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ABSTRACT The RESTORE-IMI 1 phase 3 trial demonstrated the efficacy and safety
of imipenem-cilastatin (IMl) combined with relebactam (REL) for treating imipenem-
nonsusceptible infections. The objective of this analysis was to compare the out-
comes among patients meeting eligibility requirements based on central laboratory
susceptibility versus local laboratory susceptibility. Patients with serious infections
caused by imipenem-nonsusceptible, colistin-susceptible, and imipenem-REL-susceptible
pathogens were randomized 2:1 to IMI-REL plus placebo or colistin plus IMI for 5 to
21 days. The primary endpoint was a favorable overall response. Key endpoints in-
cluded the clinical response and all-cause mortality. We compared outcomes be-
tween the primary microbiological modified intent-to-treat (mMITT) population,
where eligibility was based on central laboratory susceptibility testing, and the sup-
plemental mMITT (SmMITT) population, where eligibility was based on local, site-
level testing. The SmMMITT (n = 41) and MITT (n = 31) populations had similar base-
line characteristics, including sex, age, illness severity, and renal function. In both
analysis populations, favorable overall response rates in the IMI-REL treatment group
were >70%. Favorable clinical response rates at day 28 were 71.4% for IMI-REL and
40.0% for colistin plus IMI in the mMITT population, whereas they were 75.0% for
IMI-REL and 53.8% for colistin plus IMI in the SmMITT population. Day 28 all-cause
mortality rates were 9.5% for IMI-REL and 30.0% for colistin plus IMI in the mMITT
population, whereas they were 10.7% for IMI-REL and 23.1% for colistin plus IMI in
the SmMITT population. The outcomes in the SmMITT population were generally
consistent with those in the mMITT population, suggesting that outcomes may
be applicable to the real-world use of IMI-REL for treating infections caused by imi-
penem-nonsusceptible Gram-negative pathogens. (This study has been registered at
ClinicalTrials.gov under identifier NCT02452047.)

KEYWORDS carbapenem resistant, supplemental analysis population, local
microbiology data, B-lactamase inhibitor

arbapenems are a mainstay of treatment in patients with serious Gram-negative

bacterial infections (1). Infections caused by multidrug-resistant Pseudomonas spp.
and carbapenem-resistant Enterobacteriaceae (new taxonomy, Enterobacterales), includ-
ing carbapenemase-producing Klebsiella pneumoniae strains, are associated with high
morbidity and mortality (2-4), and these bacterial pathogens are considered serious
and urgent threats to public health, respectively (1). Conventional treatment options for
carbapenem-nonsusceptible infections include polymyxins (polymyxin B and colistin),
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fosfomycin, tigecycline, and aminoglycosides; however, the causative pathogens are
frequently resistant to one or more of these antibacterial agents (5-7). In addition,
safety issues associated with these therapies can present a challenge, particularly in
patients with complex conditions at high risk of adverse clinical outcomes. Tigecycline
therapy carries an elevated risk of all-cause mortality, and the nephrotoxicity of
polymyxins is associated with a high risk of acute kidney injury (7-10). Similarly,
aminoglycosides may cause acute kidney injury or ototoxicity (11, 12). Despite advan-
tages over the conventional therapy used to treat carbapenem-resistant infections,
B-lactam-B-lactamase inhibitor combinations, including ceftazidime-avibactam, may
not be effective against pathogens that develop certain resistance mechanisms (13).
New antibacterial agents or combinations effective against carbapenem-resistant bac-
teria with favorable safety profiles are urgently needed.

Unlike other carbapenem antibacterial agents, imipenem induces the overproduc-
tion of Pseudomonas-derived cephalosporinase (PDC), a chromosomal AmpC B-lactamase,
in Pseudomonas aeruginosa. Imipenem resistance development in this pathogen is
due to the overproduction of PDC with the concomitant loss of the imipenem entry
porin OprD (14, 15). Relebactam (REL) restores imipenem susceptibility in imipenem-
nonsusceptible P. ageruginosa isolates and potentiates the activity of imipenem in
imipenem-susceptible P. geruginosa strains via inhibition of PDC, and unlike other
B-lactamase-B-lactamase inhibitor combinations, neither imipenem nor REL is a sub-
strate for the major efflux mechanisms of P. aeruginosa (15, 16). REL can also restore the
activity of imipenem against many imipenem-nonsusceptible isolates of Enterobacteri-
aceae through its inhibition of class A carbapenemases (such as K. pneumoniae car-
bapenemases) (17, 18). Therefore, the combination of REL with imipenem-cilastatin
(IMI), a well-established carbapenem for the treatment of serious infections, is a
potential treatment option for infections caused by carbapenem-resistant pathogens
(19, 20). In global surveillance studies, REL restored imipenem susceptibility to 53.5% to
84.9%, 71.4%, and 23.9% to 100.0% of imipenem-nonsusceptible isolates of P. aerugi-
nosa, K. pneumoniae, and other Enterobacteriaceae, respectively (15, 21-23).

