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Abstract

Background: Maternal antibodies are key components of the protective responses of infants who are unable to
produce their own IgG until 6 months of life. There is evidence that HIV-exposed uninfected children (HEU) have
IgG levels abnormalities, that can be partially responsible for the higher vulnerability to infections in the first 2 years
of the life of this population.

This retrospective study aimed to characterize the dynamics in plasma levels of total IgG and their isotypes during
the first 2 years of life in HEU infants exclusively breastfed through 6 months of age.

Methods: Total IgG, IgG1, IgG2, IgG3 and IgG4 isotypes, and IgM and IgA plasma concentrations were determined
by nephelometric methods in 30 Malawian infants born to HIV-positive women at month 1, 6 and 24 of life.

Results: At 1-month infants had a median concentration of total IgG of 848 g/l, (IQR 7.57-9.15), with an
overrepresentation of the IgG1 isotype (89.0% of total) and low levels of IgG2 (0.52 g/l, IQR, 0.46-0.65). Total IgG and
IgG1 concentrations were lower at 6 months (— 2.1 and — 1.12 g/d, respectively) reflecting disappearance of maternal
antibodies, but at 24 months their levels were higher with respect to the reported reference values for age-matched
pairs. Abnormal isotype distribution was still present at 24 months with IgG2 remaining strongly underrepresented
(0.87 g/l, 7.5% of total IgG).

Conclusion: HIV exposure during pregnancy and breastfeeding seems to influence the IgG maturation and isotype
distribution that persist in 2-year old infants.
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Background

The process of immunoglobulins development and mat-
uration starts during intrauterine life [1] however, the
fetus can not produce IgGs, that are received from the
mother in a complex mechanism of selective placental
passage (preferential transport occurs for the IgG1 iso-
type followed by IgG4, IgG3 and IgG2 [2]. Neonates are
therefore born with a functional immaturity of the im-
mune system and early protection initially relies on the
presence of maternal antibodies [3]. Only after the first
months of life will infants start to produce their own
IgGs, achieving the full immune competence only in late
adolescence [4].

In maternal pathological conditions, such as infections
and/or inflammatory status the bidirectional fetal-
maternal immune cross-talk, including the passage of
IgG from mother to fetus, can be altered with important
consequences for offspring’s health [5, 6]. Clinical and
epidemiological studies reported evidence that maternal
HIV infection can deeply affect the maternal/fetal unit,
interfering with the immunomodulatory factors which
shape immune maturation in fetuses [7, 8]. Immuno-
logical abnormalities have been observed in HIV-
exposed uninfected (HEU) children, including defects in
CD4+ helper T cells and in immune regulatory function
[9], and low responsiveness to vaccination [10]. In par-
ticular, maternal transplacental transfer of IgGs is inad-
equate in HIV-exposed children. In healthy pregnancies,
full-term neonates have a cord blood IgG concentration
often exceeding the maternal plasma concentration [11],
but in HIV infection significant reduction of the IgG
child/maternal ratio (CMR) has been observed [12]. Sev-
eral studies have shown that HEU newborns have lower
levels of Hib-, pertussis-, pneumococcus-, and tetanus-
specific antibodies when compared to non-HIV exposed
peers [13]. HIV studies on antenatal vaccine programs
have also reported impaired passage through the pla-
centa [14-16].

However, while the decreased transplacental passage
has been extensively demonstrated, only a few studies
have investigated the subsequent development and mat-
uration of total IgG and IgG isotypes in HEU infants.
Immunoglobulins have a key role in the response against
pathogens and in the development of adequate re-
sponses to vaccinations [17] and the determination of
their levels can provide useful information on the status
of the humoral immune system. IgGs ranges are well
established in adult populations from different geograph-
ical areas [18], but the reference intervals are still uncer-
tain in infants since many external factors, such as in
utero stimuli, genetic and environmental influences, and
exposition to pathogens, could impact on the dynamic
process of immunoglobulin development and maturation
[2, 11, 19]. Because of the limited number of studies
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reporting the dynamics of IgG levels in African children,
there is a need for a better characterization of the im-
munoglobulin profile in these populations. The present
study is therefore aimed to assess the IgG and IgG sub-
classes levels during the first 2 years of the life of Mala-
wian infants born to HIV+ mothers.

