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Abstract

Aged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward 

production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms 

causing HSC aging is needed to devise new strategies to sustainably improve immune function in 

aged individuals. Here, a focused shRNA screen of epigenetic factors reveals that the histone 

acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. 

Within the stem and progenitor cell compartment, Kat6b is highly expressed in long-term (LT)-

HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of 

Kat6b in young LT-HSCs causes skewed production of myeloid cells at the expense of erythroid 

cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and 

macrophage-associated gene signatures alongside reduced expression of self-renewal and 

multilineage priming signatures. Together, our work identifies KAT6B as a novel epigenetic 

regulator of hematopoietic differentiation and a target to improve aged immune function.
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Introduction

Aging involves progressive decline in many cellular systems, including the immune system. 

Elderly individuals are more susceptible to infections, leading to more frequent and severe 

illness (Dorshkind and Swain, 2009). With the global population of individuals aged 65 

years and older expected to reach 1.6 billion by 2050 (Gasteiger et al., 2016), there is a 
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pressing need to develop novel therapeutic strategies to ameliorate aging-associated decline 

in immune function.

All mature blood and immune cells are derived from HSCs. Changes in HSCs with aging, 

including increased frequency, enhanced differentiation toward myeloid cells, and reduction 

in regeneration capacity (Verovskaya et al., 2019), contribute to aging-associated decline in 

immune function. Molecular features of aged HSCs include decline in mitochondrial 

function and epigenetic drift. There has been observed to be a global increase in DNA 

methylation (Beerman et al., 2013; Sun et al., 2014), and altered levels of histone H3 lysine 

4 trimethylation (H3K4me3) and lysine 27 trimethylation (H3K27me3) in both aged murine 

and human HSCs (Adelman et al., 2019; Sun et al., 2014). Moreover, diminished levels and 

polarity of histone H4 lysine 16 acetylation (H4K16ac) is associated with loss of 

regenerative capacity and myeloid lineage skewing of old LT-HSCs (Florian et al., 2012). 

While these studies support involvement of epigenetic regulatory processes in HSC aging, 

there remains a lack of comprehensive knowledge of the extent to which epigenetic 

alterations cause aging-associated changes in HSC function. The goal of this study was to 

identify epigenetic regulators that cause altered differentiation of HSCs in the context of 

aging. We report a functional screen to uncover novel epigenetic regulators of altered HSC 

differentiation with aging, identifying the lysine acetyltransferase Kat6b.

KAT6B (MORF) belongs to the MYST family of histone acetyltransferases and is 

responsible for acetylation of the lysine 23 residue of histone H3 (H3K23ac) (Simó-

Riudalbas et al., 2015). Other members of the MYST family, KAT6A (MOZ) and KAT8 

(MOF), have known functional roles in hematopoiesis. KAT6A, which catalyzes acetylation 

of lysine 9 (H3K9ac) and lysine 14 (H3K14ac) residues (Huang et al., 2016), is critical for 

the emergence and maintenance of HSCs (Katsumoto et al., 2006; Perez-Campo et al., 2009; 

Sheikh et al., 2016). KAT8, which catalyzes acetylation of H4K16ac, is critical for adult but 

not early fetal hematopoiesis (Valerio et al., 2017). Here, we investigate and demonstrate a 

novel role for KAT6B in lineage differentiation of phenotypic LT-HSCs.

Materials and Methods

Experimental Animals

Young (2–4 months) and old (20–23 months) female C57BL/6J and B6.SJL-PtprcaPepcb/

BoyJ (B6.CD45.1) were obtained from, and aged within, The Jackson Laboratory. All 

experiments were approved by The Jackson’s Laboratory Institutional Animal Care and Use 

Committee (IACUC).

Lentiviral Supernatant

pLKO.1 shRNA expression plasmids (Sigma; Supplemental Table 4) were modified by 

cloning in the GFP cassette from pLKO.3G, a gift from Christophe Benoist & Diane Mathis 

(Addgene) (Primers listed in Supplemental Table 5). shRNA expression plasmids, RC-CMV-

Rev1b, HDMHgpm2 (gag-pol), HDM-tat1b, HDM-VSV-G were transfected into HEK-293T 

cells (ATCC) using CalPhos™ Mammalian Transfection Kit (Takara Bio). Media was 
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changed after 24hrs and virus was collected after 48hrs. Virus was titered using NIH/3T3 

cells (ATCC).

