestSet2, we collected two extra
test sets, CAPRI1 and CAPRI2 for T55 and T56, respectively, by
considering the mutations that were located only in the interfaces of
the split dimers. A summary of all the training and test sets used in
this work is listed in Table 1. The mutation entries for the training
and test sets are listed in Supplementary Tables S6–S10.

3.2 Performance of SSIPe on TestSet1
Many algorithms were evaluated by K-fold cross-validation on a set
of experimental mutation data by mutation-level and/or structure-
level data splitting and cross-validation (e.g. K-fold, leave-one-
mutation-out and leave-one-structure-out); these results were then
reported as the final performances of these algorithms (Berliner

Fig. 3. Optimization of weight w1 for pseudocount models M0–M4
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et al., 2014; Brender and Zhang, 2015; Li et al., 2016; Pires et al.,
2014; Xiong et al., 2017). Although cross-validation is important
for model selection and parameter optimization, the cross-
validation results should not be taken as the general performance be-
cause each data point in the dataset has been used both for training
and validation/testing. It is important to collect an independent test
set to evaluate the general performance of an algorithm. To test
SSIPe’s ability to predict the DDGbind value for an interface mutation
performed on a dimer that has not been seen before, the test set,
TestSet1, was collected, excluding those protein homologous to the
structures in the training set. As shown in Figure 4, SSIPe achieved a
PCC of 0.61 with an RMSE of 1.93 kcal/mol on TestSet1, which
contained both single and multiple mutations.

3.3 Comparison with other methods on TestSet1
We further compared SSIPe with nine other methods for DDGbind es-
timation. Calculations by BeAtMuSiC (Dehouck et al., 2013),
BindProfX (Xiong et al., 2017), ELASPIC (Berliner et al., 2014),
mCSM (Pires et al., 2014), MutaBind (Li et al., 2016) and SAAMBE
(Petukh et al., 2015) were obtained using their webservers. While
for EvoEF (Pearce et al., 2019), FlexddG (Barlow et al., 2018) and
FoldX (Guerois et al., 2002), we directly ran the programs to calcu-
late DDGbind. Briefly, prior to computing the DDGbind values using
EvoEF, the EvoEF ‘RepairStructure’ function was first performed
for each complex to repair the structure and generate energy mini-
mized structural models for the wild-type protein. Following energy
minimization, the ‘BuildMutant’ function was used to build mutant
models, and ‘ComputeBinding’ was used to calculate the binding
energies of the wild-type and mutant proteins. DDGbind calculation
using FoldX were performed in a similar manner, where the
‘RepairPDB’, ‘BuildModel’ and ‘AnalyseComplex’ modules were
used to optimize the structures, build the mutant models, and com-
pute the binding energies, respectively. FlexddG is not a standalone
program used to calculate DDGbind, instead it relies on the Rosetta
macromolecular modeling suite (Leaver-Fay et al., 2011). To calcu-
late DDGbind using FlexddG, we used Rosetta2018.33 with the opti-
mal parameters suggested in the literature (Barlow et al., 2018).

BeAtMuSiC, ELASPIC and mCSM are machine learning meth-
ods specifically trained to predict DDGbind values, while the other
methods are based on physical and empirical energy functions or
their combination. It is noteworthy that only BindProfX and SSIPe
are limited to interface mutations while the other methods do not
have this restriction. BindProfX, EvoEF, FlexddG, FoldX and SSIPe
can compute DDGbind values for both single and multiple mutations
while the others are only limited to single mutations.

Table 2 column 2 presents the DDGbind estimation results for
each method on the overall TestSet1. SSIPe outperformed the other
methods, achieving a PCC of 0.61 and RMSE of 1.93 kcal/mol. The
P-values calculated using the Wilcoxon rank sum test for comparing
the RMSEs of SSIPe with those of the other programs were much
smaller than the widely used 0.05, indicating that the difference is
statistically significant.

