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Abstract

There are significant differences in microvascular morphological features in diseased tissues, such 

as cancerous lesions, compared to noncancerous tissue. Quantification of microvessel 

morphological features could play an important role in disease diagnosis and tumor classification. 

However, analyzing microvessel morphology in ultrasound Doppler is a challenging task due to 

limitations associated with this technique. Our main objective is to provide methods for 

quantifying morphological features of microvasculature obtained by ultrasound Doppler imaging. 

To achieve this goal, we propose multiple image enhancement techniques and appropriate 

morphological feature extraction methods that enable quantitative analysis of microvasculature 

structures. Vessel segments obtained by the skeletonization of the regularized microvasculature 

images are further analyzed to satisfy other constraints, such as vessel segment diameter and 

length. Measurements of some morphological metrics, such as tortuosity, depend on preserving 

large vessel trunks. To address this issue, additional filtering methods are proposed. These 

methods are tested on in vivo images of breast lesion and thyroid nodule microvasculature, and the 

outcomes are discussed. Initial results show that using vessel morphological features allows for 

differentiation between malignant and benign breast lesions (p-value < 0.005) and thyroid nodules 

(p-value < 0.01). This paper provides a tool for the quantification of microvasculature images 

obtained by non-contrast ultrasound imaging, which may serve as potential biomarkers for the 

diagnosis of some diseases.
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I. INTRODUCTION

Microvasculature architecture is known to be associated with tissue state and pathology. 

Various circumstances and diseases can alter such architecture at distinct size scales. Studies 

have demonstrated that the development of malignant tumors correlates with changes in the 

vascularity of healthy tissue [1]. Altered mechanical properties in malignant tumors are 

known to lead to the growth of more permeable and tortuous vessels [2], [3]. Vessel 

tortuosity has been found to reveal information about some diseases [4], [5]. Moreover, 

microvascular parameters, such as vessel diameter, segment length, and the number of 

branching points, correlate very well with tumor aggressiveness and angiogenesis [6].

Several preclinical studies are available to derive quantitative information from 

microvasculature images obtained by contrast agent ultrasound for diagnostic purposes and 

treatment monitoring [7]–[12]. Other studies on perfusion imaging [13] and molecular 

imaging [14], [15] provide some quantitative information of the vessels. Conventionally, 

these techniques endeavor to screen either the measure of blood flow inside a tissue volume 

by testing the increase in ultrasound signal from the blood pool contrast agents, or the 

presence of molecular markers of an ailment through imaging of the targeted contrast agent 

held in the blood flow. While a few studies have recently demonstrated the capacity of 

quantifying the architecture of the blood vessels in thyroid nodules and breast lesions, the 

use of contrast agents remains a barrier for extensive investigations [16]–[18]. On the other 

hand, analyzing vascular networks using ultrasound imaging devoid of contrast agent is a 

new framework made possible only recently, thanks to new clutter removal processing 

methods [19]–[21]. For example, Cohen et al. [22] demonstrated that vascular structures 

provide useful information for neuro-navigation in brain imaging. This framework exploits 

the coherence of the tissue data provided by fast plane wave imaging of a large field of view 

to enable detailed imaging of the microvasculature structure by integrating longer data 

ensembles.

Blood vessel segmentation and analysis techniques have been studied exhaustively in other 

imaging modalities, such as optical imaging of the retina [23], [24]. Retinal vessel 

segmentation algorithms are a principal component of automatic retinal infection screening 

frameworks. Different vessel analysis methods used in retinal images acquired by a fundus 

camera have been summarized in detail in the literature [23], [24]. Yousefi et al. introduced a 

hybrid Hessian/intensity-based method for segmentation and quantification of microvessel 

shape and diameter imaged by functional Optical coherence tomography (OCT) in vivo [25]. 

Moreover, methods for automatic or semi-automatic segmentation and quantification of 

blood vessel structure in OCT imaging have been introduced [26]. Application of the brain 

vessel segmentation has also been described in magnetic resonance imaging (MRI) [27]. A 

vessel analysis tool was reported for the morphometric measurement and representation of 

vessels in computed tomography (CT) and MRI data sets [28]. Methods of blood vessel 

segmentation algorithms have been reviewed widely in the literature [29]. The isotropic 

minimal path-based framework has been proposed for the segmentation and quantification of 

the vascular networks [30].

Ghavami et al. Page 2

IEEE Access. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this paper, we focus on the challenges of vessel quantification for 2-dimensional (D) 

label-free ultrasound Doppler imaging and propose solutions to overcome such challenges. 

We evaluate the performance of proposed solutions on the quantification of in vivo breast 

and thyroid data. As noted, vessel quantification has been widely used in a broad range of 

imaging modalities; however, adaptation for the analysis of the microvasculature images 

obtained by non-contrast ultrasound requires careful treatment. This imaging modality, 

while enabling a versatile mechanism for acquiring small vessel images, introduces some 

challenges. The main problem stems from the 2-D interpretation of 3-D vascular structures. 