Primary Cell Isolation

Femurs, tibiae, and iliac crests were harvested to isolate hematopoietic cells from the bone 

marrow (BM). Ficoll-Paque (GE Healthcare) centrifugation was used to isolate BM 

mononuclear cells (MNCs). MNCs were stained with fluorochrome-conjugated antibodies 

from BioLegend, eBiosciences or BD Biosciences: c-Kit (clone 2B8), CD48 (clone HM48–

1), CD150 (clone TC15–12F12.2), Sca-1 (clone D7), FLT3 (clone A2F10), mature lineage 

(Lin) marker mix (B220 (clone RA3–6B2), CD11b (clone M1/70), CD4 (clone RM4–5), 

CD8a (clone 53–67), Ter-119 (clone TER-119), Gr-1 (clone RB6–8C5), CD5 (clone 53–

7.3)) and viability stain propidium iodide (PI). Cells were sorted on a FACSAria (BD 

Biosciences) as follows: LT-HSC (Lin− Sca+ c-Kit+ Flt3− CD150+ CD48−) and MPP4 cells 

(Lin− Sca+ c-Kit+ Flt3+ CD150−).

Transduction of LT-HSC and MPP4 Cells

LT-HSCs were resuspended in SFEMII (StemCell Technologies) supplemented with growth 

factors described previously (Holmfeldt et al., 2016): Stem cell factor (SCF; 10 ng/ml), 

thrombopoietin (TPO; 20 ng/ml), insulin-like growth factor 2 (IGF2; 20 ng/ml) and 

fibroblast growth factor (FGF; 10 ng/ml) (BioLegend or StemCell Technologies) along with 

5ug/ml polybrene (Sigma) and 1000 MOI lentiviral supernatant. Cells were spun at 2500rpm 

for 60min then cultured at 37°C and 5% CO2 for 48hrs. Transduced GFP+ cells were sorted 

on a FACSAria (BD Biosciences). MPP4 cells were transduced as above in media containing 

IMDM plus 10% FBS, interleukin-3 (IL-3, 10 ng/ml), interleukin-6 (IL-6, 10 ug/ml), 

interleukin-7 (IL-7, 20 ng/ul), SCF (100 ng/ml), leukemia inhibitory factor (LIF, 20 ng/ml) 

(Peprotech).

Colony Forming Unit (CFU) Assays

For B-lymphoid CFU assays, 100 GFP+ cells from transduced MPP4 cells were plated in 

Methocult M3630 (StemCell Technologies) supplemented with FMS-like tyrosine kinase 

like 3 ligand (FLT3L; 25 ng/ml) and SCF (50 ng/ml) (Peprotech). For myeloid CFU assays, 

100 GFP+ cells from transduced MPP4 cells or 200 GFP+ cells from transduced LT-HSCs 

were plated in Methocult GF M3434 (StemCell Technologies) and cultured at 37°C and 5% 

CO2. Scoring of colonies was done between days 7 and 10 using a Nikon Eclipse TS100 

inverted microscope. CFU cloning efficiency was calculated as the sum of the myeloid and 

B-lymphoid colonies divided by the sum of the myeloid and B-lymphoid colonies in the 

NTC group.

