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Abstract

The spreading and accumulation of a-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson’s
disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of (3-sitosterol (3-D-
glucoside (BSSG). We investigated whether a single injection of BSSG (6 ug BSSG/uL DMSO) in the left substantia
nigra of Wistar rats causes the same effects. Mock DMSQO injections and untreated rats formed control groups. We
performed immunostainings against the pathological a-synuclein, the dopaminergic marker tyrosine hydroxylase
(TH), the neuroskeleton marker -1l tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic
phenotype marker and Fluro-Jade C (F-J Q) label for neurodegeneration. Using (3-galactosidase (3-Gal) assay and
active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the
density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also
evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused
a progressive a-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis.
The a-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers
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and dendritic spines also occurred in the striatum. Remarkably, all the histopathological changes also appeared on
the contralateral nigrostriatal system, and a-synuclein aggregates were present in other brain regions. Motor and
non-motor behavioral alterations were progressive. Our data show that the stereotaxic BSSG administration
reproduces PD a-synucleinopathy phenotype in the rat. This approach will aid in identifying the spread mechanism
of a-synuclein pathology and validate anti-synucleinopathy therapies.

Keywords: Lewy body-like synuclein aggregations, Parkinson'’s disease, BSSG, Sensorimotor alterations, Bilateral

Introduction

a-Synucleinopathies are neurodegenerative diseases
characterized by misfolded a-synuclein aggregates,
which are the major component of Lewy bodies in neu-
rons and Lewy neurites in neuronal terminals [55, 69,
82]. Of the three main types of a-synucleinopathy, Par-
kinson’s disease (PD) is the most common and pure o-
synucleinopathy phenotype [29]. Human genetic evi-
dence suggests that altered a-synuclein can cause the
death not only of dopaminergic neurons but also of
other neuronal groups in the brain. Thus, mutations in
the a-synuclein gene (SNCA), resulting in A53T, A30P,
E46K, G51D, and H50Q), are known to cause familial PD
[21, 82]. SNCA duplications also cause PD a-
synucleinopathy by increasing normal a-synuclein levels
in the midbrain [41]. Besides, epidemiological studies
have associated different polymorphisms around the
SNCA with the lifetime risk of sporadic PD [47, 52],
possibly by increasing native a-synuclein levels.

In PD, the progression of pathological a-synuclein
spreading in a prion-like manner [19, 81], schematized
by the Braak stages [8], correlates with the appearance
of signs and symptoms [57] and presents a major obs-
tacle to current therapy [81]. In the prodromal phase,
before any motor symptoms, pathological a-synuclein
inclusions appear in olfactory and lower brainstem neu-
rons, from where they spread to the midbrain and sub-
cortical nuclei at the motor alteration stage. Finally,
those aggregates seed a-synuclein pathology in limbic
and neocortical regions, giving rise to cognitive impair-
ments [8]. The mechanisms by which a-synuclein acts as
a neurotoxic agent and spreads to the brain in PD re-
main, however, unknown. Nevertheless, human genetic
data strongly support the a-synuclein toxicity hypothesis
[11], calling for the development of simpler animal
models suitable to identify a-synuclein spread mecha-
nisms and validate new therapies.

Transgenic mice reproduce the a-synucleinopathy of
human familial PD with variable results (reviewed in
[30]). For instance, transgenic mice overexpressing o-
synuclein rarely show dopaminergic neuron loss [53]
and progressive motor impairment [26], indicating that
high a-synuclein levels are not toxic in mice. The SNCA

mutation A53T reproduced in mice most features of fa-
milial PD, including «-synuclein aggregates in different
brain nuclei, although the motor impairments appeared
only at old age [26]. In contrast, double transgenic mice
bearing A30P and A53T mutations reproduced several
phenotypes of PD with early-onset [39] as in PD patients
[88].

Similarly, viral transduction of nigral cells has aimed
to evaluate the effect of either wild type SNCA or the
A30P and A53T mutations expression. Again, the results
are variable and confounded by the use of different tran-
scriptional promoters and viral vectors [30]. The major-
ity of the studies show a correlation between the
presence of a-synuclein aggregates and nigral cell loss
[15, 40, 42, 45]. Unfortunately, a-synuclein aggregates
have not been evaluated in other brain regions in these
models, which have also not been fully characterized
concerning the motor and non-motor behaviors [15, 40,
42, 45].

Studies in non-transgenic rodents have demonstrated
that a single intrastriatal injection of a-synuclein pre-
formed fibrils (PFF) can generate PD a-synucleinopathy
and its intracerebral spread, but with some differences
depending on the phylogenetic genus. In mice, the
pathological a-synuclein aggregates spread only to brain
areas that innervate the striatum of the ipsilateral side to
the injection [46]. The maximum loss of dopaminergic
neurons is 35% at day 180 post-injection, sufficient to
cause motor deficits [46]. In rats, a-synuclein pathology
is bilateral in the striatum and cortical regions at day
180 post-injection but does not affect the contralateral
substantia nigra [56]. An early appearance of o-
synuclein aggregates and dopaminergic neurodegenera-
tion in rats has been achieved by the combination of hu-
man PFF injection with adeno-associated virus-mediated
delivery of human «-synuclein into the substantia nigra
and ventral tegmental area (VTA) [74]. It should be of
interest to evaluate the impact of dopaminergic neurode-
generation on the motor and non-motor behavior in this
model [74].

Exposure to environmental toxins, as a cause of spor-
adic PD, has gained considerable interest, since this form
of the disease is more frequent than the genetic types
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[54]. Toxins found in the flour of washed seeds from the
plant Cycad, which have been linked to the amyotrophic
lateral sclerosis/parkinsonism dementia complex (ALS/
PDC) in the Chamorro population of Guam island, are a
classic example [12, 43]. Histopathological and behav-
ioral impairments of ALS-PDC have been recapitulated
in adult mice fed daily with washed Cycad flour for 30
days [85]. In Sprague-Dawley rats, the feeding with
Cycad flour for at least 16 weeks triggers the loss of ni-
gral dopaminergic neurons, motor deficits, and «o-
synuclein aggregates in the substantia nigra pars com-
pacta (SNpc) dopaminergic neurons and striatum [65].
Interestingly, no loss of motor neurons in the spinal
cord was found, as occurs in mice [72]. A faithful model
for PD was developed in Sprague-Dawley rats chronic-
ally fed with pellets supplemented with p-sitosterol D-
glucoside (BSSG), a neurotoxin isolated from Cycad [77,
78]. The chronic oral administration of BSSG (3 mg/day/
5 times a week for 16 weeks) replicates the time-course
and order of appearance of olfactory deficits, motor im-
pairment, and cognitive dysfunction. Also, the chronic
administration replicates the sequence in which patho-
logical a-synuclein appears in several brain nuclei, ac-
cording to the Braak stages of PD [78]. Recently, we
showed that a single intranigral administration of BSSG
reproduces most of the features of oral administration in
less time [68]. The key findings relevant for PD were the
progression of motor and non-motor alterations and the
loss of dopaminergic neurons, as well as the bilateral
presence of Lewy body-like synuclein aggregates in the
SNpc [68]. Herein, we aim at demonstrating that a single
administration of BSSG (6 pg/pL. DMSO) in the left
SNpc causes the spread of a-synucleinopathy and bilat-
eral neurodegeneration of the nigrostriatal dopaminergic
system [68]. We showed pathological a-synuclein aggre-
gates in different brain nuclei by immunohistochemistry.
The presynaptic effects were evaluated on markers of
dopaminergic neurodegeneration and the mechanism of
cell death in the SNpc, using immunodetection assays
and biochemical staining, respectively. Furthermore, the
postsynaptic effect was evaluated on the spine density of
striatal medium spiny neurons (MSN) using Golgi-Cox
staining. Also, glial cells were detected by immunostain-
ing techniques. Likewise, we evaluated behavioral sen-
sorimotor alterations. All assays were performed from
15 to 120days after the injury. Our results show that
BSSG promotes the appearance and spreading of patho-
logical a-synuclein aggregates, which were the primary
cause of the death of dopaminergic neurons by inducing
apoptosis and possibly senescence. The resulting pre-
synaptic and postsynaptic neurodegeneration of the
nigrostriatal system elicited the parkinsonism motor def-
icit. Besides, our results suggest that the prion-like
spreading of pathological a-synuclein aggregates could
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promote neurodegeneration in other brain nuclei. These
features agree with the PD a-synucleinopathy phenotype,
thus making the stereotaxic BSSG model attractive for
the identification of a-synucleinopathy spread mecha-
nisms, and the validation of new therapies for PD and
other synucleinopathies.