We separately examined all of the methods on the 508 single
mutations, but ELASPIC, MutaBind and SAAMBE could only suc-
cessfully generate predictions for 500, 502 and 475 mutations, re-
spectively. Table 2 column 3 presents the DDGbind estimation results

for the 462 common mutations that all the methods were able to
output predictions for. SSIPe outperformed all of the other methods
except MutaBind on the single mutations, obtaining a PCC of 0.57
and RMSE of 1.66 kcal/mol, where the small P-values calculated via
the Wilcoxon rank sum test suggest the difference between the SSIPe
results and the other programs was statistically significant.
MutaBind achieved a PCC of 0.69 and an RMSE of 1.50 kcal/mol,
which considerably outperformed all other methods including SSIPe.
A careful investigation showed that 314 out of the 462 common sin-
gle mutations were used to train MutaBind, and the PCC dropped to
0.53 with an RMSE of 1.80 kcal/mol when these data points were

Fig. 4. Experimental versus predicted DDGbind values by SSIPe on TestSet1. Data

points consist of all 508 single and 226 multiple mutation samples

Table 2. Comparison of DDGbind estimation results on TestSet1,

462 common single mutations and 226 multiple mutations

Methoda All mutants Single mutants Multiple mutants

Rb/rc/P-valued Rb/rc/P-valued Rb/rc/P-valued

BMC n.a./n.a./n.a. 0.47/1.80/2.2e�3 n.a./n.a./n.a.

BPXe 0.50/2.12/5.1e�3 0.37/2.00/3.1e�3 0.54/2.38/3.4e�1

(0.33/2.12/5.8e�3) (0.26/2.14/1.9e�3) (0.28/2.11/2.2e�1)

ESC n.a./n.a./n.a. 0.55/1.73/3.8e�2 n.a./n.a./n.a.

EEF 0.53/2.36/4.1e�5 0.46/2.06/2.9e�5 0.53/2.91/3.5e�3

FLGe 0.58/2.02/3.9e�2 0.54/1.78/4.1e�2 0.61/2.40/2.0e�1

(0.59/2.04/3.6e�2) (0.55/1.82/3.2e�2) (0.58/2.42/2.4e�1)

FDX 0.48/2.51/1.0e�4 0.47/2.41/1.0e�4 0.41/2.78/1.9e�2

CSM n.a./n.a./n.a. 0.34/1.91/2.2e�3 n.a./n.a./n.a.

(0.23/1.72/3.7e�2)

MBDe n.a./n.a./n.a. 0.69/1.50/2.1e�4 n.a./n.a./n.a.

(0.53/1.80/3.3e�3)

SAAe n.a./n.a./n.a. 0.44/1.87/3.9e�3 n.a./n.a./n.a.

(0.36/1.77/9.1e�3)

SPE 0.61/1.93/– 0.57/1.66/– 0.53/2.44/–

aThe abbreviations of tested methods: BMC, BeAtMuSiC; BPX,

BindProfX; ESC, ELASPIC; EvoEF, EEF; FLG, FlexddG; FDX, FoldX; CSM,

mCSM; MBD, MutaBind; SAA, SAAMBE; SPE, SSIPe.
bR, PCC between predicted and experimental DDGbind .
cr, RMSE of DDGbind estimation in kcal/mol.
dP-value in Wilcoxon rank sum test for paired samples between the RMSE

of SSIPe and that of the control method on the common mutations.
eThe results listed in parentheses were calculated by excluding the data

points that were used to train these methods. After this filter, 420 and 187 out

of all the mutations were removed for BindProfX and FlexddG, respectively.

302, 99, 304, 314 and 256 out of the 462 common single mutations were

removed for BindProfX, FlexddG, mCSM, MutaBind and SAAMBE, respect-

ively. 72 and 42 out of the 226 common multiple mutations were removed for

BindProfX and FlexddG, respectively.

n.a.: not applicable.

Table 1. Summary of datasets used in this work

Dataset Name Number of mutations Number of dimersa

Training TrainSet 1470 118

Test TestSet1 734 59

TestSet2 888 153

CAPRI1 190 2

CAPRI2 152 2

aTrainSet and TestSet1 were collected from two-chain complexes.