The work in retinal vessel analysis, while performed in 2-D, only considers surface 

vascularity for which a 2-D model is well-justified. Considering vessels are distributed in a 

volume, 2-D cross-sectional ultrasound imaging may present erroneous branching and vessel 

crossings that can lead to incorrect interpretation of vessel segments. Morphological 

parameters such as vessel density and diameter are not significantly affected by this 

phenomenon. However, parameters such as tortuosity, branching points, and the number of 

vessel segments will be affected and the results may become inaccurate. Another difficulty 

arises from imaging vessels in the cross-sectional orientation, where vessels may appear as 

small segments with incorrect information regarding vascular tree segments. The main 

contribution of this paper is to address these issues using either vessel filtering or 

morphological operations such that the most dominant vascular features can be obtained 

from 2-D non-contrast ultrasound imaging. Finally, results of quantitative morphological 

parameters are tested on two in vivo patient populations, including benign and malignant 

breast lesions and thyroid nodules. Initial results show that the morphometrics extracted 

from ultrafast ultrasound imaging has the potential to help the diagnosis of cancerous breast 

lesions and thyroid nodules.

This paper is organized into four sections. Section II introduces the materials and methods, 

which includes 6 subsections to highlight A) the study sample and histopathological 

outcomes, B) image formation, C) morphological filtering/skeletonization, D) vessel 

quantification, and E) experimental setup. The results are presented in Section III. In Section 

IV, we conclude with a discussion, point out the limitations of the study, future research 

directions, and open problems related to the quantitative assessment of microvasculature 

morphological features obtained from non-contrast ultrasound images.

II. MATERIAL AND METHOD

To demonstrate the potential clinical application of contrast-free quantitative ultrasound 

microvasculature imaging, we performed the technique on a group of patients with 

suspicious breast lesions or thyroid nodules. Before quantifying vessel morphological 

features from ultrasound microvasculature images, one must perform multiple preprocessing 

steps. The first step is image formation, which reconstructs the microvasculature image from 

a sequence of plane wave ultrasound images [20]. Second, vessel filtering is used to enhance 

the structure of vessels and provide adequate background separation for segmentation. 

Morphological filtering, vessel segmentation, and skeletonization occur last. The main 

contribution of this paper is in the use of spectral filtering, vessel segmentation, filtering and 

vessel quantification.
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A. Study Sample And Histopathological Outcomes

Under an institutional review board-approved protocol, 15 patients with breast lesions (8 

malignant and 7 benign) and 15 patients with thyroid nodules (9 malignant and 6 benign) 

participated in this study. Written, informed consent was obtained. The lesions from the 

breast and thyroid patients were manually segmented using the B-mode images obtained 

from the first frame in the imaging sequence. All patients underwent biopsy following the 

ultrasound examination, and pathology results were used as the final diagnosis.

B. Image Formation

Figure 1 demonstrates the sequence of processing steps of the microvasculature image 

formation, morphological operations, and vessel quantifications algorithm with an example 

of the output image in each processing step. Processing begins with the storage of ultrasound 

plane-wave data in the in-phase quadrature (IQ) format. This data can be characterized by 

the complex-valued variable s (x, z, t), where x and z denote the lateral and axial 

dimensions, respectively, and t denotes the ultrasound imaging slow time. This signal can be 

described as the sum of three components as follows:

s (x, z, t) = c (x, z, t) + b (x, z, t) + n (x, z, t), (1)

where c (x, z, t), b (x, z, t) and n (x, z, t) represent the clutter signal, the blood signal, and the 

additive thermal noise, respectively. The spatial and temporal characteristics of these three 

components are different. n (x, z, t) The signal s (x, z, t) corresponds to tensor 

S ∈ ℝnx × nz × nt, where nx and nz are the number of spatial samples along the x-direction and 

z-direction, respectively, and nt is the number of samples over time. The data tensor S is 

reshaped to form a Casorati matrix by transforming tensor S into a 2-D spatiotemporal 

matrix SC ∈ ℝ(nx × nz) × nt to provide information from each frame in one column of the 

matrix. This transformation has also been proposed in other imaging modalities like MRI 

and CT [31]–[34].

Using singular value decomposition (SVD) of SC we have [35]

Sc = U∗V (2)

where Δ ∈ ℝ(nx × nz) × nt is a non-square diagonal matrix, U ∈ ℝ(nx × nz) × (nx × nz) and 

V ∈ ℝnt × nt are orthonormal matrices, and indicates conjugate transpose. Columns of U and 

V matrices correspond to the spatial and temporal singular vectors of SC. Based on the 

definition of SVD, the matrix SC can be decomposed into the sum of rank-one matrices Ai = 

Ui ⊗ Vi as follows:

SC = ∑iλiAi = ∑iλiUi ⊗ V i (3)

where Ui and Vi are ith columns of U and V, respectively, λi is ith ordered singular values of 

SC, and ⊗ denotes outer product operation. Each column of Vi is a temporal signal with 

length nt. Each column Ui is a spatial signal with the dimensionality of nx × nz. Each vector 
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of Ui describes a 2-D spatial image Ii which is modulated by a temporal signal Vi. Hence, 

clutter removal based on a low-rank tissue assumption can be formed as

sblood(x, z, t) = s(x, z, t) − ∑
i = 1

n
λiIi(x, z)V i(t) . (4)