Material and methods

Animals

The Institutional Committee for the Care and Use of La-
boratory Animals of the Center for Research and Ad-
vanced Studies (Cinvestav) approved our experimental
protocol #162—15 based on the Official Mexican Regula-
tion NOM-062-ZO0-1999. Male Wistar rats with body-
weight between 210 and 230 g were obtained from the
Unit of Animal Production and Experimentation at Cin-
vestav. Animals were kept under inverted light-dark 12
hcycles, 22 +2°C and 60 + 5% humidity, with access to
food and water ad libitum. Animals were randomly
assigned to the BSSG group (1 =48), with a stereotaxic
infusion of 6 pg BSSG /1 pL of DMSO [68]; the mock
group (stereotaxic injection of 1 puL of DMSO; n = 48);
and the untreated (UT) group (no surgery, nor treat-
ment; n =48). Six rats of each experimental group were
evaluated with two independent immunostaining
methods (n =3 rats per each procedure per group) and
six rats with Golgi-Cox staining (n =6 rats per group).
These assays were performed at days 15, 30, 60, and 120
after the lesion (n =12 rats for immunostaining and 24
rats for Golgi-Cox straining, per every time). Eight rats
of each time point were evaluated with seven independ-
ent behavioral tests (n = 8 rats per group and time). The
number of animals was 144, which was a minimum by
the experimental design in compliance with the Guide
for the Care and Use of Laboratory Animals (The Na-
tional Academies Collection: Reports funded by National
Institutes of Health, 2011). No animal deaths occurred
during the study (Online Resource 1).

Stereotaxic BSSG administration

Rats were submitted to general anesthesia with a mix-
ture of 10 mg/kg xylazine and 100 mg/kg ketamine via
intraperitoneal (i.p.) and placed on a stereotaxic appar-
atus (Stoelting; Wood Dale, IL, USA). A trepan was
made to infuse 6 pg of BSSG (MedChemExpress; Mon-
mouth Junction, NJ, USA) dissolved in 1puL of DMSO
(Sigma- Aldrich; St. Louis, MO, USA) or only DMSO,
through a blunt 20-gauge dental needle in the left SNpc.
The coordinates were, AP, +2.1 mm from interaural
midpoint; ML, + 2.0 mm from interparietal suture; DV,
- 6.8 mm from dura mater [68]. The infusion was made
by a microperfusion pump (Stoelting; Wood Dale, IL,
USA) at 0.15 uL/min. The wound was sutured with silk
00 and treated with a mixture of oxytetracycline and
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arrowheads indicate colocalization of a-synuclein aggregation with Thioflavin T

Fig. 1 A single unilateral intranigral BSSG administration triggers progressive bilateral a-synuclein aggregates in the SNpc. a Representative micrographs of a-
synuclein immunostaining. The scale bar = 50 um is common for all micrographs. b Graph showing a-synuclein (+) area density of panel a. The values stand for
the mean + SEM. calculated from the measurements in three anatomical levels. n = 3 independent rats per each time in the BSSG group. The dashed lines
correspond to the mock group (black square; n =6 independent rats) and UT group (white circle; n =6 independent rats). O, significant when BSSG group
compared with the control groups. Two-way ANOVA, Bonferroni post-test. p < 0.05. ¢ Amplifications showing a-synuclein aggregation pattemns with diffuse (red
arrow), and condensed (blue arrow) structures revealed by Nissl counterstaining, d dot-like structures and e Lewy neurites-like structures. The scale bar =15 um
is common for all micrographs. f, g Double immunofluorescence against a-synuclein (blue) and TH (red) with Thioflavin-T counterstaining (green).
Representative orthogonal projections from a 1-um z-confocal optical section are the top left and bottom right panels. The top right panels are the integrated
image, and the bottom left panels are a horizontal optical Z-section. f White arrowheads show a-synuclein aggregation within dopaminergic neurons. g Yellow

polymyxin B (Pfizer; Toluca,

infections.

Mexico) to prevent

Behavioral tests

All behavioral tests were performed from 10:00 to 14:00
h. Rats were transferred to the experimental room in
cages protected from light, at least 1 h before the test to
allow animals acclimatization. The surfaces and devices
were cleaned with 30% ethanol, and the water for the
swim cylinder was changed after each evaluation to
avoid the influence of odors, substances, and
temperature changes.

The vibrissae evoked forelimb placing test serves to
discriminate sensorimotor asymmetry in the striatum
[86]. The vibrissae were rubbed against the edge of a
table to generate a forelimb response (placing the rat
paw on the tabletop). Healthy animals quickly place their
forelimbs on the tabletop after vibrissae stimulation [61,
68]. Ten successful forelimb placements contralateral
and ipsilateral to the lesion were analyzed.

The beam walking test assesses imbalance, postural in-
stability, and motor discoordination when rats transverse
a narrow beam (1cm wide and 2m length at a 30°
angle). The alterations were appraised as the number of
claudications (errors or slips per step of the hind legs)
and slowness to walk across the beam. The test was exe-
cuted as previously reported [28, 68].

The cylinder test is used to evaluate locomotor asym-
metry [68, 87]. Rats were placed in a transparent acrylic
cylinder and video recorded. The first 20 paw contacts
(ipsilateral or contralateral to the lesion or both, when
the paws were used simultaneously) made by the rats
over the cylinder wall were quantified. The percentage
of asymmetry was expressed as the number of contacts
with the ipsilateral forelimb + 1/2 of simultaneous con-
tacts, divided by the total number of contacts [ipsilateral
+ contralateral + simultaneous), and multiplying the
quotient by 100 [68, 87].

The open-field test evaluates locomotor activity during
exploration when rats are exposed to a new environment
[64]. In the present study, the rats were placed on a large
square box of 60 cm width and 50 cm height per wall,
where the locomotor activity was measured by an

automated system (Videomex-V; Columbus Instruments;
Columbus, OH, USA). The distance traveled (in centi-
meters) was registered for 9 min [32, 68].

The depressive-like behavior was evaluated through
the forced swim test. For this test, rats are exposed to
water until they acquire an immobility behavior, which
reflects a failure to deal with active forms of stress cop-
ing [66, 68]. The immobility time (seconds) was
registered.