TestSet2, CAPRI1 and CAPRI2 were collected by splitting the complexes

with three or more chains into pairwise dimers.
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excluded (Table 2). Similarly, removal of the mutations that were
used to train BindProfX, ELASPIC, mCSM and SAAMBE resulted
in significantly worse performances. Moreover, we performed a
pairwise comparison between SSIPe and the control methods on
their common mutations by excluding the mutations that had been
used to train the control methods, and the results showed that SSIPe
significantly outperformed the other methods (Supplementary Table
S11). Several methods have been reported to obtain very high PCCs
with low RMSEs for DDGbind estimation (Supplementary Table
S12). For example, ELASPIC reported that it obtained a PCC of
0.75 with an RMSE of 1.25 kcal/mol and mCSM reported that it
obtained a PCC of 0.80 with an RMSE of 1.25 kcal/mol. For ma-
chine learning methods such as ELASPIC and mCSM, it is easy for
them to be overfit when using small and/or redundant datasets. It
was mentioned that mCSM only achieved a PCC of 0.58 with an
RMSE of 1.55 kcal/mol using the low-redundancy BeAtMuSiC data-
set (Pires et al., 2014). For ELASPIC, the cross-validation results
were reported with mutation-level data splitting (Berliner et al.,
2014). However, Quan et al. (2016) suggested that a strong homolo-
gous correlation exists in the training and testing dataset for
mutation-level cross-validation.

Multiple mutations may cause large conformational changes to
both protein backbone and side chains, which makes it more diffi-
cult to accurately predict DDGbind. This is often the reason that
many algorithms only focus on single mutations. But in fact, it is
quite normal to introduce multiple mutations to increase binding af-
finity between two partners in protein design (Shultis et al., 2019),
thus accurate modeling of DDGbind upon multiple mutations is of
great significance. Table 2 column 4 presents the DDGbind estimation
results for the algorithms that work on multiple mutations. The
RMSEs for multiple mutations were much larger than those for sin-
gle mutations. BindProfX and FlexddG moderately outperformed
SSIPe on DDGbind estimation for multiple mutations, but the large P-
values calculated using the Wilcoxon rank sum test suggest the dif-
ference between the SSIPe results and those obtained by BindProfX
and FlexddG were not statistically significant. Furthermore, the
PCC achieved by BindProfX considerably dropped when the muta-
tions that were used for its training were excluded from TestSet1.

3.4 SSIPe versus BindProfX on TestSet2
TestSet2 was collected by splitting multi-chain complexes into
dimers and identifying the mutations that only appeared in the inter-
faces of the dimers. Since this dataset may not be very rigorous be-
cause it is uncertain if the direct splitting is sufficiently reasonable
and other methods (except BindProfX) can handle multi-chain com-
plexes, it may be unfair to compare SSIPe with them. But since
BindProfX follows a similar computational framework as SSIPe, it
may be interesting to compare them on TestSet2.

As shown in Figure 5, SSIPe achieved a PCC of 0.24 with an
RMSE of 1.49 kcal/mol, while BindProfX obtained a PCC of 0.15
with an RMSE of 1.99 kcal/mol. Although SSIPe outperformed
BindProfX on this set, the correlations between experimental and
predicted DDGbind values achieved by the two methods were quite
low compared with their performance on TestSet1. One plausible
reason is that such data has not been used to train SSIPe and
BindProfX. On the other hand, this result suggests it may not be
very reasonable to directly split a multi-chain complex into dimers
because in reality a residue in the interface of a split dimer may be
influenced by a neighboring residue which is located in a third chain.
Directly ignoring this effect may result in incorrect predictions.

3.5 Performance of SSIPe on CAPRI targets
We also performed two other independent tests using two targets,
T55 and T56, from the 26th round of the blind prediction experi-
ment CAPRI. Unlike the SKEMPI 2.0 experimental database, the
binding affinity change upon mutation in T55 and T56 was modeled
by a base-2 logarithm enrichment value, which is not a direct meas-
urement of DDGbind. To compare the performance of SSIPe for bind-
ing affinity change prediction on T55 and T56 with the results
reported for the 22 CAPRI groups, we calculated the Kendall’s tau

rank correlation coefficient between the SSIPe predictions and the
experimental measurements. Kendall’s coefficient varies from �1 to
1, with a higher Kendall’s coefficient indicating a better correlation
between experimental and predicted data. The results by SSIPe and
other groups are presented in Supplementary Figure S1.

The Kendall’s tau rank correlation coefficients achieved by
SSIPe on T55 and T56 were 0.111 and 0.102, respectively. As a
comparison, BindProfX achieved analogous coefficients of only
�0.108 and �0.021 for T55 and T56, respectively. Therefore,
SSIPe again significantly outperformed BindProfX, although its per-
formance on T55 and T56 was worse than several other groups. It
is worth pointing out that both T55 and T56 are three-chain com-
plexes, and SSIPe and BindProfX cannot be directly applied to
them. To make this comparison, T55 was split into dimers ‘AC’
and ‘BC’, and T56 was split into dimers ‘AG’ and ‘BG’. As shown
by their performance on TestSet2, both SSIPe and BindProfX per-
formed poorly when considering complexes composed of three or
more chains via splitting their chains into dimers. Furthermore,
most of the CAPRI predictors, as well as SSIPe, were optimized to
reproduce experimental DDGbind data rather than the enrichment
value, which may be the reason that many groups achieved very
low Kendall correlation coefficients.