In this paper, the threshold n is selected based on setting a limit on the slope of the second-

order derivative of eigenvalues decay, as described by Bayat, et al. [36]. The filtered signal 

sblood (x, z, t) is used to produce the power Doppler image as

I (x, z) = ∑
k = 1

K
∣ sblood(x, z, kT ) ∣ 2

(5)

where T is the sampling time between two successive ultrafast ultrasound frames. To further 

enhance clutter removal performance, an additional step is proposed before forming the 

intensity image in (5). This extra step enforces the unilateral Doppler shift which is expected 

to occur from the unidirectional flow in vessels. Hence, the final image can be formed as

I (x, z) = Ip − In (6)

where Ip is the energy at the positive frequency side of the spectrum and is defined as

Ip = ∫
0

∞
∣ Sblood (x, z, f) ∣ 2df (7)

where Sblood (x, z, f) is Fourier transform of sblood (x, z, t), and In is energy at the negative 

frequency side of the spectrum and is defined as

In = ∫
−∞

0
∣ Sblood (x, z, f) ∣ 2df . (8)

Finally, a top hat filter (THF) is applied on I (x, z) to remove the background noise. A THF 

is comprised of a background estimation, followed by a background subtraction operation 

[37]. The resulting output image of THF is denoted by IT (x, z), which represents the 

intensity at coordinates (x, z). Details about the application of this filter for background 

removal of non-contrast ultrasound microvasculature images have been previously described 

[20].

Hessian-based filtering: Morphological filtering based on a THF was used to enhance 

the visibility of the microvasculature image in the presence of strong background signals. 

Due to background noise, random patterns will also be present at the output of a THF. 

Hence, vessel enhancement filters are used to penalize background noise and further 

enhance vessel structure. Enhancement filters based on the analysis of eigenvalues of the 

Hessian matrix applied on a 2-D image selectively amplify a specific local intensity profile 

or structure in an image. Hessian-based filters [38] distinguish between different local 
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structures by analyzing the second order intensity derivatives at each point in the image. The 

analysis is typically performed on a Gaussian scale space of the image to enhance the local 

structures of various sizes, as previously described [20].

For 2-D images, the following vessel likeliness measure has been proposed [38] and used 

[20] for vessel filtering of ultrasound microvasculature images:

υo(s) =
0 if λ2 > 0

exp − RB
2

2β2 1 − exp − s2

2α2 otherwise,
(9)

where RB = λ2/λ1 is the “blobness” measure in the 2-D image and represents the 

eccentricity of the second order ellipse, λ1 and λ2 are the eigenvalues the Hessian matrix, α 
and β are filter parameters and smin ≤ s ≤ smax is the scaling parameter of the Hessian-based 

filter with minimum and maximum size scales of smin and smax, respectively. To be 

consistent, we kept these parameters constant at α = 1 and β = 0.6 across all examples. The 

effect of these parameters were extensively discussed in [38], and re-discussed and fine-

tuned for current application in [20].

For consistency in notation, the output image of the Hessian-based filter is denoted by IH (x, 

z).

C. Morphological Filtering, Vessel Segmentation And Skeletonization

Each step of the morphological operations described in this subsection is listed in Table 1. In 

morphological operations, the size of each pixel in an output image is correlated with the 

respective pixel in the input image, along with its neighbors. By selecting the size and shape 

of the areas in the neighborhood, we can develop a morphological operation that is sensitive 

to the particular shapes in the input image.

Morphological filtering and vessel segmentation include the following steps: converting the 

microvasculature image (output of Hessian filter) to a binary image, removing small noise-

like objects through an erosion and dilation operation, removing small holes, filling small 

holes with a dilation and erosion operation, finding the image skeleton, cleaning the skeleton 

image, removing spur pixels, labeling connected components, finding branch points, dilating 

branch points, removing branch points, and removing small objects. In the remainder of this 

section, each step will be briefly described. After these steps, the output image includes the 

vessel segments. Those segments are analyzed in the vessel quantification module to 

estimate the desired quantitative parameters of the vessels. The following preprocessing 

steps are included: a) Converting grayscale to binary: The input image to the morphological 

operation module, IH (x, z), is converted to a binary image IB (x, z) using the global 

threshold (THR). b) Erosion followed by dilation: We use erosion followed by dilation to 

remove some noise-like small objects in the image after amplitude thresholding [39]. c) 

Removing small holes: The spectral subtraction in equation 6, while providing additional 

clutter suppression, may induce erroneous intensity nulling in the image at isolated points 

along the vessels with horizontal orientation due to symmetric Doppler spectra. A 

morphological “hole-filling’ step is added to avoid erroneous splitting of the vessels at these 
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points; this step sets a pixel to 1 if five or more pixels in its 3-by-3 neighborhood are 1s; 

otherwise, it sets the pixel to 0. After this operation, some small holes with larger sizes 

remain. To remove the remaining small holes in the vessels, we use the operation of a 

dilation followed by erosion with a structure element size of 4 pixels (0.85 λ). d) Finding the 
skeleton image: To estimate the centerline of vessel structure, the next step in the 

morphological operations on binary images is removing pixels so that an object without 

holes shrinks to a line, and an object with holes shrinks to a connected ring halfway between 

each hole and the outer boundary. Finding the skeleton image is based on a thinning 

algorithm [40].