Real-Time PCR

Real-time PCR was performed using RT2 SYBR Green ROX qPCR Mastermix (Qiagen) 

using the Viaa7 or QuantStudio 7 Flex (Applied Biosystems). Primer sequences are in 

Supplemental Table 5.
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Immunofluorescence Staining of LT-HSCs

Sorted LT-HSCs were seeded on retronectin-coated coverslips in SFEMII supplemented with 

SCF (10 ng/ml), TPO (20 ng/ul), IGF2 (20 ng/ul), FGF (10 ng/ul) (BioLegend or StemCell 

Technologies) for 2hrs, then fixed in 4% PFA. Cells were washed with PBS, permeabilized 

with 0.2% Triton X-100 in PBS for 20mins and blocked with 10% goat serum 

(ThermoFisher Scientific) for 20mins. Cells were stained with α-KAT6B (NBP1–92036; 

Novus Biologicals) for 1hr at room temperature. For secondary antibody, cells were stained 

with α-Rabbit conjugated with Alexa-568 (A-11036; ThermoFisher Scientific) for 1hr. For 

antibody blocking experiments, control peptides and peptides encoding the immunogen for 

the KAT6B antibody (GenScript) were incubated overnight at 4 °C with α-KAT6B before 

staining as above. Coverslips were mounted on slides with Gold Antifade with DAPI. 

Imaging was performed with Leica SP8 confocal microscope. Z-stack images were summed 

and quantification of individual fluorescence intensities was performed by Fiji software 

(Schindelin et al., 2012). Scale bars in images represent 5um.

In Vivo Transplantation

200–350 transduced GFP+ cells were combined with 5×105 MNCs from B6.CD45.1 mice 

and retro-orbitally injected into recipient B6.CD45.1 mice after 10Gy. Peripheral blood (PB) 

from recipient mice was analyzed by flow cytometry 1 month after transplant using CD45.1 

(clone A201.7 or clone A20), CD45.2 (clone 104), B220 (clone RA3–6B2), CD3e (clone 

145–2C11), CD11b (clone M1/70), Ly6g (clone 1A8), Ly6c (clone HK1.4), Ter-119 (clone 

TER-119), GR1 (clone RB6–8C5), CD4 (clone GK1.5), CD8a (clone 53–6.72) and CD41 

(clone MWReg30) (all BioLegend or BD Biosciences). PB was analyzed on a 

FACSymphony A5 (BD Biosciences) and data was analyzed using FlowJo software (FlowJo, 

LLC).

RNA-Seq

Transduced GFP+ LT-HSCs from 3 independent biological replicates were sorted directly 

into RLT buffer (Qiagen). Total RNA was isolated from cells using the RNeasy Micro kit 

(Qiagen). Sample quality was assessed using the Nanodrop 2000 spectrophotometer 

(ThermoFisher Scientific) and the RNA 6000 Pico LabChip assay (Agilent Technologies). 

Libraries were prepared by the Genome Technologies core facility at The Jackson 

Laboratory using the Ovation RNA-seq System V2 (NuGEN Technologies) and Hyper Prep 

Kit (Kapa Biosystems). Libraries were checked for quality and concentration using the 

D5000 ScreenTape assay (Agilent Technologies) and quantitative PCR (Kapa Biosystems), 

according to the manufacturers’ instructions. Libraries were pooled and sequenced 75 bp 

single-end on the NextSeq 500 (Illumina) using NextSeq High Output Kit v2.5 reagents. 

Raw and processed data was deposited in the Gene Expression Omnibus (GEO accession 

GSE133304).

RNA-Seq Analysis

Trimmed alignment files (with trimmed base quality value < 30, and 70% of read bases 

surpassing that threshold) were processed using the RSEM (v1.2.12; RNA-Seq by 

ExpectationMaximization) software (Li and Dewey, 2011) and the Mus Musculus reference 
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GRCm38. Alignment was completed using Bowtie 2 (v2.2.0) (Langmead and Salzberg, 

2012) and processed using SAMtools (v0.1.18) (Li et al., 2009). Fragment length mean was 

set to 280 and standard deviation to 50. Expected read counts per gene produced by RSEM 

were rounded to integer values, filtered to include only genes that have at least two samples 

within a sample group having a cpm > 1.0, and were passed to edgeR (v3.5.3) (Robinson et 

al., 2010) for differential expression analysis. The negative binomial conditional common 

likelihood was maximized to estimate a common dispersion value across all genes. Exact 

tests were used to elucidate statistical differences between the two sample groups of 

negative-binomially distributed counts producing p-values per test. The Benjamini and 

Hochberg’s algorithm was used to control the false discovery rate (FDR). Features with an 

