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ABSTRACT New drugs or therapeutic combinations are urgently needed against
Mycobacterium abscessus. Previously, we demonstrated the potent activity of indole-
2-carboxamides 6 and 12 against M. abscessus. We show here that these compounds
act synergistically with imipenem and cefoxitin in vitro and increase the bactericidal
activity of the �-lactams against M. abscessus. In addition, compound 12 also dis-
plays synergism with imipenem and cefoxitin within infected macrophages. The clin-
ical potential of these new drug combinations requires further evaluation.
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Mycobacterium abscessus is a fast-growing mycobacterial species found particularly
frequently in patients with cystic fibrosis (CF), bronchiectasis, and chronic ob-

structive pulmonary diseases (COPD) (1, 2). In the context of CF and COPD, M. abscessus
has emerged as an important opportunistic pathogen responsible for significant mor-
tality (3). However, treatment of M. abscessus lung disease remains particularly chal-
lenging, largely due to intrinsic resistance of M. abscessus to most antibiotic classes (1,
2). The typical treatment regimen includes a combination of macrolides, aminoglyco-
sides, and intravenous �-lactams (cefoxitin or imipenem) for at least 12 months (2).
There is no reliable therapeutic strategy for the treatment of M. abscessus pulmonary
infections, and the lengthy treatment duration and drug toxicity effects are often
accompanied by severe undesirable outcomes. Thus, there is an unmet clinical need for
new drug regimens with improved efficacy to treat these infections. Along with the
development of repurposed drugs, the drug pipeline has recently been fueled with
chemical entities acting on new targets in M. abscessus, such as the mycolic acid
transporter MmpL3, which is inhibited by a wide range of structurally unrelated small
molecules (4). Chemical inhibition of MmpL3 abolishes the export of trehalose mono-
mycolate to the outer membrane, leading to significant bacterial growth inhibition. In
M. abscessus, these chemotypes include a piperidinol-based compound (PIPD1) (5),
benzimidazoles (6), and indole-2-carboxamide derivatives (7, 8). They exhibit high levels
of activity against clinical isolates in vitro, in macrophages, in zebrafish, and in an acute
murine model of M. abscessus infection (5–7, 9). Due to their pronounced role in
modulating the cell wall architecture and composition, it may be speculated that
chemical inhibition of MmpL3 would increase the efficacy of other drugs. Although this
has been reported in M. tuberculosis, whereby the indole carboxamides and adamantyl-
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ureas act synergistically with rifampin, bedaquiline, clofazimine, and �-lactams (10), to
date this has not been investigated in M. abscessus.

Indole carboxamides 6 and 12 (Fig. 1) present favorable absorption, distribution,
metabolism, and excretion (ADME) properties (7, 11), and the ease of obtaining them
in high yields prompted us to investigate their interaction profiles with different classes
of antibiotics active against M. abscessus and/or used as part of clinical treatment
regimens. These include sutezolid, an oxazolidinone that inhibits bacterial translation
(12), clofazimine, which affects energy metabolism (13), and particularly, �-lactams (the
cephalosporin cefoxitin [FOX] and the carbapenem imipenem [IPM]), which inhibit
peptidoglycan biosynthesis and are reported to act in synergy with different drugs
against M. abscessus (14, 15) (Fig. 1). The MICs were determined according to the CLSI
guidelines (16) in cation-adjusted Mueller-Hinton broth (CaMHB; Sigma-Aldrich). Pair
combinations between Cpd6 and Cpd12 with other drugs were tested in CaMHB in a
typical checkerboard assay (17) with resazurin reduction as a metabolic readout. This
allowed us to establish the fractional inhibitory concentration index (FICI) of each drug
combination, where the FICI was determined using the following formula: MICA with
B/MICA alone � MICB with A/MICB alone; values �0.5 were considered synergistic,
those from 0.5 to 4 were considered indifferent, and those �4, antagonist (10).
While Cpd12 showed a FICI value of �0.5 with IPM or FOX, indicative of synergistic
interactions, no interaction (indifference) was recorded with clofazimine or sut-
ezolid. A similar interaction profile was observed when combining these drugs with
Cpd6 (Table 1).

To determine the optimal concentration of Cpd12 showing no or little activity
against M. abscessus CIP104536T (S variant), cultures were exposed to concentrations
ranging from 0.03 to 0.125 �g/ml Cpd12 prior to CFU determination at 5 days postex-
posure. While at the MIC (0.125 �g/ml) there was an �6 to 7 log drop in the CFU

FIG 1 Structures of imipenem, cefoxitin, and the lead indole carboxamides 6 and 12 used in this
study.