The asymmetry olfactory (hyposmia) was assessed by
the corridor test, as reported previously [7, 68]. Rats
were acclimatized in the habituation compartment to
minimize exploratory behavior. Afterward, the animals
were assigned to the test compartment, where chocolate
pellets were placed at a distance of 11 cm each, on both
sides of the corridor floor. The test was completed when
the rats made a total of 20 touches with the tip of their
nose over pellets or after a maximum test time of 5 min.
The percentage of asymmetric olfactory responses was
evaluated by the number of contralateral touches divided
by the number of contralateral + ipsilateral touches, and
the quotient multiplied by 100 [68].

The alteration of working and episodic memory was
assessed by the novel object recognition (NOR) test [24].
This behavioral test consists of three phases: habituation,
familiarization, and evaluation. In the habituation phase,
the rat is allowed freely to explore the open-field arena
with no objects. In the familiarization phase, the rat ex-
plores the same arena containing two identical sample
objects (A + A) for 5min. In the evaluation phase, the
animal was returned to the open field with two objects,
one was identical to the sample, and the other was novel
(A + B). The evaluation is carried out after a retention
inter-trial interval (ITI) of 1h to assess the working
memory and 24h to determine the episodic memory.
Healthy rats spend more time exploring the novel object
during the test phase [18].

Immunostaining

Immunostaining techniques were performed according
to the standard procedure described elsewhere [31, 68].
Rats were deeply anesthetized with pentobarbital (50
mg/kg of body weight, ip.) and euthanized by
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Bonferroni post-test. p < 0.05

Fig. 2 A single unilateral intranigral BSSG administration triggers progressive and bilateral pathological a-synuclein aggregates in the M1-cortex
and DL-striatum. a Representative micrographs of pathological a-synuclein immunostaining in the injured side at the time displayed at the left in
every row, evidencing cytoplasmic (black arrowhead) and dendritic (blue arrowhead) aggregation. The scale bar= 15 um is common for all
micrographs. b Schematic representation of coronal slices at three different levels showing the distribution of pathological a-synuclein over time.
¢ Graphs showing the a-synuclein (+) area density on the injured and control sides of the M1-cortex and DL-striatum according to classification
in Paxinos and Watson Atlas, 1998. The values are the mean = S.E.M. calculated from the measurements in three anatomical levels. n=3
independent rats per each time in the BSSG group. The dashed lines correspond to the mock group (black square; n =6 independent rats) and
UT group (white circle; n = 6 independent rats). ®%, significant when BSSG group compared with the control groups. Two-way ANOVA,

transcardial perfusion of 4% paraformaldehyde in
phosphate-buffered saline solution (PBS). Their brains
were removed and post-fixed in 4% paraformaldehyde
for 24 h followed by cryoprotection in 30% sucrose. Sec-
tions of 20 um (mesencephalon) or 30 um (striatum)
thickness were cut on a sliding microtome (Jung Histo-
slide 2000R; Leica, Heidelberg, Germany). The slices
were distributed consecutively in 6 wells containing tis-
sue collecting solution (TCS; 0.2M phosphate buffer,
ethylene glycol, and glycerol) at — 20 °C, reaching a total
of 12-15 serial slices per well.

Slices were permeabilized by incubation in PBS/0.3%
Triton X-100 (PBS/Triton), 3 times for 5 min each, and
non-specific binding sites were blocked with 10% horse
serum (Invitrogen; Carlsbad, CA, USA) in PBS/Triton
for 1h at room temperature (RT). Endogenous peroxi-
dases were eliminated by incubating the slices with 3%
hydrogen peroxide in PBS/Triton and 10% methanol at
RT for 10 min. The primary antibodies used for the im-
munohistochemistry were mouse monoclonal anti-LB-
509 a-synuclein (1:500; Abcam; Cambridge, MA, USA),
mouse monoclonal anti-TH (1: 1000; Sigma-Aldrich; St.
Louis, MO, USA), rabbit polyclonal anti-glial fibrillary
acidic protein (GFAP) as an astrocytic marker (1: 500;
DakoCytomation; Glostrup, Denmark), and chicken
polyclonal anti-ionized calcium-binding adapter mol-
ecule 1 (Ibal) as a microglial marker (1:1000; Abcam;
Cambridge, UK). All primary antibodies were incubated
at 4°C overnight. In the case of the anti-LB-509 a-
synuclein antibody, a prior incubation with 80% formic
acid for 20 min was done to evidence pathological aggre-
gates of a-synuclein [4]. The secondary antibodies used
in these assays were biotinylated horse anti-mouse IgG
(1: 300; Vector Laboratories; Burlingame, CA, USA),
horseradish peroxidase (HRP) donkey anti-rabbit IgG (1:
500; Zymed; Cambridge, MA, USA), or donkey anti-
chicken IgG (1:500; Jackson ImmunoResearch; Palo Alto,
CA, USA). Secondary antibodies were incubated for 1 h
at RT. Immunohistochemical staining was developed
using the ABC Kit (1,10; Vector Laboratories; Burlin-
game, CA, USA) and 3'3-diaminobenzidine (DAB;
Sigma-Aldrich; St. Louis, MO, USA). Some tissues were
counterstained with cresyl violet (Sigma-Aldrich; St.
Louis, MO, USA) to delimit the mesencephalic nuclei.

Cellular ~ senescence was assessed using f-
Galactosidase staining before the immunohistochemis-
try, as reported elsewhere [16]. Briefly, tissues were
washed in PBS and incubated at 37 °C overnight with X-
Gal working solution, consisting of a 1:40 dilution of the
X-Gal stock solution (5mM potassium ferrocyanide
crystalline, 5 mM potassium ferricyanide trihydrate, and
2 mM magnesium chloride dissolved in PBS) in X-Gal
dilution buffer (4% SA-B-Gal dissolved in dimethylfor-
mamide; Sigma-Aldrich; St. Louis, MO, USA). The brain
slices were washed 3 times for 5min in PBS and
mounted on slides using Entellan resin (Merck, KGaA;
Darmstadt, Germany), and observed with a light Leica
DMIRE2 microscope equipped with 5x, 20x, 40x, and
63x (oil immersion) objectives (Leica Microsystems;
Nussloch, Germany).

The area density for immunohistochemical staining of
pathological a-synuclein aggregates was measured by
Image] software v.1.46r (The National Institutes of
Health; Bethesda, MD) in the injured and control sides
of the SNpc, striatum, and cortex. The measurement
was made on images taken with a 40x objective of the
central zone of the SNpc, dorsolateral striatum (DL- stri-
atum), and in the primary motor cortex (M1) in three
anatomic levels (one caudal, one medial, and one rostral)
of each nucleus per rat (n =3 independent rats per
group and time). A similar procedure was followed to
measure the area density of p-Gal staining in the SNpc.
The mean value calculated from the quantification in
the three levels per nucleus and per rat was the final
measurement.