FDR-adjusted p-value < 0.05 were declared significantly differentially expressed. Gene set 

enrichment analysis (GSEA) (Daly et al., 2003; Subramanian et al., 2005) was performed 

using previously published old LT-HSC RNA-seq data (Sun et al., 2014) and previously 

defined gene signatures representing HSCs (Chambers et al., 2007), the self-renewal 

program (Krivtsov et al., 2006), hematopoietic progenitor cell populations (lymphoid (CLP), 

granulocyte-macrophage (preGM) and erythroid-megakaryocyte (preMegE, preCFU-E, 

MkP)) (Sanjuan-Pla et al., 2013), and mature hematopoietic cell populations (M1 and M2 

macrophages, monocytes, granulocytes, erythrocytes, CD4+ naïve T cells, CD8+ naïve and 

activated T cells, B cells and NK cells) (Chambers et al., 2007; Engler et al., 2012; 

Mantovani et al., 2002; Martinez et al., 2006) (Supplemental Table 3).

Statistical Analysis

Sample groups were compared using an unpaired t test, Mann-Whitney test, one-way 

ANOVA and Holm-Sidak’s multiple comparisons test, or two-way ANOVA and Dunnett’s 

multiple comparisons test as indicated in figure legends. Prism (GraphPad Software) was 

utilized for statistical calculations and graphing.

Results

An shRNA screen identifies Kat6b as a novel regulator of hematopoietic differentiation

To identify epigenetic regulators with a functional role in hematopoietic stem and progenitor 

cell differentiation, we conducted an in vitro shRNA screen. To derive candidates for this 

screen, we used gene expression commons (GEXC) (Seita et al., 2012) to define 2,766 

differentially expressed genes between granulocyte macrophage progenitors (GMPs; Lin− 

Sca− c-Kit+ CD34+ FcgRII/III+) and common lymphoid progenitors (CLPs; Lin− c-Kitint 

Flt3+ IL7Ra+ CD27+ Ly6d−), which are committed progenitors for the myeloid and 

lymphoid lineages, respectively (Figure 1A) (Motonari, 2013). Among these 2,766 genes, 

gene ontology (GO) enrichment analysis of Reactome pathways (Mi et al., 2017; The Gene 

Ontology Consortium 2019) revealed significant enrichment of chromatin modifying 

enzymes (Figure 1B). The 40 enriched genes encoding chromatin modifying enzymes were 

further subset to 30 genes based on overlap with the GO annotation “regulation of gene 

expression” (GO:0010468) (Supplemental Figure 1A). Lastly, this gene list was filtered to 

include those with commercially available shRNA constructs with verified knockdown in 

murine cell lines, resulting in 16 genes (Supplemental Table 1). To begin functional 

screening, shRNA expression plasmids for six of these 16 genes were obtained. In addition, 
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shRNA constructs were obtained for eight genes hypothesized to regulate lineage 

differentiation using a candidate gene approach (Supplemental Table 2). After cloning, we 

validated reduced target gene expression from each of these shRNA constructs in the murine 

3T3 cells (Supplemental Figure 1B).

Our in vitro screen (Figure 1C) utilized multipotent progenitor (MPP4) cells rather than 

purified LT-HSCs as MPP4 cells have both myeloid and lymphoid differentiation potential 

(Figure 1A) (Pietras et al., 2015) and, in contrast to LT-HSCs, have efficient clonal in vitro 
differentiation capacity giving rise to both myeloid and lymphoid cells (Young et al., 2016). 

Relative to NTC, we found that knockdown of our positive control, Crebbp, resulted in a 

nearcomplete loss of CFU capacity and the residual colonies that formed were 

predominantly myeloid (Figure 1D), consistent with the expected phenotype of Crebbp loss 

(Chan et al., 2011).

In two out of the 14 shRNA constructs evaluated, Rnf40 (ring finger protein 40) and Kat6b, 

we observed a significant increase in the proportion of myeloid relative to B-lymphoid 

colonies (Figure 1D, Top panel). Of these, only knockdown of Kat6b was found not to alter 

overall cloning efficiency (Figure 1D, Bottom panel) and was pursued as a candidate 

epigenetic regulator of hematopoietic stem and progenitor cell differentiation.