4 Discussion and conclusion

In this work, we developed a new method, SSIPe, for accurate esti-
mation of DDGbind upon mutations at protein–protein interfaces in a
high-throughput manner using structural and sequence interface
evolutionary profiles in combination with an optimized physical en-
ergy function. Starting from a dimer complex, iAlign is first used to
identify interface residues and interface structural analogs from the
NIL library. Sequence homologs for the two separate sequences of
the dimer are then identified using PSI-BLAST searches against the
STRING PPI sequence database and the resulting hits are joined to-
gether via the STRING link score. Next, the interface alignment is
extracted with redundancy removed. The evolutionary profiles are
then built by combining interface structural analogs and sequence
homologs, and are used to derive the evolutionary DDGSSIP score. In
conjunction with the evolutionary energy, a previously developed
and optimized physical energy function, EvoEF, is used to calculate
the physics-based DDGEvoEF energy. The two values are finally com-
bined in a linear fashion to estimate the DDGbind values.

To demonstrate that a predictor has achieved a convincing, gen-
eralizable performance, it is crucial that the training and test sets are
sufficiently unrelated and independent. The performance of some
predictors were only evaluated through cross-validation (Berliner
et al., 2014; Pires et al., 2014; Xiong et al., 2017). The cross-
validation performance benefits from the overlap of data splitting,
as all data have been used for both training and testing. The meth-
ods that achieved very good test performance through cross-
validation may perform poorly on a set of structures that have not
been used to train these methods. For example, mCSM achieved a
PCC of 0.80 with an RMSE of 1.25 kcal/mol for a set of 2317 single
mutations, but here we showed that it only obtained a PCC of 0.34

Fig. 5. Experimental versus predicted DDGbind values by SSIPe on TestSet2. Data

points consist of all 818 single and 70 multiple mutation samples. For clarity, the

units ‘kcal/mol’ for r are not shown
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with an RMSE of 1.91 kcal/mol on the 462 common single residues.
The methods that were rigorously trained and tested on independent
sets achieved more generalizable performance, such as BeAtMuSiC
and FlexddG. For instance, it was reported that BeAtMuSiC
achieved a PCC of 0.40 with an RMSE of 1.80 kcal/mol on a set of
2007 mutations and in this work we showed that it still achieved a
PCC of 0.47 with an RMSE of 1.80 kcal/mol on the 462 common
single mutations.

We optimized SSIPe’s parameters using a set of training data and
tested its performance as well as that of other state-of-the-art predic-
tors using different sets of test data that were independent from
SSIPe’s training set. Importantly, the structures in the test sets were
not homologous to the structures in the training set. Therefore,
SSIPe’s performance may be considered as generalizable, and should
achieve similar results when it is applied to a structure that has not
been trained on. SSIPe achieved a PCC of 0.61 with an RMSE of
1.93 kcal/mol on the standard test set (TestSet1), which considerably
outperformed other predictors on the overall dataset. SSIPe also out-
performed all other predictors, except MutaBind, on the 462 common
single mutations with a PCC of 0.57 and RMSE of 1.66 kcal/mol. As
we mentioned previously, MutaBind may have achieved the best
performance because 314 out of the 462 data entries were used to
train the MutaBind program, and the PCC/RMSE was only 0.53/
1.80 kcal/mol when the 314 training data entries were excluded.
Each of the tested programs, with the exception of SSIPe, EvoEF
and FoldX, could to different degrees benefit from the fact that
some of the test data in TestSet1 had been used for their training.
Therefore, SSIPe’s performance on TestSet1 is convincing and
generalizable.

SSIPe was also tested on three other independent test sets,
TestSet2, T55 and T56, by splitting the multi-chain complexes into
dimers. The poor performance on these sets suggest it may not be
very reasonable to directly split the structures into dimers because
the side-chain of a residue in a split dimer may be in contact with an
adjacent non-interfacial residue located on a third chain. However,
it is still interesting to see that SSIPe outperformed BindProfX on
these sets.