D. Vessel Quantification

Vessel segments (e.g., overlaid on the binary vessel image in Figure 1) are used for vessel 

quantification. The processing steps of the vessel quantification are shown in Figure 1. The 

quantification parameters include number of vessel segments, vessel density, number of 

branch points, vessel diameter, and vessel tortuosity. Two different tortuosity metrics are 

considered: the distance metric (DM) and the sum of the angle metric (SOAM). We use the 

Moore-Neighbor tracing algorithm modified by Jacob’s criteria [41] to track vessels. Each 

vessel is defined by a “location vector” whose elements represent the pixels within the 

vessel. The location vector for the vessel j is defined as Pj := [p1j, .…, pNjj], where pi,j := 

[xij, zij]T is the point i in the vessel j, and Nj is the length (number of points) of vessel j.

1) Distance Metric’ (DM): The DM of the vessel j is the most common parameter used 

to measure vascular tortuosity in 2-D [23], [24]. The DM of a vessel is defined as the ratio 

between the actual path length of a meandering curve and the linear distance between 

endpoints. The DM for vessel j is denoted by τ in the following equation:

τj = ∑
k = 2

N
pk, j − pk − 1, j / pN, j − p1, j . (10)

2) Sum Of Angle Metric (SOAM): The displacement vectors between points pk−1,j, pk,j 

on vessel j are defined by

dk, j = pk, j − pk − 1, j, (11)

where k ∈ {2, … , Nj − 2}, and Nj is the length of the vessel in pixels. The in-plane angle at 

the point pk,j is given by

Ikj ≔ cos−1 dk, j dk, j ⋅ dk + 1, j dk + 1, j . (12)

Since we are performing 2-D imaging, we only have the in-plane angle. Therefore, the total 

angle at point pkj and vessel j is given by

C Pkj = Ikj . (13)
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The SOAM calculates the total tortuosity of the vessel j and is defined as in [4].

SOAMj = ∑
k = 2

Nj − 2
C Pkj/ ∑

k = 2

N
pkj − pk − 1 j . (14)

3) Estimating Diameter: To acquire localized vessel diameter, we first invert the binary 

image. Next, we obtain the Euclidean distance in the inverted image between pixels 

corresponding to vessel segments and the nearest pixel corresponding to the background of 

the image. For all pixels corresponding to vessels, the distance to the most adjacent non-

vessel pixel is dedicated to that pixel. The set of points inside of the vessel region and the 

background region is denoted by V and B, respectively. For any point of (x, z) ∈ V, the 

Euclidian distance between (x, z) and all points (xb, zb) ∈ B are calculated, and the 

minimum distance value is obtained as follows:

d (x, z) = min
(xb, zb)

(x − xb)2 + (z − zb)2 s . t . (xb, zb) ∈ B . (15)

The vessel image is then skeletonized using a thinning algorithm [40] so that the distances 

along the centerlines can be calculated. The ith point at centerline of the vessel j is denoted 

by (xij, zij. Vessel diameter is D (xij, zij = 2d (xij, zij). For each vessel segment, the average 

diameter of the vessel segment over points related to that vessel is reported as vessel 

segment diameter Dj.

4) Quantification Of Vessel Trunks: In 2-D imaging of 3-D vascular structures, some 

vessels are only partially visible in the imaging plane. Moreover, it is possible that vessels 

may appear to cross each other when they do not cross in 3-D space. This crossing occurs 

because of the slice thickness of an ultrasound image. The vessels seem to cross if both are 

within the slice thickness of B-mode and they are not parallel. Most often, one vessel goes 

out of the imaging plane, making it look like a small branch. One of the consequences of the 

branching for vessel quantification is that the main trunk breaks into short vessel segments, 

which may adversely impact the quantification of the morphological features of the trunk. 

To resolve this problem, we propose two strategies and compare the results: (1) Hessian-

based filtering with different minimum size scales, and (2) morphological operations to 

recover large trunk segments after branching of the small vessel segments. In the first 

method, the minimum size scale of the Hessian-based filtering, i.e. Smin, controls the 

formation of small vessels in the image. In the second method, we create a disk-shaped 

structuring element with radius r μm. Morphological operations using disk approximation 

run much faster when the structuring element uses other approximations, such as octagon or 

diamond approximations. We perform erosion followed by dilation using the same 

structuring element for both of the operations (i.e., disk-shaped structuring element). We 

define the erosion/dilation (ED) factor as

ED ≔ r (16)
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to remove small objects and analyze trunks inside the lesion. Using this method, vessel 

structures with a size less than r are removed from the image. In dilation, only structures 

larger than r that remain in the image are dilated and converted to their original size. 

Therefore, we expect only vessel trunks to appear in the final image. In the tortuosity 

analysis, our goal is to analyze the vessels that are fully located in the imaging plane. 