For the double immunofluorescence assays, the pri-
mary antibodies used were rabbit polyclonal anti-B-III
tubulin (1:300; Sigma-Aldrich; St. Louis, MO, USA),
rabbit polyclonal anti-cleaved-caspase-3-Asp 175 (1:300;
Cell Signaling; Danvers, MA, USA), polyclonal goat anti-
NTSR1 (1:50; Santa Cruz Biotechnology Inc.; Dallas TX,
USA), and mouse monoclonal anti-TH (1:1000; Sigma-
Aldrich; St. Louis, MO, USA). We used as the corre-
sponding secondary antibodies Alexa Fluor 488 chicken
anti-rabbit H+L IgG (1: 300; Invitrogen Molecular
Probes; Eugene, Oregon, USA), Alexa Fluor 488 chicken
anti-goat H+L IgG (1: 300; Invitrogen Molecular
Probes; Eugene, Oregon, USA) and Texas Red horse
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Fig. 3 Unilateral intranigral administration of BSSG decreases TH (+) cells and their branches in midbrain nuclei. a Representative micrographs of
TH immunohistochemical staining of mesencephalon slices. Times are displayed at the left margin in every row. The scale bars equal 1 mm for
the panoramic views and 100 um for the 20X zooms. b Graphs showing TH (+) cell counting in the injured SNpc, VTA, and control SNpc. ¢ The
area density of TH (+) arborization was measured in the injured and control SNPr. The values are the mean + SEM. from three anatomical levels.
n =3 independent rats per time point in the BSSG group. The dashed lines correspond to the mock group (black squares; n =6 independent rats)
and the UT group (white circles; n =6 independent rats). *, significant when compared with the control groups. When compared with the BSSG
effect over time, the significance is marked with & vs. 60 and Q) vs. 120 days after the lesion. Two-way ANOVA, Bonferroni post-test. p < 0.05
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and = 20 um for the magnified images

Fig. 5 Unilateral intranigral administration of BSSG causes bilateral loss of neuronal cytoskeleton immunoreactivity. a Representative merged
micrographs of double immunostaining against 3-lll tubulin (green) and TH (red) at the time displayed at the left margin in every row. b The
graphs represent the IFAD for B-lll tubulin and TH in the conditions of the panel a. The bars stand for the mean + S.EM. calculated from the
measurements in three anatomical levels. n = 3 independent rats per time point in the BSSG group; n =6 for Mock and UT groups. $, UT group
compared with the mock group. *, ®, BSSG group compared with the control groups. When compared with the BSSG effect over time, Q vs. 120
days after the lesion. Two-way ANOVA, Bonferroni post-test. p < 0.05. Representative micrographs of cytoskeleton details in the SNpc of ¢ mock
condition and d injured condition at days 30 and e 120 after the BSSG injection. The scale bar =50 pm is common for all micrographs in panel a

anti-mouse H+L IgG (1: 900; Vector Laboratories;
Burlingame, CA, USA). For negative controls, immuno-
staining was performed in the absence of the primary
antibody and replacing it by the same IgG subclass.
Some slices were incubated with Hoechst (Sigma- Al-
drich; St. Louis, MO, USA) to stain cell nuclei. After
washing with PBS, the slices were mounted on glass
slides using VECTASHIELD (Vector Laboratories;
Burlingame, CA, USA).

The B-sheet conformation of a-synuclein was detected
in TH-immunolabeled slices counterstained with 0.05%
Thioflavin T in 60% ethanol (Sigma- Aldrich; St. Louis,
MO, USA) for 8 min, followed by 5 washes with 70%
ethanol and MilliQ water as described elsewhere [89].
Some TH-immunolabeled slices were counterstained
with a 0.0001% Fluoro Jade-C (F-J C) solution (Sigma-
Aldrich; St. Louis, MO, USA) for 10 min to show neuro-
degeneration, as described previously [63].

An SP8 confocal microscope (Leica TCS SPE; Heidel-
berg, Germany) was used to analyze the double im-
munofluorescence at excitation-emission wavelengths of
358-461 nm (Hoechst), 488—-522 nm (Alexa 488), and
568-635nm (Texas Red). Serial 1-um optical sections
were also obtained in the Z-series (scanning rate of 600
Hz). LAS AF software (Leica Application Suite; Leica
Microsystems; Nussloch, Germany) was used to process
the images. The immunofluorescence area density
(IFAD) for the double fluorescence assays was measured
by Image] software v.1.46r (The National Institutes of
Health; Bethesda, MD) in the injured and control sides
of three anatomic levels along the SNpc per rat (n =3
independent rats per group and time). The mean value
calculated from the quantification in the three levels per
nucleus and per rat was the final measurement.

Densitometry and neuron counting

The mean intensity of TH (+) branches was measured in
the injured and control sides in six anatomic levels along
the substantia nigra pars reticulata (SNpr) and the stri-
atum per rat. Background intensity was excluded from
the immunohistochemically stained area. TH (+) neu-
rons were counted in 8 slices of the SNpc (2 caudal, 4
medial and 2 rostral) per rat, as described previously [31,
68]. The total number of rats was three per every time

point for the BSSG group, and six for the UT and mock
groups; the rats of the latter group belonged to days 15
and 120 after the DMSO injection since there was no
statistically significant difference when compared with
the UT group. The immunohistochemical staining was
analyzed with a Leica DMIRE2 microscope using the ob-
jectives 20x (SNpc) and 5x (striatum). Images were
digitized with a DC300F camera (Leica; Nussloch,
Germany). Image] software v.1.46r was used to measure
the total area density of a-synuclein aggregates and TH
(+) fibers in the SNpc, and optical density in the stri-
atum. Fiji, an Image ] complement, was used for color
decomposition from the double staining of B-Gal stain-
ing with TH, GFAP, or Ibal immunohistochemistry.

Golgi-Cox staining

Rats were deeply anesthetized using sodium pentobar-
bital (75 mg/kg, i.p.) to perform euthanasia and perfused
intracardially (0.9% saline solution). Brains were col-
lected and stained by the modified Golgi-Cox method
described previously [9, 23]. After storing in the dark for
14 days in the Golgi-Cox solution, and another three
more days in 30% sucrose (wt/vol), brains were sec-
tioned into 200-um thick slides using a vibratome
(Campden Instrument, MA752; Leicester, UK). Coronal
sections were collected on clean gelatin-coated micro-
scope slides. Staining was developed by using ammo-
nium hydroxide for 30 min, followed by 30 min in Kodak
Film Fixer. After washing and dehydrating, slices were
cleared in successive baths of 50% (1 min), 70% (1 min),
95% (1 min), and 100% (5 min) alcohol, and in a xylene
solution for 15 min. Then, slices were mounted in glass
coverslips using a balsam resinous medium [27].

Dendritic spines number and spine morphology analysis

MSNs from the dorsal striatum (Bregma, 1.7 mm to 0.2
mm, plates 11-17 of Paxinos and Watson Atlas, 1998)
were identified through their soma size, dendritic exten-
sions, and numerous dendritic spines, by a trained ob-
server who was blind to the experimental conditions. A
total of 240 neurons were analyzed; five neurons per
hemisphere (injured and control sides) for each time in
the three groups (n = 4-6 independent rats per group).
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Fig. 6 Unilateral intranigral administration of BSSG triggers bilateral loss of NTSRT immunoreactivity. a Representative merged micrographs of double
immunostaining against NTSR1 (green) and TH (red) at the time displayed at the left margin in every row. b Graphs showing IFAD of NTSR1 and TH in
the conditions of the panel a. The bars stand for the mean + SEM. calculated from the measurements in three anatomical levels. n = 3 independent
rats per time point in the BSSG group; n =6 for Mock and UT groups. *, BSSG group compared with the control groups. When compared with the
BSSG effect over time, & vs. 60 and Q vs. 120 days after the lesion. Two-way ANOVA, Bonferroni post-test. p < 0.05. Representative micrographs of
NTSR1-immunoreactivity details in the SNpc of the ¢ mock condition and d injured condition at days 30 and e 120 after the BSSG injection. The scale
bar =50 um is common for all micrographs in panel a and = 20 um for the magnified images

Dendritic spine density was quantified in each neuron
along a 30-um segment of distal dendrites at 1000x mag-
nification and expressed as the number of spines/10 um
(DMLS Leica Microscope) [23]. The different spine
shapes were counted in the same dendritic segments but
at 2000x magnification. One hundred spines were classi-
fied according to the shape of their head and neck into
five groups: mushroom (prominent and much higher
diameter of head than the diameter of a well-identified
neck), thin (the spine length longer than the neck diam-
eter, and the diameters of the head and neck similar),
stubby (wide spines with the neck diameter identical to
the total length of the spine), bifurcated/branched
(spines with two heads), multi-headed (spines with three
or more heads) and unclassified spines (inconsistent
with any of the previous criteria, less than 1%) [5, 73].

