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ABSTRACT In 2016, the proportion of Neisseria gonorrhoeae isolates with reduced
susceptibility to azithromycin rose to 3.6%. A phylogenetic analysis of 334 N. gonor-
rhoeae isolates collected in 2016 revealed a single, geographically diverse lineage of
isolates with MICs of 2 to 16 �g/ml that carried a mosaic-like mtr locus, whereas the
majority of isolates with MICs of �16 �g/ml appeared sporadically and carried 23S
rRNA mutations. Continued molecular surveillance of N. gonorrhoeae isolates will
identify new resistance mechanisms.
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Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease
gonorrhea, has consistently developed resistance to each recommended antibi-

otic, resulting in its designation as an urgent threat by the Centers for Disease Control
and Prevention (CDC) and as a high-priority antibiotic-resistant pathogen by the World
Health Organization (1, 2). Increasing numbers of N. gonorrhoeae isolates with reduced
susceptibility to azithromycin (AZM) are reported in the United States and internation-
ally, including in China (3), Canada (4), and Europe (5). In the United States, surveillance
efforts through the Gonococcal Isolate Surveillance Project (GISP) indicated an in-
creased incidence of reduced susceptibility to AZM from 0.2% in 2012 to 3.6% in 2016
(6). Given this sharp increase, we focused on understanding the genetics of all the
isolates from 2016 with reduced susceptibility to AZM, defined as an MIC of �2 �g/ml.
In a previous report, 117 isolates from 2016 with an AZM MIC of �2 �g/ml were
genetically analyzed (7). In this report, we expand this analysis to 177 isolates, which
represents 95% of all such isolates from 2016.

Isolates with an AZM MIC of <16 �g/ml cluster into a single, diverse clade
sharing a common genetic mechanism. In 2016, 95% (177/186) of all gonococcal
isolates collected by GISP with an AZM MIC of �2 �g/ml as determined by agar dilution
were available for whole-genome sequencing (WGS) on an Illumina MiSeq (8). We
investigated the relatedness of the strains by performing sequence typing using MLST
and NG-MAST and a core genome single nucleotide polymorphism (SNP) analysis with
recombination filtering followed by generation of a maximum-likelihood phylogenetic
tree (Fig. 1). We also selected a stratified random sample of 10 isolates from each GISP
sentinel site from 2016, of which 157 isolates were available for sequencing and
contained mostly susceptible isolates. The distribution of AZM MICs in the sampled
susceptible isolates was similar to that of all susceptible isolates in GISP, suggesting that
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these isolates reflect the circulating U.S. AZM-susceptible gonorrhea population (com-
pare reference 6 and Fig. S1 in the supplemental material). We also investigated
alterations in the 23S rRNA alleles or the multiple transferable resistance regulator
(mtrR) locus, which contribute to reduced susceptibility to AZM (Tables 1 and 2) using
a custom pipeline written in Python (9, 10). A total of 13 clades containing three or
more isolates were identified using Bayesian analysis of population structure (BAPS)
(11). We identified one large clade of highly related isolates with high nodal support
(clade A [n � 119]; within-clade difference, 87 � 58 SNPs) (Fig. 1), which is a subset of
BAPS cluster 4. Whereas the most common sequence type (ST) in clade A was ST9363
(100/119), others, including ST11422 and ST8134, were present. Clade A contained 39
total NG-MAST STs, with ST3935 (21/119) being the most common, followed by ST8241
(19/119) and ST12302 (12/119). Clade A is distinguished from the rest of the cluster by
the presence of a mosaic-like mtrR locus, which contributes to elevated macrolide MICs
by increasing expression of the MtrCDE efflux pump (12). Chi-square analysis showed
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FIG 1 Maximum-likelihood phylogeny of Neisseria gonorrhoeae isolates collected in 2016, including all available isolates exhibiting AZM MICs of �2 �g/ml in
GISP (n � 117). Lineage characterized by reduced susceptibility to AZM (2 to16 �g/ml) is highlighted in red (clade A). Rings from inside to outside are BAPS
clusters, AZM MIC values, HHS regions, 23S rRNA C2611T, 23S rRNA A2059G, mosaic-like mtrR presence, and mtrR promoter mutations.
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that a mosaic-like mtrR locus or an A-to-C transversion was highly associated with an
MIC range of 2 to 4 �g/ml (�2 � 204.71, P � 0.0001; or �2 � 174.98, P � 0.0001,
respectively) (Table 1). The success of the organisms in clade A, as suggested by the
presence of similar isolates in a genomic analysis of GISP isolates from 2000 to 2013 (13)
and whose presence has been continuous since 2014 (7), suggests that the mosaic-like
mtrR locus contributes to their ability to survive and be transmitted. In support of this
hypothesis, the transformation of a susceptible strain with a mosaic-like mtr locus is
sufficient to increase the AZM MIC of the recipient strain (12, 14). Across the data set,
the most predominant MLST type was ST9363 (n � 130) (Fig. 1), followed by ST1584
(n � 23), ST11422 (n � 12), ST1893 (n � 11), and ST1579 (n � 10). Some STs, e.g.,
ST9363, were found across the country, whereas others were more restricted (e.g.,
ST7371 or ST8154 on the East Coast). For NG-MAST, ST3935 was the most common
(n � 23), followed by ST8241 (n � 19), ST7638 (n � 15), and ST12302 (n � 12) (for new
NG-MAST STs, see Fig. S3 and Supplementary Methods in the supplemental material).