Therefore, by removing small vessel segments connected to main vessel trunks, it is possible 

to analyze the main vessel trunk.

5) Contribution Of Small Vessel Segments In Tortuosity Analysis: The 

microvasculature image is constructed from a sequence of 2-D ultrasound plane wave 

images in which some vessels are only partially visible in the imaging plane. This, in turn, 

results in observing small vessel segments in the image. The residual noise, when passed 

through the Hessian-based filtering, might also result in structures that are perceived as short 

vessel segments. Hence, an additional step is required to remove unwanted erroneous or 

partial vessel segments; this is accomplished by enforcing a minimum vessel segment length 

constraint as part of the quantification tool. This operation alone can considerably change 

some morphometric values (e.g., DM representing vessel tortuosity), as small vessel 

segments may skew the distribution of such morphometric values with no added 

information.

E. Experimental Setup

To assess the performance of the proposed methods for morphological analysis of the 

microvasculature images obtained by contrast-agent-free ultrasound, an Alpinion Ecube12-R 

ultrasound machine (ALPINION Medical Systems, Seoul, Korea) and a linear array 

transducer L3-12H (ALPINION Medical Systems, Seoul, Korea) were used. For each 

patient, 3 seconds of high frame rate, 5-angle compounded plane wave imaging data were 

acquired at 680 frames per second. Vasculature images were obtained using SVD clutter 

removal filtering, followed by THF background removal and Hessian-based vessel filtering, 

as described previously in the literature [20]. The THF was employed using a disk 

structuring element of size 577.5 μm (15 pixels equal to 3.2 λ, where λ is the wavelength of 

imaging). Vessel filtering was applied using size scales in the range of 115.5 μm (3 pixels 

corresponding to 0.65 λ) to 346.5 μm (9 pixels corresponding to 1.9 λ). The ED factor 

selected was 154 μm (4 pixels corresponding to 0.85 λ) based on the system specifications. 

Values outside this range are explicitly noted in the results section. The vessel’s filter 

parameters α and β were set to 1 and 0.6, respectively. Vessel images were further analyzed 

to acquire morphological parameters using the proposed method. The minimum length for a 

vessel segment was considered 385 μm; the minimum diameter for a vessel segment was 

considered to be 181.2 μm (i.e. λ). To convert the grayscale images to binary, a THR of 0.15 

was used, which is obtained empirically for removing noise fluctuations.

III. RESULTS

We applied the vessel quantification algorithm on the microvasculature images obtained 

from vascularized breast lesions and thyroid nodules. Fifteen different breast lesions, 8 

malignant and 7 benign, were studied, along with 15 different thyroid nodules, 9 malignant 
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and 6 benign. We derived quantitative parameters of the microvasculature images for these 

lesions to study and address the challenges of vessel quantification using contrast-agent-free 

ultrasound imaging.

To examine the effect of small vessel branches connected to the main vessel trunk on vessel 

quantification, we studied a malignant breast lesion. Figures 2(a) and (b) show the output of 

the Hessian-based filtering for this lesion with different minimum size scales. As Figure 2(a) 

shows, there are some branches connected to the main vessel trunk, and these branches 

cause the main trunk to break down into small vessel segments at branching points. When 

the minimum size scale of the vessel filter is increased to 462 μm, these branching vessels 

are not visible, as shown in Figure 2(b). Hence, the multiple scale size processing 

capabilities of the vessel filter enable removal of the smaller vessel branches so that large 

trunks can be more accurately analyzed for tortuosity. The apparent disadvantage of 

increasing the minimum size scale is losing fine vessel segments with diameters smaller than 

the minimum allowed. Figures 2(c) and (d) show the corresponding binary images of 

Figures 2(a) and (b), with extracted vessel segments shown in red color overlaid on the 

binary segmentation of the vasculature skeleton (yellow). Figure 2(e) shows the mean of the 

DM [mean(τ)] over different vessel segments of the malignant breast lesion as a function of 

the minimum size scale of the Hessian-based filter (maximum size scale of 500.5 μm).

Note that the mean(τ) increases with an increasing minimum size scale. The advantage of 

using a higher value for the minimum size scale is that the contribution of small vessel 

segments, which may partially appear in the imaging plane, on the calculation of the 

mean(τ) is reduced. Moreover, vessel trunks do not break into smaller vessels, and vessels 

with larger tortuosity contribute to calculating the mean(τ). Therefore, the mean(τ) does not 

reduce artificially due to the contribution of partially-appearing vessels in the imaging plane 

or broken vessel trunks. The mean(τ), though, is not necessarily an increasing function of 

the minimum size scale, s, in different microvasculature images, since vessel trunks may not 

be tortuous naturally in all microvasculature images. Figure 2(f) shows the mean diameter of 

the vessel segments as a function of the minimum size scale of the Hessian-based filter. As 

expected, the mean diameter of vessel segments is an increasing function of the minimum 

size scale. Figure 2 (g) shows the mean length of the vessel segment as a function of the 

minimum size scale. As we expected, due to the removal of the small vessel segments, the 

mean length of vessel segments is an increasing function of the minimum size scale. Figure 

2(h) shows the number of vessel segments as a function of the minimum size scale. It is 

evident that the number of vessel segments is a decreasing function of the minimum size 

scale, as fewer branching points are expected to occur when small vessel segments are 

discarded. Additionally, using higher values for the minimum size scale of vessels for 

tortuosity analysis provides a more accurate estimation of vessel trunk tortuosity. This effect 

results from keeping vessel trunks while removing small vessel segments connected to the 

main vessel trunk, which consequently prevents the breaking of the vessel trunk during the 

branching procedure.