TABLE 1 Interaction of Cpd6 and Cpd12 with other antibiotics against M. abscessus
CIP104536T (smooth strain) assessed by checkerboards REMA in CaMHBa

Compound MIC (�g/ml)

Interaction with Cpd12 Interaction with Cpd6

FICI (mean) SD Outcome FICI (mean) SD Outcome

Cpd12 0.125
Cpd6 0.25
SUT 16 0.84 �0.27 Indifferent 0.62 �0 Indifferent
IPM 16 0.5 �0.18 Synergistic 0.5 �0 Synergistic
FOX 64 0.45 �0.14 Synergistic 0.44 �0.16 Synergistic
CFZ 0.5 0.88 �0.18 Indifferent 0.88 �0.18 Indifferent
aResults are the mean of the FICI � SD of 3 independent experiments. SUT, sutezolid; IPM, imipenem; FOX,
cefoxitin; CFZ, clofazimine.
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counts, no decrease was observed at 0.03 �g/ml (Fig. 2A). This concentration was thus
chosen to investigate the potential synergistic activity of Cpd12 with �-lactams. IPM
was used at 4, 8, and 16 �g/ml, and FOX was used at 16 and 32 �g/ml, corresponding
to concentrations 4- and 2-fold lower than their MICs, respectively (Table 1). At these
sub-MIC levels, Cpd12 plus IPM decreased CFU counts by �4 to 6 log compared to
Cpd12 or IPM alone. Similarly, FOX alone at 16 and 32 �g/ml was accompanied by a
reduction in the CFU counts, while the addition of 0.03 �g/ml Cpd12 further reduced
the CFU by �2 to 3 log (Fig. 2A). Comparable results were obtained when assessing the
synergistic activity of Cpd6 with IPM or FOX (Fig. 2B). At 0.06 �g/ml and 0.125 �g/ml
Cpd6, the CFU were reduced by �1 and 5 log, respectively, and no further decrease
in the CFU was observed at 0.25 �g/ml. The addition of 4 �g/ml or 8 �g/ml IPM to
0.06 �g/ml Cpd6 resulted in an �3 log decrease in the CFU compared to IPM alone.
Similarly, the simultaneous addition of 0.06 �g/ml Cpd6 to FOX (at 16 or 32 �g/ml)
exacerbated the effect of FOX, leading to an �4 log decrease in the CFU compared
to FOX alone (Fig. 2B). To assess whether these interactions are due to the chemical
inhibition of MmpL3, the CFU killing assay was repeated using a strain highly
resistant to both Cpd12 and Cpd6 due to the presence of an A309P missense
mutation in MmpL3 (MICCpd12/Cpd6 of 32 �g/ml, [7]). Figure 2C shows that the
Cpd12 plus IPM or Cpd12 plus FOX synergistic interactions were abolished, indi-

FIG 2 Synergistic activity of indole-2-carboxamide derivatives with IPM and FOX in vitro. CFU counts of Cpd12 (A)
and Cpd6 (B) given alone and in combination with imipenem (IPM) or cefoxitin (FOX). M. abscessus cultures were
incubated at 30°C in CaMHB for 5 days in the presence of the indicated compounds (�g/ml) and plated on LB agar
prior to CFU enumeration. (C) For CFU determination, the M. abscessus mutant A309P (spontaneous resistant strain
to Cpd12 carrying the A309P mutation in MmpL3) was exposed to the indicated antibiotics (�g/ml) at 30°C in
CaMHB for 5 days. Graphs represent the mean of three independent experiments completed in triplicate. Data are
expressed as the mean � standard deviation (SD). The statistical test used is a nonparametric Mann-Whitney t test
in which the combinations were compared to the drugs alone. ns, nonsignificant; **, P � 0.01; ***, P � 0.001.

Indolamides and �-Lactams Synergism in M. abscessus Antimicrobial Agents and Chemotherapy

May 2020 Volume 64 Issue 5 e02548-19 aac.asm.org 3

https://aac.asm.org


cating that inhibition of MmpL3 is necessary to establish drug synergism with the
�-lactams. This confirms a previous study demonstrating that synergistic interac-
tions between the indole carboxamides NITD-304 and NITD-349 with other clinically
relevant drugs are diminished in an MmpL3 mutant of M. tuberculosis resistant to
indole carboxamides (10).

The M. abscessus complex comprises three subspecies, M. abscessus subsp. absces-
sus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense (18), displaying
different drug susceptibility profiles. We therefore tested the activity of the Cpd12/�-
lactam combinations against a panel of M. abscessus complex clinical isolates (19, 20)
by determining the CFU counts of two M. abscessus subsp. abscessus strains (1298 and
2587), two M. abscessus subsp. bolletii strains (97 and 116), and two M. abscessus subsp.
massiliense strains (120 and 122). In general, the combination of Cpd12 plus IPM or
Cpd12 plus FOX resulted in significantly reduced CFU counts compared to the cultures
exposed to Cpd12, IPM, or FOX alone. However, the 6 strains responded differently to
each of these drug combinations (Fig. 3). Overall, CFU determination was in direct
agreement with the checkerboard results and indicates that low concentrations of
Cpd6 and Cpd12 improve the activity of IPM or FOX against the M. abscessus complex
in vitro.