Statistical analysis

Data were presented as the mean value + the standard
error of the mean (S.E.M.). Statistical analyses were per-
formed with SigmaPlot 12.0. Intergroup differences were
evaluated by bidirectional analysis of variance (2-way
ANOVA), followed by Bonferroni post-hoc comparisons.
For correlation analysis, Pearson’s correlation coefficient
and subsequent linear regression were determined. Stat-
istical difference was considered at p < 0.05.

Results

Unilateral intranigral BSSG administration triggers
progressive aggregation and intracerebral spreading of
pathological a-synuclein

BSSG caused a progressive and significant increase in
pathological a-synuclein immunoreactivity in the SNpc
of both sides, as compared with the mock group (Fig. 1a,
b). The difference was significant (p < 0.05) from day 15
to 120 after the lesion in the injured SNpc, and from day
30 to 120 in the control SNpc (p<0.01). The a-
synuclein immunoreactivity showed different aggrega-
tion patterns [82], including diffuse and condensed
staining (Lewy body-like aggregates; Fig. 1c), dot-like
structures (Lewy dots; Fig. 1d), and thread-like struc-
tures (Lewy neurites; Fig. 1e). In the last two time points
of the study, we identified TH (+) cells containing a-
synuclein immunoreactivity without Thioflavin-T stain-
ing (Fig. 1f), suggesting the presence of soluble a-

synuclein in dopaminergic neurons. Also, TH (-) cells
with a-synuclein immunoreactivity and Thioflavin-T
staining (Fig. 1g), suggested the presence of insoluble a-
synuclein aggregates in degenerated neurons or other
neuronal types.

Besides, a progressive, bilateral and significant increase
in the number of pathological a-synuclein aggregates
was detected in the Ml-cortex (p<0.01) and DL-
striatum (p <0.001) (Fig. 2a-c), showing a similar time
course to that in the SNpc. Intracellular aggregates of a-
synuclein were observed in the striatum, whereas Lewy-
neurite-like structures and intracellular aggregates were
both observed in the M1-cortex (Fig. 2a,b). At the end
of the study (120days post-lesion), pathological «o-
synuclein aggregates were present in other midbrain nu-
clei (Online Resource 2) and other brain regions (On-
line Resource 3), suggesting propagation of pathological
a-synuclein (Fig. 2ab). No similar phenotypes were
present in the mock group.

In the SNpc, the a-synuclein immunoreactivity was also
observed within the microglia cells, in close proximity to
neuronal cytoplasmic a-synuclein immunoreactivity (On-
line Resource 4a), but not within activated astrocytes,
which instead seemed surrounded by a-synuclein aggre-
gates (Online Resource 4b).

Unilateral BSSG administration causes a progressive and
bilateral decrease of dopaminergic phenotype in the
nigrostriatal pathway

BSSG significantly decreased the number of TH (+) cells
in the SNpc of both sides (p < 0.001 for injured side, and
p<0.01 for the control one) and in the VTA (p <0.05)
from day 15 post-lesion, in comparison with the mock
group (Fig. 3a,b). There was no statistical difference be-
tween the UT and the mock groups, although in the lat-
ter occurred a 10% decrease of TH (+) cells in the
injured side (Fig. 3b). The maximum loss of TH (+) cells
caused by BSSG was 71% (p<0.001) in the injured
SNpc, 55% (p <0.001) in control SNpc, and 45% (p <
0.001) in the VTA, as compared with the mock group
(Fig. 3b). The density of TH (+) fibers measured in the
SNpr reached a maximum and significant decrease of
44% from day 30 on the injured side (p <0.001), and
40% in the control side from day 60 (p <0.001), as com-
pared with the mock group (Fig. 3c).
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bottom left panels are a horizontal optical Z-sections

Fig. 7 Unilateral intranigral administration of BSSG induces bilateral degeneration of the SNpc neurons. a Representative merged micrographs of slices
stained with F-J C (green) and TH immunofluorescence (red) at the time displayed at the left margin in every row. The scale bar = 50 ym is common
to all micrographs. b Graphs showing IFAD of F-J C and TH in the conditions of the panel a. The bars stand for the mean + SEM. calculated from the
measurements in three anatomical levels. n = 3 independent rats per time point in the BSSG group; n =6 for Mock and UT groups. *, BSSG group
compared with the control groups. When compared with the BSSG effect over time, & vs. 60 and Q vs. 120 days after the lesion. Two-way ANOVA,
Bonferroni post-test. p < 0.05. Analysis of confocal micrographs taken ¢ at days 30 and d 120 after the BSSG administration. The top left and bottom
right panels correspond to the orthogonal projections from 1 um z-confocal optical sections. The right top panels are the integrated images, and the

BSSG also decreased the TH (+) area density in the
striatum of both sides (Fig. 4a-d). Statistical significance
was reached from day 15 on both sides (p < 0.001), when
compared to the mock group (Fig. 4b,d). The maximum
decrease in TH (+) density was 61% in the injured side
and 57% in the control side of the striatum, as compared
to the mock group (Fig. 4b,d). There was no statistical
difference between the UT and the mock groups, which
showed a 7% maximum decrease in the TH (+) area
density only in the injured side.

Unilateral BSSG administration causes a progressive and
bilateral decrease of non-dopaminergic markers in the
SNpc

BSSG progressively decreased the immunoreactivity of
B-III tubulin, a neuronal cytoskeleton marker, in both
the injured and control SNpc, with statistical significance
from day 30 (p <0.05), using the mock group as a con-
trol (Fig. 5a,b). As compared with the mock condition
(Fig. 5a,c), profound disorganization of the neuronal
cytoskeleton was observed from day 30 post-lesion (Fig.
5a,d) until the end of the study (Fig. 5a,e). The signifi-
cant decrease in TH (+) IFAD (p <0.001; Fig. 5b) was
consistent with the loss of TH (+) cells and ramifications
measured by immunohistochemistry (Fig. 3a-c).

The double immunofluorescence analysis with TH and
NTSR1 vyielded similar results, except that the statistical
significance occurred from day 15 after the lesion in the
SNpc of both sides (p < 0.001 for injured side, and p <
0.05 for contralateral side), as compared with the mock
group (Fig. 6a,b). A pronounced decline in NTSR1 im-
munoreactivity was observed from day 30 post-lesion
(Fig. 6a,d) until the end of the study (Fig. 6a,e), in com-
parison with the mock condition (Fig. 6a,c).