To illustrate the effect of ED on removing the small vessel segments connected to a trunk 

and its impact on the DM, we applied different values for this parameter on the 

microvasculature image post Hessian-based filtering, shown in Figure 2(a). This process 
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removes small vessel segments connected to the vessel trunk, as seen inside the white ellipse 

in Figure 2(a). Figure 3 shows the corresponding binary image of the microvasculature 

image of a malignant breast lesion with a minimum size scale of 0.65 λ and maximum size 

scale of 1.9 λ for different levels of the ED factor with λ = 181.2 μm. As can be observed in 

Figure 3(a–d, inside the white ellipse), by increasing the ED factor, small vessel branches 

disappear while large vessel trunks are preserved in the image. Additionally, a very large ED 

factor can incur significant distortion in the binary image in comparison with the SVD 

image. Figure 3(e) depicts the mean of the DM [mean(τ)] over different vessel segments of 

the malignant breast lesion as a function of the ED factor in μm. The mean(τ) is shown to be 

an increasing function of the ED factor. Figure 3(f) demonstrates the mean diameter of 

vessel segments [mean(diameter)] as a function of the ED factor. As expected, the mean 

diameter is an increasing function of the ED. Figure 3(g) shows the mean length of vessel 

segments [mean(length)] as a function of the ED factor. As expected, by removing small 

vessel segments, the mean length of vessel segments is an increasing function of the ED 

factor. Figure 3(h) shows the number of vessel segments as a function of the ED. It is 

evident that the number of vessel segments is a decreasing function of the ED, mainly due to 

the removal of the small vessel segments. By comparison, the results seen in Figure 3(e) and 

Figure 2(e) demonstrate that using ED for removing small vessel segments provides a 

smoother increment in the DM than changing the minimum size scale of the Hessian filter; 

however, large ED values (≥ 6 pixels, equivalent to 231 μm) should be avoided to prevent 

adding unwanted distortion to the image. In the remainder of this paper, vessel filtering was 

applied using size scales in the range of 115.5 μm (3 pixels) to 346.5 μm (9 pixels). The ED 

factor 154 μm (4 pixels) was selected based on the system specifications.

To demonstrate the potential diagnostic applications of microvessel quantification in breast 

lesions, it is helpful to study examples of vessel quantification applied to in vivo data from 

benign and malignant breast masses with fixed parameters, as described in the experimental 

setup subsection. Figures 4(a–d) depict the steps from the B-mode image (a) to the skeleton 

image (d) of the malignant breast lesion. Figures 4(e–h) depict the steps from the B-mode 

image (a) to the skeleton image (d) of the benign breast lesion. Based on these results, we 

estimated the quantitative parameters of vessels (e.g., diameter, number of vessel segments, 

number of branch points, DM, and SOAM) for these two lesions. Figures 4(d) and (h) show 

the vessel diameter map for malignant and benign breast lesions, respectively, where the heat 

map represents the local diameter variations across different parts of the vascular structure. 

The remaining Figure 4 images provide the morphological finding for the same lesions.

Along the same line, to show the potential diagnostic applications of microvessel 

quantification in thyroid nodules, it is helpful to study examples of vessel quantification 

applied to in vivo data from benign and malignant thyroid nodules. Figure 5 presents the 

quantification of the vasculature for the thyroid malignant and benign nodules. Results of the 

morphological analysis are summarized in Figures 5 (i) to (k). Quantitative assessment of 

these two breast lesions and two thyroid nodules are summarized in Table 2. In this table, the 

normalized number of vessel segments (NNV) and branch points (NNB) are calculated by 

dividing the number of vessel segments (NV) and branch points (NB), respectively, to the 

geometric area of the lesion in the imaging plane. Of the breast lesions and thyroid nodules, 

the number of vessel segments and branch points in the benign cases are smaller than those 
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of the malignant cases. Mean and standard deviation vessel diameter values are lower in the 

benign breast lesion in comparison with those values from the malignant breast. Figures 

6(a)–(d) show the box plots for vessel density, number of vessel segments, number of branch 

points, and mean of distance metric in benign and malignant breast lesions. Malignant 

lesions had higher vessel density compared to benign cases, and the difference was statistic 

ally significant (p < 0.01). Benign lesions had a significantly lower number of vessel 

segments (median 6) compared to malignant (median 31, p<0.05). Malignant cases had a 

significantly higher number of branch points compared to the benign cases (p<0.01). Also, 

the mean(τ) was significantly higher in the malignant cases compared to the benign cases 

(p<0.01). It is noteworthy that if the ED selected is smaller (i.e. ED < 155 μm), the 

difference in the mean of distance metric between the two groups is no longer significant 

(i.e. if ED = 77 μm, then p = 0.68).