The activity of IPM and FOX alone or in combination with Cpd12 was next evaluated
using THP-1 macrophages infected with M. abscessus CIP104536T (S variant) carrying
pTEC27, as previously described (6). Infected cells were either left untreated or exposed
for 2 days to Cpd12, IPM, or FOX alone or in combination, lysed, and plated for
subsequent intracellular bacterial load determination. While IPM and FOX displayed
only minor effects at the concentrations tested, the addition of 0.06 �g/ml Cpd12
significantly reduced the bacterial burden by �0.5 log (Fig. 4A). This effect was further
exacerbated (1 log reduction) when 0.25 �g/ml Cpd12 was used. A microscopy-based
infectivity assay reported earlier (6, 21) was subsequently used to quantify the impact
of drug treatment on the percentage of infected THP-1 cells. The results confirm the
pronounced reduction in the number of infected macrophages treated with Cpd12 plus
IPM or Cpd12 plus FOX (�50% decrease with 0.06 �g/ml Cpd12) compared to cells
treated with the drugs alone at day 2 postinfection (Fig. 4B and C). Collectively, these
findings suggest that the Cpd12/IPM and Cpd12/FOX combinations are effective on
intracellular M. abscessus.

IPM use is usually associated with improved outcome for the treatment of M.
abscessus pulmonary disease (22), and IPM combined with other antibiotics exerts a
synergistic or additive effect contributing to its success (14, 15). However, resistance to
IPM is also emerging, highlighting the limiting application of IPM in the treatment of M.
abscessus infections (23, 24). The present results highlight the therapeutic potential of
the Cpd12/IPM combination against a panel of clinical M. abscessus complex isolates.
This combination may help lower the effective dose of IPM, thus possibly limiting the
emergence of IPM-resistant strains. Similarly, the use of indole carboxamides as com-
panion drugs further reduces the effective concentrations of FOX, restricting the
eventual emergence of M. abscessus-resistant mutants. A plausible hypothesis
explaining this synergistic activity may rely on the fact that the indole carboxam-
ides, through inhibition of mycolic acid transport at the bacterial surface, disorga-
nize and disrupt the mycomembrane, which accelerates the penetration of the
�-lactam drugs to reach their targets (the L,D-transpeptidase for IPM and the
D,D-transpeptidase for FOX), leading to inhibition of peptidoglycan synthesis. Con-
versely, inhibition of the peptidoglycan transpeptide linkages by the �-lactams may
also facilitate the access of Cpd6 or Cpd12 to their inner membrane target.
However, other underlying mechanisms may be responsible for the observed
synergistic effects, and further research is required.

In summary, indole-2-caboxamides represent a promising chemotype improving
the activity of FOX and IPM, two recommended drugs for the treatment of M.
abscessus pulmonary infections (2). Future studies should evaluate whether
�-lactamase inhibitors (25, 26) would further improve the observed synergistic
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FIG 3 CFU determination of clinical isolates exposed to Cpd12 given alone or in combination with imipenem (IPM)
or cefoxitin (FOX). M. abscessus cultures were incubated at 30°C in CaMHB for 5 days in the presence of the indicated
compounds (�g/ml) and plated on LB agar prior to CFU enumeration. Data are expressed as the mean � SD from
three independent experiments completed in triplicate. The statistical test used is a nonparametric Mann-Whitney
t test in which the combinations were compared to the drugs alone. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P �
0.0001.
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FIG 4 Impact of Cpd12 alone or in combination on intracellular-residing M. abscessus. THP-1 macro-
phages were infected with M. abscessus S expressing TdTomato (multiplicity of infection [MOI] of 2:1)
and treated with the indicated compounds (�g/ml). (A) CFU were determined at day 0 and day 2
postinfection. Data represents the mean � SD of three independent experiments completed in
triplicate. For statistical analysis, a nonparametric Mann-Whitney t test was performed. ***, P � 0.001;
****, P � 0.0001. (B) Percentage of infected THP-1 macrophages at day 0 and day 2 postinfection. Data
shown are mean values � SD for one representative experiment completed in triplicate. One-way
analysis of variance (ANOVA) Kruskal-Wallis was used as a statistical test. ****, P � 0.0001. (C)
Immunofluorescent fields were taken at day 2 postinfection at magnification 40� (using confocal
microscopy) showing the nuclei of macrophages (DAPI in blue) infected with red-fluorescent M.
abscessus in the absence or in the presence of the drugs used alone or in combination. Yellow arrows
emphasize red-fluorescent M. abscessus (tdTomato) within macrophages. Only intracellular bacteria that
were individually observed under the microscope were recorded.
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interactions. Our results indicate that the Cpd12/�-lactam combinations are highly
effective within macrophages by reducing the intracellular bacterial burden and the
percentage of infected cells, emphasizing the need for further evaluation in pre-
clinical animal models.

Data availability. All data are available upon request.
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