Isolates with an AZM MIC of >16 �g/ml appear sporadically and contain
mutations in the 23S rRNA genes. Twenty isolates had an AZM MIC of �16 �g/ml as
determined by agar dilution antimicrobial susceptibility testing. Those were further
tested by Etest (bioMérieux), and 4 had an AZM MIC of �256 �g/ml. Those isolates
were represented by ST1579 (n � 4), ST1901 (n � 4), ST7371 (n � 6), ST9363 (n � 5),
and ST7822 (n � 1). The four isolates with MICs of �256 �g/ml were part of a previously
described cluster of isolates with high-level AZM resistance and reduced susceptibility
to ceftriaxone, which was successfully contained (15). Isolates with AZM MICs
of �16 �g/ml were found throughout the tree and grouped into small subclusters (e.g.,
BAPS cluster 5 contained three subclusters) (Fig. 1). These isolates all contained
mutations in either position 2611 or 2059 (E. coli numbering) of the 23S rRNA, which is
the target of macrolides (Fig. 1 and Table 2). In N. gonorrhoeae, there are four copies of
the 23S rRNA gene in the genome. Four copies of the 23S rRNA allele carrying the
C2611T alteration were associated with an MIC range of 8 to 16 �g/ml (�2 � 129.65; P �

0.0001) (Table 2). Isolates with four alleles carrying the A2059G alteration were found
to have an AZM MIC of �256 �g/ml (Fig. 1 and Table 2). When found in clinical isolates
or generated by site-directed mutagenesis in a susceptible strain, the A2059G alteration
leads to an AZM MIC of �256 �g/ml and, potentially, treatment failure (9, 16, 17).

TABLE 1 Distribution of mtrR mutations

AZM MIC (�g/ml)

Distribution (no. isolates) of:

mtrR locus mtrR promoterc MtrR

Wild type Mosaic Wild type Del A C SNP 39A 39T 44H 44R 45D 45G 47L 47A Full length Premature stop

�2.0 157a 0 119a 38 0 100a 57 26 131b 48 109a 157 0 28 129
2.0–4.0 29 113a 24 4 114a 134a 8 6 136b 0 142a 142 0 19 123
8.0–16.0 25 6 12 13 6 20 11 4 27 8 23 31 0 0 31
�16 4 0 0 4 0 4 0 0 4 0 4 4 0 0 4
aP � 0.0001.
bP � 0.005.
cDel A, deletion of an adenine in the inverted repeat of the mtrR promoter; C SNP, A-to-C transversion in the inverted repeat of the mtrR promoter.

TABLE 2 Distribution of 23S rRNA mutant alleles

AZM MIC (�g/ml)

Distribution (no. isolates) of:

C2611T A2059G

Wild type 2 mutated loci 3 mutated loci 4 mutated loci Wild type 4 mutated loci

�2.0 156a 1 0 0 157 0
2.0–4.0 126a 0 1 15b 142 0
8.0–16.0 6 0 1 24a 30 1
�16.0 4 0 0 0 0 4
aP � 0.0001.
bNot significant.
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In contrast to the widespread presence of isolates containing the mosaic-like mtrR locus,
isolates with the C2611T alteration appear more sporadically. This is consistent with a
hypothesis that the 23S rRNA mutations occur spontaneously and carry a fitness cost. The
largest clade of these contains 15 isolates (MLST ST1584 and NG-MAST ST7638) and is
found only in HHS regions 9 and 10. Many of these smaller clades were geographically
isolated (Fig. 1), further suggesting spontaneous mutation followed by clonal expansion.

WGS for N. gonorrhoeae surveillance in 2016 did not include routine selection of enough
susceptible isolates to assess when the 23S rRNA mutations arose in the U.S. N. gonorrhoeae
population and whether certain strain types are more prone to developing these muta-
tions. Defined selection criteria for routine WGS of GISP isolates were established in late
2017 and include subsets of both susceptible and resistant isolates. These sequences will
provide a valuable resource for tracking of known strains with reduced susceptibility to
AZM and detection of emerging strains that appear in the United States.

SUPPLEMENTAL MATERIAL
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