Methods

Study population

The study population included infants enrolled in a co-
hort study [SMAC (Safe Milk for African Children)
study], conducted in Malawi (enrollment: February 2008
— February 2009), and investigating the safety and effi-
cacy of antiretroviral therapy (ART) administration in
HIV+ pregnant and lactating women. Study design, clin-
ical details, and antiretroviral strategies have been previ-
ously described [20]. The original study did not include
a control group. The antiretroviral strategy followed the
criteria for treatment in use in Malawi at the time [21].
Naive HIV-positive women with a CD4+ cell count <
350 CD4 cell/ul started ART as soon as possible after
the first trimester, with a combination of stavudine (d4T
30 mg twice daily), lamivudine (3TC, 150 mg twice daily)
and nevirapine (200 mg twice daily) and continued the
same treatment after the end of breastfeeding. For
women with a CD4+ cell count > 350 cell/ul ART was
started at 25 weeks of pregnancy with zidovudine (ZDV,
300 mg twice daily), lamivudine and nevirapine, accord-
ing to the DREAM program [22] and was continued
until 6 months after delivery (end of breastfeeding
period). All infants received a single dose of NVP syrup
(2 mg/kg of body weight) within 72 h of birth.

Gestational age information was self-reported by the
women, without obstetric ultrasound confirmation.
Therefore this information was not considered reliable.
We used neonatal weight as a possible surrogate meas-
ure, and according to the World Health Organization
(WHO) indication, a neonatal weight <2500 g was con-
sidered low birth weight [23].

Inclusion criteria for this substudy were based on the
availability of infant plasma samples at the following
timepoints: month 1, month 6 (optional), and month 24
(a total of 30 HEU infants). We have also included 5
additional infants, who had acquired HIV infection and
had samples available (in the entire population of 300 in-
fants of the SMAC study a total of 8 infants had ac-
quired the infection).

Since their sample availability was incomplete and the
timing of infection was different we decided to analyze
them separately.

The study was conducted in Blantyre and Lilongwe,
within the DREAM (Drug Resource Enhancement
against AIDS and Malnutrition) Program of the
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Community of S. Egidio, an Italian faith-based non-
governmental organization.

Plasma IgG levels and IgG subclasses

Total IgG and IgG subclass plasma levels were deter-
mined using IgG total, IgG1, 1gG2, IgG3 and IgG4 re-
agents (Siemens, Siemens Healthcare Diagnostics) and
read by automatized nephelometry (BN ProSpec® System
analyzer, Siemens Healthcare Diagnostics). Total IgA
and IgM levels were also determined using the same
methodology.

Since no IgGs reference intervals were available from
healthy infants born in the same geographic/socioeco-
nomic setting of our study, we contextualized our results
reporting IgG maturation trend from recent studies on
healthy infants from other countries/regions. IgGs refer-
ence intervals from other studies were merely used to
depict physiological age-specific changes in Igs levels,
and no statistical analyses were performed.

Statistical analysis

The SPSS software version 25 (IBM Corp, 2017, Armonk,
NY, USA) was used for statistical analyses. Results are pre-
sented as medians with interquartile range (IQR) and per-
centages. Longitudinal differences were determined using
the Wilcoxon Signed Rank Test and Spearman’s correl-
ation coefficient was used for the correlation analysis be-
tween quantitative variables. Differences were considered
statistically significant when p < 0.05.

Results

Population characteristics

All infants were delivered vaginally. Their mothers’ char-
acteristics are reported in Table 1. The median age was
28years, and the median ART duration during

Table 1 Maternal and infant characteristics. Values are
expressed as medians with interquartile range or percentage

Mothers

N. 30

Age (years) 280 (23.8-31.3)

WHO stage |, II, Il (%) 70/233/6.7

CD4+ cell count (cells/pl) 322 (211-469)

CD4 <350 cells/ul (n, %) 16 (55.2)

HIV-RNA (log copies/ml) 392 (3.07-4.43)

Weeks of ART in pregnancy 10 (5.7-14)
Infants

weight at birth? (kg) 3.35 (3.06-3.53)

low birth weight® n 3

gender (female, n %) 13,433%

“Neonatal weight was recorded within 15 days from delivery
PThe neonatal weight < 2500 g was considered low birth weight [23]
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pregnancy was 10 weeks. During the study, good adher-
ence to the drug strategy was observed in women, and 6
months postpartum rate of viral suppression (<400
HIV-RNA copies/ml) was over 90%.

Infants were exclusively breastfed for 6 months when
all mothers received ART. IgG and IgG isotype levels
were determined in 1, 6 and 24-month old infants. The
results are reported in Fig. 1 and Table 2.