KAT6B decreases at the transcript and protein level in old LT-HSCs

As the goal of this study was to identify epigenetic regulators that cause altered 

differentiation of HSCs in the context of aging, we sought to determine whether Kat6b is 

expressed in phenotypic HSCs and whether this expression is altered with aging. We isolated 

LT-HSCs (Lin− Sca+ c-Kit+ Flt3− CD150+ CD48−) and MPP4 cells (Lin− Sca+ c-Kit+ Flt3+ 

CD150−) by FACS from young (2–4 month) and old (20–23 month) mice. By real-time 

PCR, we observed that the Kat6b transcript is expressed in LT-HSCs and that its expression 

decreases 2.8-fold with age in LT-HSCs but not in MPP4 cells (Figure 2A). This is 

consistent with previous studies finding a decrease in Kat6b expression in aged murine LT-

HSCs (Sun et al., 2014) and a decrease in KAT6B expression in aged human HSCs 

(Adelman et al., 2019). To analyze KAT6B at the protein level, we immunostained LT-HSCs 

from young and old mice with a KAT6B antibody (Figure 2B, Supplemental Figure 2). We 

observed KAT6B expression in LT-HSCs from old mice is significantly lower than in young 

mice (Figure 2C). Together, our results show that KAT6B is significantly decreased at both 

the transcript and protein levels in old LT-HSCs.

Knockdown of Kat6b in phenotypic LT-HSCs causes reduced erythropoietic activity in vitro

To evaluate the functional consequence of reduced expression of Kat6b as observed in old 

LT-HSCs, we utilized a shRNA knockdown approach. LT-HSCs isolated from young mice 

were transduced with lentivirus containing NTC or a Kat6b shRNA expression plasmid 

(Figure 3A) and plated into in vitro myelo-erythroid differentiation CFU assays. From the 

resultant colonies, we determined that Kat6b transcript was reduced by 4.8-fold (Figure 3B). 

The total number of colonies was not significantly altered compared to NTC (Figure 3C), 

however, differences were observed with respect to colony composition. Upon knockdown 

of Kat6b, we observed a significant increase in the number of granulocyte-macrophage 
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(CFU-GM) colonies, a significant decrease in the number of granulocyte-erythrocyte-

macrophage-megakaryocyte (CFU-GEMM) colonies and no change in the number of 

macrophage-only (CFU-M). (Figure 3D). These phenotypes were replicated using a second, 

independent hairpin against Kat6b (Supplemental Figure 3). Our results demonstrate that 

knockdown of Kat6b results in reduced erythropoietic activity and increased myeloid 

differentiation from phenotypic LT-HSCs in vitro.

Knockdown of Kat6b in phenotypic LT-HSCs causes increased myeloid differentiation and 
reduced erythropoietic activity in vivo

To evaluate the functional consequence of reduced levels of Kat6b in LT-HSCs in vivo, we 

transduced phenotypic LT-HSCs with Kat6b knockdown or NTC and transplanted GFP+ 

cells into lethally irradiated B6.CD45.1 recipient mice (Figure 4A). In total, 15 recipient 

mice were transplanted with NTC-transduced cells and 16 recipient mice were transplanted 

with Kat6b sh1transduced cells. From these, 7/15 (46%) and 8/16 (50%) were found to have 

multilineage engraftment above a threshold of 0.1% donor-derived PB cells at one month 

post-transplant. Donor-derived engraftment was not significantly different between NTC and 

Kat6b sh1 (Figure 4B). However, mice transplanted with Kat6b knockdown cells had a 

significant increase in the proportion of donor-derived myeloid cells in the PB as compared 

to NTC (Figure 4C). In addition, there was a significant decrease in donor-derived erythroid 

cells in the PB of mice transplanted with Kat6b knockdown cells compared to NTC (Figure 

4D). A trend toward decreased frequency of donor-derived B and T lymphocytes in Kat6b 
knockdown compared to NTC did not reach statistical significance (Figure 4E, F). Together, 

these results show that knockdown of Kat6b causes reduced erythropoietic activity and 

increased myeloid differentiation in vivo without significantly altering repopulation capacity.