Figures 7 (a) – (c) show the box plots for the vessel density, number of vessel segments, and 

number of branch points in thyroid nodules. The vessel density is higher in malignant 

lesions in comparison to benign lesions, but the difference between the two is not 

statistically significant (p<0.18). Benign lesions had a significantly lower number of vessel 

segments (median 31) compared to malignant (median 101, p<0.01). Also, malignant cases 

had a larger number of branch points compared to the benign lesions (p<0.01).

IV. DISCUSSION & CONCLUSION

Using our proposed vessel quantification algorithm on the microvasculature images obtained 

from vascularized breast lesions and thyroid nodules, the results are in agreement with other 

studies, such as contrast-enhanced acoustic angiography technique [42]. Gessner, et al. [7] 

showed that the morphological features can function as potential biomarkers for the 

detection of cancerous lesions using acoustic angiography. our findings agree with the 

results of shelton, indicating that the morphometric analysis of microvessels of malignant 

tumor using acoustic angiography reveal significant vessel tortuosity irregularities associated 

with tumor evolution [8].

It has been noted that ultrasound measurement of vessel density using acoustic angiography 

could evaluate the response to anti-angiogenic therapy in renal cell carcinoma [43]. 

Although we do not have the complete results, we are investigating these quantitative 

changes in our ongoing research. In [44] the investigators demonstrated the quantitative 

assessment of microvasculature using microbubble contrast agents, confirming increased 

vessel density in tumors compared to controls, which concurs with our results. The 

quantification of morphological parameters is subjective or impossible in conventional 

ultrasound without contrast-enhancement, due to poor quality of the final vessel image. in 

this paper, we introduced a method using ultra-fast ultrasound imaging to enhance tumor 

microvessels without using a contrast agent, which makes it possible for quantitative 

analysis of microvessel structures.

In this paper, a set of methods for quantification of the tissue microvasculature obtained by 

non-contrast ultrasonic microvasculature imaging was presented. The microvasculature map 

comprises vessel segments resulting from blood activity. We introduced procedures to 
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acquire morphometric parameters with additional morphological constraints to reduce 

erroneous data. As shown in a photoacoustic imaging study [45], vascular structures were 

accepted as vessel segments when multiple constraints on the amplitude, diameter, and 

length of the vessel segments were satisfied. We addressed challenges in acquiring 

segmentation-ready microvasculature images and showed that a combination of background 

removal and vessel enhancement filtering allows vessel segmentation and skeletonization, in 

turn enabling morphological analysis. The quantitative parameters may include tortuosity 

measures, (DM and SOAM), diameter of vessel segments, length of vessel segments, 

number of vessel segments, number of branching points, and vessel density. Given the 2-D 

nature of B-mode ultrasound imaging, accurate interpretation of 3-D microvascular features 

like branching and vessel crossings can be difficult. While quantitative evaluation of 

parameters, such as vessel density and diameter, are not significantly affected by this 

phenomenon, measures of the tortuosity, number of branching points, and number of vessel 

segments may become inaccurate. In this paper, we introduced several strategies to enable 

the extraction of several morphological features by adding additional constraints. The most 

important contribution was to devise methods to preserve large vessel trunks that may be 

broken into small pieces due to an intersection with out-of-plane vessel segments, namely by 

removing small size-scales from the vessel filtering and small vessel segments connected to 

large trunks via morphological operations. Another limitation in ultrasonic microvasculature 

images is related to small vessel segments which may result from cross-sectional imaging of 

the vessels. These may appear as small vessel segments with incorrect information regarding 

the vascular tree segments. We addressed this issue by enforcing vessel segment length and 

diameter constraints to removed partially visible vessel segments from the quantification 

analysis. The methods presented in this paper provide a set of tools for quantitative 

assessment of microvasculature morphological features. These features may be associated 

with certain diseases or different health conditions. In cancer, for example, malignant tumors 

have been shown to give rise to tortuous vessels. The initial results in this paper suggest that 

quantitative morphological parameters allow differentiation of certain lesions, such as 

benign and malignant breast lesions and thyroid nodules. Therefore, we conclude that the 

quantitative assessment of microvasculature morphological features obtained from non-

contrast ultrasound images results in potential biomarkers for cancer detection and other 

disease diagnoses.
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Fig. 1. 
Block diagram of the microvasculature analysis system, including visualization and 

morphological operations and vessel quantification. SVD, singular value decomposition, SF, 

spectral filtering, THF, top hat filtering, HBF, hessian based filtering.
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Fig. 2. 
Top Row- Microvasculature images: (a) Microvasculature image of a malignant breast lesion 

after Hessian-based filtering with a minimum size scale of 115.5 μm (equivalent to 3 pixels), 

and (b) after Hessian-based filtering with a minimum size scale of 423.5 μm (equal to 12 

pixels). Both (a) and (b) have a maximum size scale of 500.5 μm (equivalent to 15 pixels). 