Immunoglobulins maturation in infants

At 1 month the median IgG total level was 8.48 g/l (IQR:
7.57-9.15) and the IgGl isotype level (7.27 g/l, IQR:6.65—
8.18) accounted for almost 90% of the total IgG. IgG2 levels
(median: 0.52 g/l, 6.6% of total IgG) were below 1.0 g/l in all
but one infant. The levels of total IgG were inversely corre-
lated to the maternal CD4+ cell count (r=-0420, p=
0.023); this was true also for the cytophilic isotypes (IgG1:
r=-0429, p=0020; IgG3: r=-0447, p=0.015) (Fig. 2).
No association with maternal viroimmunological parameters
was detected for IgG2 or IgG4. At the following time points
(months 6 and 24) no significant association between mater-
nal CD4 cell count and the HEU infants IgGs levels were
detected. Neither the duration of maternal ART in preg-
nancy nor the infant’s birth weight was associated with the
IgGs maturation process during the study (data not shown).

At 6 months, at the end of the breastfeeding period, a
non significant decline in total IgG (- 2.1g/l, p=0.191),
IgG1l and IgG4 levels (-1.12g/l, p=0.496 and - 0.04,
p =0.100, respectively) was observed in infants. On the
contrary, both IgG2 and IgG3 subclasses significantly in-
creased during the first 6 months of life (IgG2 = + 0.24 g/
, IQR: -0.06 — 046, p=0.027; 1gG3 =+ 0.054, IQR:
0.09-0.34, p = 0.002).

From month 6 to month 24 the total IgG levels signifi-
cantly increased (median increase of +4.03 g/l, IQR:
1.01-7.4, p=0.005). A similar trend was observed for
IgGl (+3.2g/l, IQR; 0.7-5.6, p =0.004). IgG2 showed a
median increase of 0.19 g/l (p = 0.020), while IgG3 levels
remained similar to those found at 6 months and IgG4
showed a non-significant increase (p =0.371). The dy-
namics of IgGs changes are reported in Fig. la. In the
Figure, the values of the present study are compared to
the IgGs values obtained in recent studies on healthy in-
fants of different ethnical origins [19, 21-23]. With re-
spect to the values reported in the literature, HEU
infants in our study at one-month of age had a high level
of IgG and IgG1 and low levels of IgG2. IgG3 and IgG4
levels were within the ranges reported. Although the
longitudinal changes in IgGs seemed to follow the
physiological trend observed in healthy populations, at
24 months the total IgG and IgG1 levels in HEU infants
of our cohort were higher with respect to the reported
values. The ART interruption in mothers with more
than 350 CD4" cell/ul count at 6 months postpartum
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Fig. 1 Longitudinal changes of total IgG, subclasses and IgA and IgM. Red lines ad dots O indicate IgG levels of our cohort of HEU Malawian
infants. Dotted lines indicate reference values from recent studies on healthy infants of Turkish (grey)

[19], Canadian (yellow) = [24], Thai (blue)

did not impact IgGs development in 24 month- old in-
fants (data not shown).

The dynamics of changes in IgG isotype proportions
out of the total IgG level are reported in Fig. 3. It can be
seen that the proportions of the different isotypes did
not change significantly during the course of the study
and that at 24 months of age HEU children still have an
overrepresentation of IgG1 (more than 80%), with IgG2
accounting for less than 8% of the total IgG.

IgM and IgA changes during 24 months
IgM and IgA levels were also longitudinally measured in
HEU infants. Both increased significantly during the

study period (Table 2). In Fig. 1 longitudinal values of
IgM and IgA in HEU infants of our cohort in relation to
IgM and IgA levels observed in healthy infants of differ-
ent ethnical origins [19, 22, 24].

IgG levels in infants infected with HIV during the 24
months

During the SMAC study, only 8 infants acquired HIV in-
fection [20]. In the present study, we could only analyze
the incomplete IgG profiles of 5 of them. Two infants
(Ptl and Pt2) acquired the HIV infection between 3 and
6 months. In both cases, IgG levels at 6 months, during
the acute phase of the infection, were very high (30.5
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Table 2 Characteristics of 30 HIV-exposed uninfected infants at the time points of the study. Values are expressed in median and

interquartile range

Month 1 (n =30)

Month 6 (n =15) Month 24 (n = 30)