Knockdown of Kat6b in LT-HSCs Promotes Expression of Aging- and 
InflammationAssociated Gene Signatures

To investigate the molecular mechanisms underlying altered differentiation after Kat6b 
knockdown, we transduced LT-HSCs with NTC or Kat6b sh1 and performed RNA-seq. 

Unsupervised clustering separated NTC and Kat6b knockdown samples (Figure 5A). 252 

significantly differentially expressed genes were identified, out of which 127 genes were 

upregulated and 125 genes were downregulated in Kat6b knockdown compared to NTC 

(Figure 5B). No other KAT histone lysine acetyltransferases were found to be significantly 

up- or downregulated after Kat6b knockdown (Supplemental Figure 4), supporting minimal 

off-target effects of our shRNA construct on highly related genes and a lack of 

compensatory upregulation of other family members in this setting.

To test the hypothesis that Kat6b knockdown alters expression of gene programs associated 

with aging and differentiation of LT-HSCs, we performed gene set enrichment analysis 

(GSEA) (Subramanian et al., 2005). Comparing our RNA-seq data to a compiled LT-HSC 

aging gene signature (based on the intersection between published datasets by Sun et al., 

2014, Wahlestedt et al., 2013 and Beerman et al., 2013) revealed that genes more highly 

expressed in young versus old LT-HSCs were significantly enriched in NTC versus Kat6b 
knockdown (Figure 5C). Conversely, genes more highly expressed in old versus young LT-

HSCs were enriched in Kat6b knockdown versus NTC (Figure 5D).
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To further interrogate mechanisms underlying the observed change in differentiation of 

Kat6b knockdown cells, unbiased GO enrichment analysis was utilized. This analysis 

revealed significant alteration of signatures associated with inflammatory response, cytokine 

production, and defense response in Kat6b knockdown versus NTC cells (Figure 5E). We 

then compared our dataset to previously defined gene signatures representing HSCs 

(Chambers et al., 2007), the self-renewal program (Krivtsov et al., 2006), hematopoietic 

progenitor cell populations (lymphoid (CLP), granulocyte-macrophage (preGM) and 

erythroid-megakaryocyte (preMegE, preCFU-E, MkP)) (Sanjuan-Pla et al., 2013), and 

mature hematopoietic cell populations (M1 and M2 macrophages, monocytes, granulocytes, 

erythrocytes, CD4+ naïve T cells, CD8+ naïve and activated T cells, B cells and NK cells) 

(Chambers et al., 2007; Engler et al., 2012; Mantovani et al., 2002; Martinez et al., 2006) 

(Supplemental Table 3). This analysis revealed that Kat6b knockdown resulted in a 

significant enrichment of an M1 macrophage signature while NTC cells were enriched in 

HSC/self-renewal, preGM, monocyte, CLP, NK and CD8+ naïve T cell signatures (Figure 

5F). Together, these data suggest that decreased expression of Kat6b in phenotypic LT-HSCs 

impairs multilineage differentiation, as supported by our in vitro and in vivo data, and 

permits a transcriptional program promoting myeloid differentiation that is associated with 

aging.

Discussion

In this study, by employing a shRNA-mediated screen of epigenetic regulators, we have 

discovered a novel role for Kat6b in the context of LT-HSC differentiation with relevance to 

aging. We have found that KAT6B decreases in old LT-HSCs at the transcript and protein 

levels. Knockdown of Kat6b resulted in an increase in the proportion of myeloid cells and 

decrease in the proportion of erythroid cells in vitro and in vivo. Transcriptome analysis 

performed immediately after Kat6b knockdown in LT-HSCs revealed that knockdown 

resulted in loss of multilineage priming signatures while gaining an expression signature 

associated with inflammation and M1 pro-inflammatory macrophages. Interestingly, it has 

been reported that Kat6b expression is reduced in macrophages under LPS stimulation, 

conditions which result in M1 activation (Shukla et al., 2018). Whether decreased Kat6b 
results in priming towards myeloid, and in particular, macrophage, differentiation or 

decreased Kat6b results in a transcriptional state primed for response to inflammation 

remains to be tested. Together, our results support that Kat6b functions as a regulator of 

hematopoietic differentiation and that decrease in Kat6b, as observed in aging, favors 

myeloid differentiation at the expense of erythroid differentiation.