(c) Binary image of (a) (in yellow) with extracted vessel segments (in red). (d) Binary image 

of (b) (in yellow) with extracted vessel segments (in red). The white ellipse shows an area to 

identify branches connected to the main vessel trunk. Lower row-Morphological parameters 

of the lesion as a function of the minimum size scale: (e) Mean of the distance metric 

[mean(τ)] over different vessel segments. (f) Mean of the diameter of vessel segments 

[mean(Diameter)]. (g) Mean of the length of vessel segments. (h) Number of vessel 

segments.
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Fig. 3. 
(a) Binary images of a breast malignant lesion for different levels of the erosion-dilation 

factor: (a) Without the erosion-dilation factor, (b) With a 77 μm ersion-dilation factor, (c) 

With a 154 μm erosion-dilation factor, and (d) With a 231 μm erosion-dilation factor. (e) 

Mean of the distance metric [mean(τ)] over different vessel segments (b) Mean of the 

diameter of vessel segments [mean(Diameter)] (c) Mean of the length of vessel segments, 

and (d) Number of vessel segments all in terms of erosion-dilation (ED) factor.
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Fig. 4. 
(a-d) and (e-h) show images from malignant and benign breast lesions, respectively. (a) and 

(e) Ultrasound B-mode images. (b) and (f) Microvasculature images after Hessian-based 

filtering. (c) and (g) Binary images (yellow) and extracted vessel segments (skeleton of 

image denoted by red overlay). (d) and (h) Diameter map of the vessels. (i) Histogram of the 

diameter. (j) Histogram of the distance metric. (k) Histogram of the sum of angle metric 

(SOAM). White line denotes a scale of 1cm.
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Fig. 5. 
(a-d) and (e-h) show images from malignant and benign thyroid nodules, respectively. (a) 

and (e) Ultrasound B-mode images. (b) and (f) Microvasculature images after Hesian-based 

filtering. (c) and (g) Binary images (yellow) and extracted vessel segments (skeleton of 

image denoted by red overlay). (d) and (h) Diameter map of the vessels. (i) Histogram of the 

diameter. (j) Histogram of the distance metric. (k) Histogram of sumof angle metric 

(SOAM). The white line denotes scale of 1cm.
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Fig. 6. 
Box plots of the (a) vessel density (b) number of vessel segments (c) number of branch 

points (d) mean of distance metric (mean(τ)) in the two groups of benign and malignant 

breast lesions, the malignant lesions had a significantly higher morphological parameter 

compared to the benign lesions. * p < 0.05; ** p < 0.01, *** p < 0.005.
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Fig. 7. 
Box plots of the (a) vessel density (VD), (b) number of branch points (NB), (c) normalized 

number of branch points (NNB), (d) mean of distance metric (mean(τ)), (e) number of 

vessel segments (NV), and (f) normalized number of vessel segments (NNV) in the two 

groups of benign and malignant thyroid nodules. Malignant lesions had significantly higher 

morphological parameters of NB and NV compared to benign lesions. ** p<0.01.
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TABLE I:

MORPHOLOGICAL OPERATIONS

begin

  Converting the grayscale image to the binary image (C-I)

  Erosion following by dilation (C-II)

  Removing small holes (C-III)

  Finding the skeleton image (C-IV)

  Removing isolated pixels

  Removing spur pixels

  Finding branch points

  Dilating branch points

  Removing branch points

  Labeling connected components

  Removing small objects

    • Removing vessels with length less than a threshold

    • Removing vessels with diameter less than a threshold

end
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TABLE II:

ESTIMATED QUANTIFICATION PARAMETERS FOR FOUR DIFFERENT LESIONS.

Vessel Breast Lesion Thyroid Nodule

Parameter Malignant Benign Malignant Benign

Vessel density 0.11 0.18 0.40 0.26

Mean τ 1.05±0.08 1.06±0.12 1.07±0.36 1.06±0.1

Max τ 1.57 1.56 2.9 1.91

Mean SOAM [deg/μm] 21.5±2.5 18.1±2.6 15.7±3.0 18.1±2.4

Max SOAM [deg] 25.8 22.7 24.9 22.6

Mean Diameter [μm] 514±125 494±99 923±273 560±163

Max Diameter [μm] 914 697 1875 957

Mean length [μm] 1391±1065 1504±973 1749±1114 1331±983

Max length [μm] 7182 3897 6637 6887

NV 117 24 178 87

NNV 10.76 18.48 19.69 24.08

NB 59 11 132 64

NNB 5.42 8.47 14.17 17.33

NV: number of vessel segments, NB: Number of branch points, NNV: normalized number of vessel segments, NNB: Normalized number of branch 
points

IEEE Access. Author manuscript; available in PMC 2021 January 01.


	Abstract
	Introduction
	Material And Method
	Study Sample And Histopathological Outcomes
	Image Formation
	Hessian-based filtering:

	Morphological Filtering, Vessel Segmentation And Skeletonization
	Vessel Quantification
	Distance Metric’ (DM):
	Sum Of Angle Metric (SOAM):
	Estimating Diameter:
	Quantification Of Vessel Trunks:
	Contribution Of Small Vessel Segments In Tortuosity Analysis:

	Experimental Setup

	Results
	Discussion & Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	TABLE I:
	TABLE II:

