Skip to main content
. 2020 Apr 22;12:28. doi: 10.1186/s13321-020-00431-w

Table 5.

Results for the distribution learning Guacamol benchmarks

Case Min increase Max increase Max replacements Validity Uniqueness Novelty KL divergence Frechet ChemNet Distance
CReM − 2 2 100 1 ± 0 0.935 ± 0.021 1 ± 0 0.443 ± 0.023 0.021 ± 0.007
CReM − 2 2 10 1 ± 0 0.942 ± 0.008 1 ± 0 0.530 ± 0.061 0.024 ± 0.034
CReM − 2 2 5 1 ± 0 0.941 ± 0.003 1 ± 0 0.572 ± 0.038 0.044 ± 0.053
CReM − 2 2 2 1 ± 0 0.950 ± 0.002 1 ± 0 0.551 ± 0.054 0.019 ± 0.018
CReM − 6 6 100 1 ± 0 0.942 ± 0.023 0.999 ± 0 0.541 ± 0.056 0.018 ± 0.012
CReM − 6 6 10 1 ± 0 0.924 ± 0.010 1 ± 0 0.603 ± 0.019 0.041 ± 0.045
CReM − 6 6 5 1 ± 0 0.921 ± 0.022 1 ± 0 0.584 ± 0.034 0.038 ± 0.040
CReM − 6 6 2 1 ± 0 0.935 ± 0.009 1 ± 0 0.605 ± 0.015 0.053 ± 0.050
CReM − 10 10 100 1 ± 0 0.918 ± 0.019 1 ± 0 0.531 ± 0.058 0.071 ± 0.027
CReM − 10 10 10 1 ± 0 0.907 ± 0.022 0.999 ± 0.001 0.622 ± 0.011 0.030 ± 0.016
CReM − 10 10 5 1 ± 0 0.875 ± 0.025 1 ± 0 0.599 ± 0.035 0.085 ± 0.056
CReM − 10 10 2 1 ± 0 0.850 ± 0.094 1 ± 0 0.590 ± 0.064 0.006 ± 0.005
CReM − 10 2 100 1 ± 0 0.945 ± 0.021 0.999 ± 0 0.550 ± 0.037 0.016 ± 0.012
CReM − 10 2 10 1 ± 0 0.950 ± 0.008 1 ± 0 0.545 ± 0.007 0.045 ± 0.010
CReM − 10 2 5 1 ± 0 0.956 ± 0.001 1 ± 0 0.533 ± 0.073 0.048 ± 0.036
CReM − 10 2 2 1 ± 0 0.962 ± 0.006 1 ± 0 0.577 ± 0.027 0.042 ± 0.037
SMILES LSTM* 0.959 1 0.912 0.991 0.913
Graph MCTS* 1 1 0.994 0.522 0.015
AAE* 0.822 1 0.988 0.886 0.529
ORGAN* 0.379 0.841 0.687 0.267 0
VAE* 0.870 0.999 0.974 0.982 0.963

* Results were taken from the ref [38]