Our work builds upon literature demonstrating the importance of the MYST family of 

acetyltransferases for hematopoietic function. KAT6A, a paralogue of KAT6B (Simpson et 

al., 2012), is critical for differentiation potential of HSCs (Sheikh et al., 2016). In vitro, 
Kat6adeficient BM has reduced total number of colonies in CFU assays and no difference in 

colony subtypes (Sheikh et al., 2016), whereas we observed that Kat6b knockdown results in 

no change in total number of colonies and a reduction in erythroid-containing colonies. In 
vivo, conditional knockout of Kat6a resulted in impaired competitive repopulation capacity 

and increased ratio of myeloid to lymphoid differentiation (Sheikh et al., 2016), whereas 

Kat6b knockdown resulted in increased frequency of myeloid cells and decreased frequency 
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of red blood cells. Thus, we propose that KAT6A and KAT6B may have overlapping but 

distinct roles in hematopoiesis.

In the context of our experiments, LT-HSCs were cultured under ex vivo conditions which 

have been reported to promote HSC self-renewal (Holmfeldt et al., 2016). However, this 

requirement for ex vivo culture for lentiviral transduction is also a caveat in the 

interpretation of our results. It is possible that some or all of the LT-HSCs seeded into ex 
vivo culture differentiate to progenitors during the 48h transduction culture period. Thus, the 

Kat6b knockdown phenotype we observe may be manifest in either HSCs or their progenitor 

progeny. We did not observe any BFU-E-only colonies in our in vitro CFU assays, which 

could be lost due to the effect of our culture conditions on erythroid differentiation potential 

of LT-HSCs.

We speculate that therapeutically increasing levels of KAT6B in old HSCs may rejuvenate 

aspects of altered functionality, particularly with respect to lineage-balanced differentiation. 

A recent report by Adelman et al. demonstrated a reduction in active enhancerassociated 

chromatin modifications at a KAT6B-proximal enhancer region in aged versus young human 

HSCs (Adelman et al., 2019), suggesting that therapeutic approaches to increase enhancer 

activity may be a viable strategy to boost Kat6b expression in old HSCs. Further studies will 

be required to test whether restoring expression of Kat6b in old HSCs to levels observed in 

young HSCs is sufficient to restore balanced lineage differentiation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Histone acetyltransferase Kat6b highly expressed in hematopoietic stem cells

• KAT6B expression is reduced in hematopoietic stem cells with aging

• Reduced Kat6b causes decreased erythropoietic activity and increased 

myeloid differentiation
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Figure 1. Functional shRNA screen for epigenetic regulators of myeloid versus B-lymphoid 
differentiation identifies Kat6b.
(A) Hierarchy of hematopoietic differentiation showing cellular states leading to mature 

myeloid and lymphoid cells. (B) Schematic of candidate selection criteria to identify 

chromatin regulatory genes involved in myeloid versus B-lymphoid differentiation of 

hematopoietic stem and progenitor cells. GMP; granulocyte-macrophage progenitors, CLP; 

common lymphoid progenitors. (C) Schematic of experimental design to test epigenetic 

regulatory gene candidates using shRNA-mediated knockdown in lymphoid-primed 

multipotent progenitor cells (MPP4) and colony-forming unit (CFU) assays. (D) (Top panel) 

Frequency of myeloid and B-lymphoid colonies out of total colonies and (Bottom panel) 

CFU cloning efficiency calculated as the total number of myeloid and B-lymphoid colonies 

following shRNA knockdown of the indicated target genes divided by the total number of 
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myeloid and B-lymphoid colonies in NTC. NTC; non-targeting control. Bars represent mean 

± SEM of n ≥ 2 biological replicates. *P < 0.05; **P < 0.01; ***P < 0.001 by two-way 

ANOVA and Dunnett’s multiple comparisons test or one-way ANOVA and Holm-Sidak’s 

multiple comparisons test.
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Figure 2. KAT6B is decreased in old LT-HSCs.
(A) Relative expression of Kat6b in LT-HSCs and MPP4 cells isolated from young (2–4 

month) and old (20–23 month) mice. Bars represent mean ± SEM of n ≥ 3 biological 

replicates. *P < 0.05 by unpaired t test. (B) Representative immunofluorescence images of 

KAT6B and DAPI in LT-HSCs isolated from young and old mice. Scale bar equals 5 um. (C) 

Violin plots of mean fluorescence intensity (MFI) of KAT6B in LT-HSCs isolated from 

young and old mice. Solid lines indicate median and dotted lines indicate quartiles. Data 

points include n = 17–64 individual cells sampled from n = 4 biological replicate animals. 

***P < 0.001 by unpaired t test.
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Figure 3. Kat6b knockdown results in loss of erythropoietic activity from phenotypic LT-HSCs in 
vitro.
(A) Schematic of experimental design to knockdown Kat6b in LT-HSCs and assess 

differentiation in the myeloid CFU assay. (B) Relative expression of Kat6b in colonies 

following shRNA-mediated knockdown of Kat6b or NTC. Bars represent mean ± SEM of n 
≥ 3 biological replicates performed in independent experiments. ***P < 0.001 by unpaired t 
test. (C) Total number of colonies produced and (D) colony subtype distribution from 200 

GFP+ cells post-transduction of LT-HSCs. CFU-M; macrophage, CFU-GM; granulocyte-

macrophage, CFUGEMM; granulocyte-erythrocyte-macrophage-megakaryocyte. Dots 

denote biological replicates and bars represent mean ± SEM of n ≥ 3 biological replicates 

performed in independent experiments. *P < 0.05; ***P < 0.001 by unpaired t test.
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Figure 4. Kat6b knockdown alters myeloid and erythroid differentiation of phenotypic LT-HSCs 
in vivo.
(A) Schematic of experimental design to knockdown Kat6b in LT-HSCs and assess 

hematopoietic reconstitution in lethally irradiated recipient mice compared to NTC-

transduced LT-HSCs. (B) Frequency of donor-derived cells (CD45.2+ GFP+) in the PB of 

recipient mice, (C) myeloid cells (CD11b+) within donor-derived PB cells (CD45.2+ GFP+), 

and (D) erythroid cells (Ter119+) within donor-derived PB cells (GFP+) at 1 month (1mo) 

post-transplant. (E) Frequency of B cells (B220+) and (F) T cells (CD3+) within donor-

derived PB cells at 1mo post-transplant. Each dot represents one recipient mouse. Lines 

represent mean ± SEM of n ≥ 7 biological replicates. *P < 0.05; ***P < 0.001 by Mann-

Whitney test.
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Figure 5. Kat6b knockdown alters gene expression programs critical for multilineage 
differentiation.
(A) PCA plot showing unsupervised clustering of gene expression profiles from Kat6b sh1 

(n = 3) and NTC (n = 3). Each color represents a set of biological replicate samples. (B) 

Volcano plot showing log fold changes of genes against -log10 of FDR. Points in red 

highlight genes with FDR < 0.05. (C) Intersection of gene signatures upregulated in young 

versus old LT-HSCs (top) and GSEA of NTC and Kat6b sh1 RNA-seq data using this 

derived signature (bottom). (D) Intersection of gene signatures upregulated in old versus 

young LT-HSCs (top) and GSEA of NTC and Kat6b sh1 RNA-seq data using this derived 

signature (bottom). (E) Top GO terms enriched in genes found to be significantly 

differentially expressed in Kat6b sh1 versus NTC (fold change > 2 and P < 0.05). (F) 
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Normalized enrichment score from GSEA analysis of the indicated datasets in Kat6b sh1 

versus NTC. Black bars indicate FDR < 0.05, white bars indicate FDR > 0.05.
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