Weight (kg) 4.100 (3.500-4.300)
Hb (g/dl) 113 (106-12.1)
IgG (g/d) 848 (7.57-9.15)
IgG1 g/l 7.27 (665-8.18)
% 86.6 (84.1-88.3)
IgG2 g/I 052 (046-0.65)
% 6.65 (5.5-9.03)
IgG3 g/l 024 (0.19-0.35)
% 32(24-39)
IgG4 g/l 006 (0.03-0.13)
% 084 (048-1.38)
IgGA (g/dl) 0.1 (0.08-0.16)
IgM (g/d) 042 (027-0.52)

7.300 (6.405-4.890)
10.0 (9.38-10.63)
6.80 (6.17-7.78)
5.59 (5.56-7.25)
88.5 (86.9-91.9)
0.68 (0.55-0.96)

10.0 96-11.2)
10.2 (9.55-10.93)
123 (10.2-13.8)
10.1 (8.68-11.53)
86.7 (84.0-88.1)
0.87 (068-1.12)

10.0 (9.0-12.3) 7.4 (6.2-9.5)
0463 (0.32-0.52) 0.400 (0.324-0.602)
6.01 (4.5-6.9) 33 (28-49)

0.032 (0.02-0.05)
0.50 (0.29-0.60)
041 (0.32-0.51)
0.75 (047-0.92)

0.061 (0.038-0.09)
0.58 (0.36-0.82)
0.87 (0.63-1.00)
0.86 (0.75-1.12)

and 16.9g/dl in Ptl and Pt2, respectively). Moreover,
they presented an abnormal distribution of subclasses:
IgG1, which in their HEU counterparts represented
about 90% of the total IgG, in these two infants
accounted for 44.6 and 57.1% of the total IgG, respect-
ively (Fig. 4). Abnormalities in the other subclasses were
less evident.

At 24 months samples were available for only 4
HIV+ children. Although under ART, the median
level of total IgG in these children was 21.1 g/l (range:

12.8-28.5), 3 out of 4 had hypergammaglobulinemia
(total IgG over 15g/l), and the isotype distribution
was similar to those observed in HIV-infected adults:
IgG1=18.9¢g/l, range: 12.2-26.6; IgG2=0.97g/l,
range: 0.72-1.24; [gG3=0.72g/l, range: 0.53-1.39;
IgG4 = 0.053 g/1, range: 0.03-0.16.

Discussion
In our cohort, the HIV-exposed uninfected infants were
born with high IgG levels with an over-representation of
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the IgG1 and a low IgG2 concentration. At 2 years of
life, the HEU infants still had high levels of total IgG
and IgG1 and a substantial disproportion in isotype dis-
tribution with respect to reference intervals of same-
aged infants. It has to be noted that, to contextualize our
findings, the evaluation of IgGs maturation in our cohort

was made using reference values from other studies on
infants from different ethnic groups.

The longitudinal changes observed in our cohort in
IgA and IgM, synthesized by the fetus from early intra-
uterine life [28], seem to present development within the
physiological ranges reported by the literature.
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In our study the HEU infants 1-month-old had higher
total IgG and IgG1 levels with respect to reference inter-
vals reported in other studies [19, 24—27]; this finding is
not surprising since the neonatal IgG profile reflects the
maternal IgG levels and distribution. In HIV infection
the decline of T-cell functionality is paralleled by the
hypergammaglobulinemia and the polarization of immu-
noglobulins towards IgGl subclass, indices of B-cells
dysregulation [29, 30]. At the same age, however, 1gG2
isotype in the HEU infants of our cohort was underrep-
resented. This finding can be attributable to the lowest
affinity of IgG2 isotype with FcRn placental receptors
(preferential transport: IgG1 > IgG4 > 1gG3 > IgG2) that
causes a selective and temporary impairment of IgG2
levels also in healthy neonates [2, 31]. The one-month-
old HEU infants of our cohort had a more pronounced
deficit with respect to the reference values. Recently, our
group reported that the IgG2 deficit in HEU infants
could also be attributable to the low levels of circulating
IgG2 in HIV-positive pregnant women, suggesting that
the low affinity with FcRn receptors of placenta together
with maternal low levels could synergically contribute to
the IgG2 deficit in neonates [32].

In the first 6 months of life, we observed a temporary
decline in total IgG levels, associated with the waning of
maternal antibodies, slowly replaced by the HEU infants
IgG own production [33]. However, a different pattern
was observed for the 4 IgG subclasses: while IgG1 levels
showed a decline similar to that of total IgG, IgG2 and
IgG3 isotypes increased, and the levels of IgG4 did not
change significantly. This finding could be correlated to
the role that maternal IgG could have on the neonate’s
immune system maturation [34]. Many studies have in-
deed reported that for several vaccines, such as live at-
tenuated, toxoid and conjugated vaccines, high titers of
maternal acquired IgG inhibit the infant’s humoral im-
mune response after infant vaccination [35]. We
hypothesize that a similar mechanism could also affect
the onset of the infant’s own IgG isotype production.