Unilateral BSSG administration causes bilateral
neurodegeneration, senescence, and apoptosis in the
SNpc

In the untreated and mock groups, the staining of F-J C,
a neurodegeneration marker [63], was absent, and only
TH (+) cells and ramifications were visible in the SNpc
of both sides (Fig. 7a). In contrast, a bilateral increment
of F-J C (+) IFAD occurred along with a decrease in TH
(+) IFAD after intranigral BSSG administration (Fig. 7b).

Colocalization of F-J] C with TH fluorescence was ob-
served on day 30 after the lesion on the injured side
(Fig. 7a,c), whereas F-J C staining predominated on day
120 (Fig. 7a,d). F-J C and TH colocalization prevailed in
the contralateral side up to the end of the study (Fig.
7a). In comparison with the mock group, the statistical
difference was significant from day 15 in TH of both
sides (p < 0.001 for injured side, and p < 0.05 for control
side) and F-J C of the injured SNpc (p < 0.001), whereas
E-] C was significant from day 30 in the control side
(p <0.01; Fig. 7b). These results show that the decline in
the TH phenotype reflects dopaminergic neurodegenera-
tion in the SNpc of both sides.

B-Gal staining, a senescence marker [17], coincided
with TH (+) cells since day 30 in the SNpc of both sides,
and its area density was significantly higher (p <0.05)
than in the controls (Fig. 8a,b). This coincidence sug-
gests that the senescence process participates in the
BSSG-induced dopaminergic neurodegeneration. [-Gal
staining was also observed in GFAP (+) astrocytes and
Ibal (+) microglia along the blood vessels (Fig. 8c,d,g,h),
and in the SNpc parenchyma (Fig. 8e,fi,j). Particularly,
in microglia cells, p-Gal staining was observed on Ibal
(+) cells with ameboid shape, but not on ramified cells
(Fig. 8f-j). Interestingly, degenerated astrocytes were ob-
served on days 60 and 120 after the lesion when com-
pared with the astrocytes of the mock condition at the
same time (Fig. 8k1).

Cleaved caspase-3 staining was absent in the control
groups and appeared in the SNpc of both sides until day
60 after the lesion (Fig. 9a), following the FJ-C and B-Gal
staining. In the last two times of the study, the cleaved
caspase-3 IFAD was significantly higher (p <0.05) than
the controls (Fig. 9b). Cleaved caspase-3 fluorescence
co-localized with TH (+) (Fig. 9¢), GFAP (+) (Fig. 9d)
and Ibal (+) (Fig. 9e) cells.

Unilateral BSSG administration elicits a bilateral decrease
in dendritic spine density of the striatal medium spiny
neurons

The intranigral BSSG administration also caused atrophy
of medium spiny neurons of both neostriatal nuclei
(Fig. 10a), and a significant decrease in the dendritic
spine density since day 15 post-lesion (p < 0.01 for injury
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Fig. 8 Unilateral intranigral administration of BSSG induces bilateral senescence in the SNpc. a Representative micrographs of double-stained
slices with TH immunohistochemistry and 3-Gal (TH + 3-Gal) and their respective separated 3-Gal staining (3-Gal). The opacity of TH immunoreactivity
was decreased by 60% to allow visualization of 3-Gal staining. The numbers at the left margin of every row indicate the day post-lesion. b The Graphs
show -Gal area density in the conditions of panel a. The bars stand for the mean + SEM. calculated from the measurements in three anatomical
levels. n =3 independent rats per time point in the BSSG group; n =6 for Mock and UT groups. *, BSSG group compared with the control groups.
Two-way ANOVA, Bonferroni post-test. p < 0.05. Double stained slices with GFAP immunohistochemistry and 3-Gal (c,e) and their respective separated
B-Gal staining (d/f). Double stained slices with Ibal immunohistochemistry and 3-Gal (g,i) and their respective separated (3-Gal staining (h,j). Red
arrowhead shows ameboid microglia in senescence, and the blue arrowhead shows active microglia. k Astrocyte shape is illustrated in the conditions
mock and | BSSG on day €0 after the lesion. The scale bar= 50 um is common for all micrographs
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side, and p <0.001 for control side), as compared with  followed by the mushroom spines (35%; p < 0.001) in the
the mock group (Fig. 10a,b). The effect on dendritic  striatum of both sides (Fig. 10c,d). A significant increase
spines was differential and bilateral. The maximum de-  was observed in thin spines (25%; p < 0.001) of the con-
crease occurred in the stubby spines (70%; p<0.01), trol side on day 60 post-lesion (Fig. 10e) as compared
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Fig. 9 A single intranigral injection of BSSG triggers a bilateral and progressive increase of active caspase-3 immunoreactivity in the SNpc. a Representative
merged micrographs of double immunostaining against active caspase-3 (green) and TH (red) at the time displayed at the left margin in every row. The scale
bar =50 um is common for all micrographs. b The graphs show IFAD of the conditions in panel a. The bars stand for the mean + SEM. calculated from the
measurements in three anatomical levels. n = 3 independent rats per time point in the BSSG group; n =6 for Mock and UT groups. *, BSSG group compared
with the control groups. When compared with the BSSG effect over time, & vs. 60 and Q vs. 120 days after the lesion. Two-way ANOVA, Bonferroni post-test.
p < 005. ¢ Confocal analysis of double immunostaining with cleaved caspase-3 (green) and TH (red); d cleaved caspase-3 (green), GFAP (red) and nuclear
counterstaining (blue); e Ibal (green), cleaved caspase-3 (red) and nuclear counterstaining (blue). The top left and bottom right panels correspond to the
orthogonal projections from 1-um z-confocal optical sections. The top right panels are the integrated images, and the bottom left panels are horizontal

with the controls. A significant increase also occurred in
multi-head spines (270%; p < 0.01) of both cerebral sides
(Fig. 10f), and in branched spines (35%; p < 0.05) of the
injured side at day 120 (Fig. 10g).

Unilateral BSSG administration triggers motor and non-
motor alterations

BSSG caused a progressive impairment in the motor and
non-motor behavior evaluated with all the test sets, as
compared with the mock group (Fig. 11), except in the
locomotor asymmetry evaluated by the cylinder test and
memory alteration evaluated by the NOR test (Fig. 11c,i,
j). The first behavior impairments appeared from day 15,
with the absence of contralateral motor response (p <
0.001; Fig. 11a), altered gait (p <0.01; Fig. 11d), and ol-
factory asymmetry (p < 0.05: Fig. 11g). The second set of
behavioral alterations appeared from day 30; these in-
cluded the absence of motor response ipsilateral to the
injured side (p <0.01; Fig. 11b), postural instability (p <
0.001; Fig. 11e), locomotor asymmetry (p < 0.05; Fig. 11c),
a decreased locomotor activity (p <0.05; Fig. 11f) and a
decrease in working memory (p < 0.05; Fig. 11i). Finally,
on day 60 after the lesion, a statistical significance was
observed in the depressive-like behavior (p<0.01;
Fig. 11h) and the episodic memory (p < 0.05; Fig. 11j). In
agreement with the bilateral dopaminergic neurodegen-
eration, the vibrissae and cylinder tests revealed the de-
velopment of bilateral sensorimotor affectation by the
unilateral BSSG administration (Fig. 11a-c).

Discussion

Our results show that a BSSG administration into the
SNpc causes progressive aggregation of endogenous a-
synuclein into Lewy body-like structures in the recipi-
ent side, and a posterior spreading to the contralateral
side and other brain nuclei. Firstly, a-synuclein immu-
noreactivity appears within cells that are TH (+) and
Thioflavin (-), and then in TH (=) cells with Thioflavin
staining, suggesting that the misfolding of a-synuclein
starts in dopaminergic neurons that later on degener-
ate. This evidence supports the proposal that the patho-
logical «-synuclein aggregates cause dopaminergic
neurodegeneration. However, this suggestion is not sus-
tained by the high grade of correlation between the

increase in pathological a-synuclein immunoreactivity
and the decreased percentage of TH (+) neurons in the
ipsilateral side to the injection, since those events coin-
cide (p<0.01; Online Resource 5a). On the contrary,
the appearance of Lewy body-like synuclein aggrega-
tion, followed by the dopaminergic neurodegeneration
in the control untreated side (p < 0.010; Online Resource
5b), supports the spreading and toxicity of a-synuclein
aggregates. This assertion is further supported by the
presence of pathological a-synuclein aggregates in cere-
bral nuclei associated with their respective motor and
non-motor alterations. The presence of those aggre-
gates in the striatum was associated with sensorimotor
impairments, in the olfactory bulb with hyposmia, in
the hippocampus with memory alteration, and in VTA
with TH (+) cell loss and the development of
depressive-like behavior. Those areas are anatomically
and physiologically interconnected, thus explaining the
spreading of a-synuclein pathology in a prion-like man-
ner [3, 19, 35, 37, 55, 81].

The mechanisms of a-synuclein aggregation are still in
the characterization process, including those underlying
the genetic causes [10]. The BSSG neurotoxin might in-
duce a-synuclein aggregation by modification of one of
its multiple posttranslational mechanisms, which include
phosphorylation, oxidation, acetylation, ubiquitination,
glycation, glycosylation, nitration, and proteolysis [10].
Considering that BSSG is a steryl glucoside, it might be
incorporated by glycation to a-synuclein, thus changing
the protein charge and structure. Those modifications
can lead to the misfolding of «-synuclein, hence, altering
its interaction with other proteins and lipids, and the
overall protein hydrophobicity [10, 79]. Further studies
are needed to clarify the aggregation mechanism of a-
synuclein, and the stereotaxic BSSG model could con-
tribute to solve this question and develop inhibitory or
disruptive therapies against the formation of a-synuclein
aggregates [59].

The spreading mechanism of a-synuclein pathology is
not currently fully resolved [81]. The most accepted
mechanism involves the packing of toxic «-synuclein
into exosomes and their transport across anatomical
pathways of communication among brain regions, where
the axon terminals release the toxic a-synuclein to be
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Fig. 10 A single intranigral BSSG administration triggers bilateral morphologic changes and the density of dendritic spines in medium spiny
neurons. a Representative micrographs showing Golgi-Cox-impregnated dendrites and spines of the mock and BSSG groups. The scale bar is
100 um for panoramic views and 10 um for amplifications. The graphs show the spine density (b) and the percentage of different spine types:
stubby (c) mushroom (d), thin (e), multi-headed (f), and branched (g). The bars stand for the mean + SEM. n=4-6 independent rats per each
group. *, BSSG group compared with the mock group. Two-way ANOVA, Bonferroni post-test. p < 0.05

taken up by local cells. Therefore, the propagation path-
way of pathological «-synuclein aggregates from the
SNpc to brain nuclei of the ipsilateral side can be the
dopaminergic projecting axons [1, 2, 14, 22], as sug-
gested by previous works using PFFs [46, 56]. The vast
web of interhemispheric connections mainly achieved by
the four commissural systems [71] can transfer o-
synuclein aggregates to the other brain hemisphere. Not-
ably, the crossed connections of the substantia nigra
[25, 58] and striatum [44] in the rat can also participate
in a-synuclein aggregates transfer to those nuclei of the
opposite hemisphere. The stereotaxic BSSG model rep-
resents a useful tool to identify the spreading mechanism
of pathological a-synuclein and assay new exosome-
based therapies [62].

A previous study has shown that the chronic oral ad-
ministration of BSSG replicates a-synuclein aggregation,
according to the Braak stages and the nigrostriatal dopa-
minergic neurodegeneration of PD [78]. However, the
systemic presence of BSSG does not allow us to deter-
minate whether a-synuclein aggregates cause the dopa-
minergic neurodegeneration or vice versa. A similar
inconclusive outcome is also derived from the findings
in the SNpc ipsilateral to the BSSG administration. In
contrast, the results in the contralateral control SNpc
show that a-synuclein aggregates preceded the loss of
TH (+) cells, which also lost their immunoreactivity to
B-III tubulin and NTSR1, and gradually gained staining
to F-J] C and B-Gal. Besides, an active caspase-3 immu-
noreactivity was present in the last two-time points of
the study.

Altogether, these results suggest that pathological a-
synuclein aggregates might induce the death of dopa-
minergic neurons by activating apoptosis and presum-
ably senescence in the injured side as the correlation/
regression analysis suggests (Online Resource 5c.e).
However, the a-synuclein aggregates correlated with
apoptosis (Online Resource 5d) but not with senescence
in the untreated SNpc (Online Resource 5f). These re-
sults suggest that senescence might be triggered by an
independent mechanism of pathological a-synuclein ag-
gregates, for instance, the action of BSSG that only was
present on the injured side. Functional studies in vitro
are needed to clarify whether the pathological -
synuclein aggregates are the primary cause of senescence
and apoptosis.

Several mechanisms have been proposed to explain the
accumulation and toxicity of a-synuclein aggregates.
Based on findings that lysosome is the main route for
clearance of accumulated, misfolded, and toxic proteins,
one possible mechanism is a dysfunction in the
autophagy-lysosomal pathway [13, 33]. Besides, increasing
evidence supports that the dysfunction of chaperone-
mediated autophagy (CMA) promotes senesce [50]. BSSG
might impair CMA, which is involved in the a-synuclein
degradation [80], leading to toxic a-synuclein oligomers
and senescence. In support of this suggestion is the correl-
ation between the increased chaperone protein HSP70
levels and cell death after BSSG exposure in vitro [72], as
occurs in the mutant LRRK2 knocking mouse model of
PD with a similar chaperone protein [33]. The toxicity of
a-synuclein aggregates could also be mediated by oxida-
tive stress, which is another mechanism underlying cellu-
lar senescence [38] and apoptosis of dopaminergic
neurons [31]. Mitochondrial disease cases and some forms
of familial PD display mitochondrial dysfunction such as
oxidative stress and deposition of pathological a-synuclein
aggregates [20]; however, this possibility has not yet been
explored after BSSG administration. BSSG-induced «-
synuclein accumulation might also kill dopaminergic
neurons through neuroinflammation [77], triggered by in-
creased oxidative stress and direct activation of microglial
cells [34, 83, 91]. In support of this mechanism, we found
activated microglia cells apparently degrading neuronal
cytoplasmic a-synuclein. This result is in agreement with
recent findings that microglia and monocytes can take up
free and exosome-associated a-synuclein oligomers result-
ing from age-dependent defects [6]. Another cell death
mechanism of a-synuclein is excitotoxicity [17], and there
is evidence that the exposure to BSSG triggers excitotoxi-
city mediated by the NMDA receptor in rat neocortex
slices [85]. Therefore, the BSSG-induced pathological «-
synuclein aggregates could cause the death of dopamin-
ergic neurons by activating excitotoxicity.