Strictly speaking, the DDGbind upon a multiple mutation should
not be directly calculated as a linear summation of the DDGbind val-
ues of individual single mutations. However, we found that this may
not be a problem for SSIPe. In fact, one of the major advantages of
the profile-based approach over physics-based method is that it
counts for the cooperativity inherently. Even if it is a sum of individ-
ual mutations, because the DDGSSIP values are calculated from ex-
perimental data that contain all the interaction effects when the
structures and mutations are formed, the individual DDGSSIP values
can already count for the cooperativity in the profile calculations.
Furthermore, the cooperativity was also considered by the EvoEF
component because the mutant model was built as an integrity.

It is of great interest to examine why SSIPe was more accurate
than some other predictors. Among the ten methods tested, only SSIPe
and BindProfX utilize evolutionary profiles. Although only the num-
ber of effective structural and sequence analogs rather than the more
detailed amino acid physiochemical characteristics are counted, it
seems that the important structure- and environment-dependent infor-
mation for energy modeling is likely to be implicitly included in the
evolutionary statistics. In fact, it may be difficult for physics-based en-
ergy functions to model such complex interactions. For instance, many
interfaces are highly solvated and filled with water molecules, but the
important water-mediated hydrogen bonds cannot be calculated due
to the implicit solvation models used in almost all of the energy func-
tions. One such case is depicted in Figure 6A, where the aspartic acid
B33Asp directly forms a hydrogen bond with A39Lys and forms
water-mediated hydrogen bonds with A19Lys and A41Asn via water
molecules, W19, W25 and W58. When B33Asp is mutated to a resi-
due with a smaller side chain (e.g. Ala), the loss of the aspartic acid
mediated hydrogen bonds is likely to be compensated by the water-
mediated hydrogen bonds and the DDGbind may not be affected that
much. The experimental value for the mutation DB33A is 1.1 kcal/
mol. SSIPe obtained the smallest estimation errors of 0.032kcal/mol,

while physical energy functions exhibited relatively high estimation
errors (Supplementary Table S13).

The assumption that the protein backbone is fixed is usually
used for building mutant models in many physical energy functions,
which to some extent may be reasonable for mutations from larger
residues to smaller ones. But it may not be correct for small-to-large
mutations, where fixed backbones may lead to steric clashes, which
actually can be reduced when backbone flexibility is introduced. As
shown in Figure 6B, mutant residue A263Asn is tightly enveloped
by five other residues, A259Tyr, A278His, B2Leu, B3Leu and B4His
in a narrow space. Mutation of A263Asn to a larger residue (e.g.
Arg) may result in larger steric clashes. However, experimental data
shows that the effect of mutation NA263R is neutral (experimental
DDGbind ¼ �0.021 kcal/mol). Much larger estimation errors were
obtained for physical energy functions like MutaBind and FoldX
(Supplementary Table S13). These issues are also challenging to
EvoEF, which is an important component of SSIPe and is also a
physics-based energy function that utilizes an implicit solvation
model and assumes a fixed backbone when creating mutant models.
It may be important to overcome these limitations to make SSIPe
more accurate in the future.

With respect to the speed of the algorithm, the most time-
consuming component of SSIPe is the construction of the structure-
and sequence-based profiles from the NIL and STRING database,
which takes an average of 2 h for the complex structures tested in this
study. However, once the profiles are constructed, the calculation of
the SSIPe profile score is sufficiently fast, allowing for a thorough ana-
lysis of mutations across an entire protein–protein interface. EvoEF is
also fast for DDGbind estimation, where, as we demonstrated in a pre-
vious study, EvoEF is about five times faster than FoldX with slightly
better performance (Pearce et al., 2019). SSIPe achieves a reasonable
balance between accuracy and speed, allowing for accurate DDGbind

estimation in a high-throughput fashion. Based on the test results,
SSIPe obtained good performance for estimating the DDGbind upon
both single and multiple mutations, indicating that SSIPe is a promis-
ing tool that can be used for numerous applications including develop-
ing protein therapeutics for diseases caused by mutations.
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Fig. 6. Two example cases that are not well captured by physical energy functions

but better predicted in SSIPe. (A) Wet interface (PDB code: 1LFD). Water-mediated

hydrogen bonds are shown in dash lines, and water molecules are shown in balls.

(B) Small-to-large mutation NA263R (PDB code: 4WND). Mutant residue is shown

in stick while surrounding residues are shown in line models
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