In our study, neither maternal viroimmunological con-
ditions during pregnancy (CD4 count and ART dur-
ation), nor infant’s birth weight was predictive of HEU
infants’ IgG maturation over time, but we cannot ex-
clude that the small sample size could have affected the
statistical analysis.

The trend we observed in IgGs development during
24 months in the HEU infants of this longitudinal
study was not different from those observed in refer-
ence intervals reported in the literature; however, at
24 months the level of total IgG was almost double to
the reference values, and IgGl was overexpressed
among the subclasses. IgG2 subclass levels at 24
months were slightly lower than the normality range
but their proportion over the total IgG levels
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accounted for 7.4% of total IgG, corresponding to half
of the proportion reported for healthy populations
(12-19%) [19, 24, 25, 27]. The higher IgG3 levels
found in our study with respect to the reference in-
tervals were probably linked to their role in the im-
munological response to malaria, which is endemic in
the area where the study took place [36]. In this view,
it has to be considered that the exposition to endemic
pathogens is considered one of the major force driv-
ing immunological maturation [37]; unfortunately, in
our study, the lack of accurate diagnosis during the
scheduled medical visits prevented us to determine
the real impact of viral, parasitic and bacterial dis-
eases on developing and maturation of immunoglobu-
lin in these children.

Although this study was designed to determine the dy-
namics of immunoglobulins in HEU children, we had
the opportunity to test the IgG levels in infants infected
by HIV during breastfeeding. Two children were in-
fected before the physiological initiation of IgG synthe-
sis, and in both cases, at 6 months we found a significant
hypergammaglobulinemia, with values similar to those
found in HIV+ symptomatic adults [38], and a strong
discrepancy between the total IgG levels and the sum of
subclasses levels. The nephelometric analysis revealed
for both infants that the sum of the subclass measure-
ments accounted for only 41% of the total IgG, with a
partial reduction of IgG1 subclass. The result was con-
firmed in both cases in a repeat test. Although we can-
not rule out a technical problem (i.e. reduced interaction
of IgG1 protein with the IgG1 antiserum), the finding
could indicate a virus interference with the production
of IgG subclasses by B cells in acute infection, determin-
ing an early impairment of the B cell compartment. The
finding in our study could be considered an anecdotal
observation however, this topic could be investigated in
larger cohorts.

The major limitation of this study is the lack of an ap-
propriate control group (i.e. age-matched children from
the same geographical area) which does not allow us to
draw definite conclusions on the levels that we found.
The availability of reference values in Sub-Saharan Afri-
can countries remains a challenge due to many factors,
including organization aspects and lack of laboratory fa-
cilities. We are aware that the use of reference values
from populations of different ethnic origin and exposed
to different environmental factors, can be problematic
[39], but we tried to minimize the problem using refer-
ence data selected from very recent studies, in which
immunoglobulin determinations were performed using
the nephelometric method, which is considered the gold
standard for serum protein detection with a high
standard of inter- and intra- laboratory precision and
reproducibility.
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The low number of subjects included is another limi-
tation of this study, although we determined the intra-
individual variation over time and observed very low
inter-individual variability, that did allow us to be
confident with the validity of our results.

Conclusions

Here we reported the dynamics of IgG development and
maturation in HEU infants, suggesting that their IgG
profile at 24 months may still present anomalies (mainly
represented by hypergammaglobulinemia and low IgG2
levels) probably as a consequence of the early-life expos-
ure to maternal HIV-related immune alterations.

In our study, performed before the adoption of the
Option B+ strategy, we found a significant association
between a low maternal CD4+ cell count and the levels
of IgG in neonates, confirming the impact that compro-
mised viro-immunological maternal conditions could
have on the transplacental passage of IgG in neonates [2,
14, 40]. The women of this study received only a median
of 10 weeks of ART during pregnancy, a duration that
was inadequate to restore the HIV-related maternal im-
munological dysfunctions which can deeply impact neo-
nates’ health. Future studies will determine if these
anomalies in infants may be corrected by the adoption
of the current strategy of universal and life-long anti-
retroviral therapy administration.
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