Recently, it has been proposed that astrocyte and
microglia could participate in the exosome-mediated
clearance of a-synuclein [70]. However, the absence of
a-synuclein immunoreactivity in GFAP (+) cells does
not support such a role for astrocytes. In contrast, the
presence of a-synuclein immunoreactivity in Ibal (+)
cells supports the involvement of microglia in the deg-
radation of a-synuclein, as previously proposed [70].
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post-test. p < 0.05

Fig. 11 Unilateral intranigral administration of BSSG causes progressive motor and non-motor impairments. a Contralateral and b ipsilateral
response to the vibrissae stimulation. ¢ Asymmetry in the number of contacts of the forelimb paws on a transparent cylinder wall. d Time
traveled and e claudications during displacement on a narrow beam. f Locomotor activity during the exploration of a new environment. g
Asymmetry in discrimination of olfactory stimuli regularly distributed on each side of a corridor floor. h Depressive-like behavior evaluated by the
immobility time in a swim tank. i Working and j episodic memory alteration evaluated by the exploration of the novel object in the open-field
arena. ¥, BSSG group compared with the control groups. When compared with the BSSG effect over time, # vs. 30, & vs. 60 and Q) vs. 120 days
after the injury. Each bar represents the mean + S.EM. from n =8 rats per experimental group and time. Two-way ANOVA, Bonferroni

Interestingly, the finding of B-Gal staining and active
caspase-3 immunoreactivity in activated astrocyte and
microglia suggests that these cells also die by senescence
and apoptosis. This suggestion is supported by the pres-
ence of astrocytes with degenerated phenotype [36] and
microglia cells with condensed ovoid shape. Dystrophic
changes in dendritic spines of MSNs, which are the main
target of dopamine axons [75], are invariably present in
PD patients [37, 49] and experimental animals [60, 61,
67]. The loss of dopamine input, especially on stubby
and mushroom spines, leads to an excessive corticostria-
tal glutamatergic excitation on MSNs that underlies
motor impairments in PD [90]. In agreement with this
physiological mechanism, the BSSG-induced dopamin-
ergic denervation in the two striatal nuclei was associ-
ated with a significant decrease in stubby and
mushroom dendritic spines of MSNs and the develop-
ment of akinesia, bradykinesia, and uncoordinated gait.
The increase in the percentage of thin, multi-headed,
and branched spines, which are considered immature
spines or in the maturation process [5], that occurred in
the last time post-BSSG administration, might reflect an
attempt to replenish the loss of mature spines (mush-
rooms). An alternative explanation for the dystrophy of
dendritic spines of MSNs is the presence of a-
synucleinopathy in the striatum. In PD patients, a-
synuclein inclusions have been demonstrated in MSNs
with neuritic changes in the striatum [51]. Accordingly,
our results also show the development of aggregates and
neurites-like structures of pathological a-synuclein in
the two striatal nuclei. Together, the clinical and experi-
mental findings suggest that a-synuclein aggregation can
also induce the degeneration of striatal neurons, which
is primarily reflected by a differential decrease in den-
dritic spine density.

The combined action of dopamine loss and -
synuclein toxicity in subcortical and cortical areas sug-
gests neurodegeneration in these areas and the develop-
ment of non-motor behaviors. For instance, hyposmia
can result from the denervation of the nigrostriatal
dopaminergic pathway, which projects directly to the ol-
factory bulb [3, 35], and the presence of pathological o-
synuclein aggregates in this nucleus [3]. Likewise, patho-
logical a-synuclein aggregates found in the hippocampus

could impair both working and episodic memory, as ob-
served with the BSSG systemic administration [78].
Depressive-like behavior can be explained by dopamin-
ergic denervation of nucleus accumbens from VTA neu-
rons, and the presence of pathological a-synuclein
aggregates in those nuclei [55]. Moreover, nigral dopa-
minergic innervation of the forebrain, which is part of
the mesolimbic system, is well documented in humans
[76] and experimental animals [14, 48, 84]. Also, patho-
logical a-synuclein aggregates were present in the fore-
brain after intranigral BSSG administration.

Conclusion

Our results show that a single intranigral BSSG administra-
tion promotes the progressive appearance of pathological o-
synuclein aggregates, and the death of dopaminergic neurons
by senescence and then by apoptosis in the ipsilateral and
contralateral SNpc. Thus, the resulting bilateral neurodegen-
eration of the nigrostriatal dopaminergic pathway and striatal
MSNs elicited the motor deficits of parkinsonism. The
prion-like spreading of toxic a-synuclein aggregates to the
striatum, VTA, cerebral cortex, and olfactory bulb could also
promote neurodegeneration in these areas, as suggested by
the atrophy of striatal MSNs and the development of non-
motor alterations. These features agree with the PD «-
synucleinopathy phenotype, thus making the stereotaxic
BSSG administration attractive for the identification of «-
synucleinopathy spread mechanism and the validation of
new therapies for PD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540478-020-00933-6.

Additional file 1: Online Resource 1. lllustration of experimental
design. a Evaluation times of behavioral tests, immunohistochemistry,
immunofluorescence, and Golgi-Cox staining as indicated by the symbols.
The panel b shows a table with the number of animals used per assays
every time point and group evaluated. Eight rats of each time point were
evaluated with seven independent behavioral tests (n =8 rats per experi-
mental group and time).

Additional file 2: Online Resource 2. The ipsilateral and intranigral

BSSG injection causes pathological a-synuclein propagation to the mid-
brain nuclei. Representative photomicrographs of (@) mock and (b) BSSG
injured conditions showing a-synuclein aggregates in the red nucleus (1
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and 2), SNpc (3 and 4), SNpr (5 and 6) and VTA (7). The scale bars=1mm
for the panoramic views and 50 um for magnifications.

Additional file 3: Online Resource 3. A single intranigral
administration of BSSG causes pathological a-synuclein aggregates in dif-
ferent brain regions. Representative micrographs of a-synuclein immuno-
histochemistry in sagittal slices of (@) mock and (b) BSSG groups on day
120 after the lesion showing a-synuclein aggregates in the olfactory bulb
(1), hippocampus (2), cortex (3), M1-cortex (4), locus coeruleus (5), sub-
stantia nigra (6) and striatum (7). The scale bars =1 mm for the panoramic
views and 100 um for magnifications.

Additional file 4: Online Resource 4. Apparent phagocytosis of a-
synuclein (+) neurons by microglia but not by astrocytes. Double im-
munofluorescence against a-synuclein (red) and Ibal (green) or GFAP
(green). Panels a and ¢ are panoramic views. Panels b and d are orthog-
onal projections from 1-um z-confocal optical sections that correspond
to the top left and bottom right panels. The top right panels are the inte-
grated image, and the bottom left panels are a horizontal optical Z-
section. Yellow arrows show microglia with a-synuclein aggregation. The
scale bar =50 um.

Additional file 5: Online Resource 5. Correlation analysis of o-
synuclein area density with the survival percentage of dopaminergic neu-
rons (a and b), immunofluorescence area density (IFAD) of active
caspase-3 (c and d), and 3-Gal(+) area density (e and f) in the injured
and control SNpc. Pearson'’s correlation coefficient and linear regression
appear on the top of every graph. p < 0.05 was considered a statistically
significant difference.
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