The efficacy and safety of IMI-REL have been investigated in several randomized,
controlled clinical trials. Results from 2 phase 2, dose-ranging studies demonstrated
that IMI-REL is well tolerated and noninferior to IMI alone for the treatment of adults
with complicated urinary tract infection (cUTI) and complicated intra-abdominal infec-
tion (clAl) (24, 25). A recent phase 3 trial, RESTORE-IMI 1, investigated IMI-REL for the
treatment of serious, imipenem-nonsusceptible bacterial infections and demonstrated
that IMI-REL was effective and generally well tolerated (20). RESTORE-IMI 1 was a small,
descriptive study conducted in patients with infections confirmed to be caused by
imipenem-nonsusceptible pathogens, without formal hypothesis testing for efficacy
endpoints.

Identification of appropriate study populations using microbiological criteria pres-
ents a challenge to conducting clinical trials for antibacterial agents. To initiate effective
treatment as rapidly as possible, which has demonstrated clinical benefit, including
improved survival rates, patients potentially eligible for such trials need to be identified
at the investigational site level, using results from local susceptibility testing (4).
However, to standardize trial data appropriately for regulatory review, confirmation of
local test results by a central laboratory is a requirement (26, 27). Repeat susceptibility
testing of isolates at different facilities can contribute to complexity, as the results
between tests for any isolate may vary by =4 dilutions, even under standardized
conditions within the same facility, which may impact the designation of the suscep-
tibility or the nonsusceptibility of isolates to the tested agents (28). Determination of
patient eligibility for inclusion in the primary analysis population of our trial was based
on centrally assessed susceptibility results. In this study, we evaluated the outcomes for
a study population in which IMI-REL was used in a manner that more closely represents
the real-world use of IMI-REL, where treatment decisions are made based on local
laboratory results. We addressed this objective by comparing the results from the
RESTORE-IMI 1T microbiological modified intent-to-treat (mMITT) population with those
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FIG 1 Trial enroliment and summary of patients in analysis populations. IMI, imipenem-cilastatin; mMITT,
microbiological modified intent-to-treat; REL, relebactam; SmMITT, supplemental microbiological mod-
ified intent-to-treat.

from an expanded supplemental microbiological modified intent-to-treat (SmMITT)
population that included those patients who were eligible based on local laboratory
results but not central laboratory results. Expanding the eligibility criteria for the study
population also allowed the evaluation of RESTORE-IMI 1 results in a more traditional
intent-to-treat population.

RESULTS

A total of 41 and 31 patients were included in the SmMMITT and mMITT populations,
respectively (Fig. 1). Baseline characteristics and demographics grouped by popula-
tion and treatment arm are summarized in Table 1. Overall, the SmMMITT and mMITT
populations were comparable in terms of demographic and clinical characteristics,
including age, infection type, Acute Physiologic Assessment and Chronic Health Eval-
uation Il scores, and renal function. Within the SmMMITT population, 28 patients were
treated with IMI-REL (8 for hospital-acquired bacterial pneumonia [HABP]/ventilator-
associated bacterial pneumonia [VABP], 5 for clAl, 15 for cUTI) and 13 were treated with
colistin plus IMI (4 for HABP/VABP, 3 for clAl, 6 for cUTI). Within the mMITT population,
21 patients were treated with IMI-REL (8 for HABP/VABP, 2 for clAl, 11 for cUTI) and 10
were treated with colistin plus IMI (3 for HABP/VABP, 2 for clAl, 5 for cUTI). P. aeruginosa
was the most common qualifying baseline pathogen (SmMITT population, 27/42
[64.3%]; mMITT population, 24/31 [77.4%]), followed by K. pneumoniae (SmMITT pop-
ulation, 8/42 [19.0%]; mMITT population, 4/31 [12.9%]) and other Enterobacteriaceae
(SmMITT population, 7/42 [16.7%]; mMITT population, 3/31 [9.7%]). Polymicrobial
Gram-negative bacterial infections were uncommon (SmMITT population, 3/41 [7.3%];
mMITT population, 1/31 [3.2%]). One patient (2.4%) in the SmMMITT population had 2
qualifying baseline pathogens.

Among the qualifying baseline pathogens isolated from the 10 patients in the
SMmMITT population who were excluded from the mMITT population, the majority of
differences in the MIC values obtained by the local laboratory versus those obtained by
the central laboratory for imipenem alone, imipenem-REL, or colistin were limited to 1
to 2 dilutions for most qualifying baseline pathogens (Table 2). Of these 10 patients
excluded from the mMITT population, central laboratory testing determined that 5 had
baseline pathogens that were imipenem susceptible, 4 had baseline pathogens that
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TABLE 1 Baseline demographics and clinical characteristics®

Antimicrobial Agents and Chemotherapy

SmMITT population

mMITT population

IMI-REL Colistin plus IMI IMI-REL Colistin plus IMI

Characteristic (n = 28) (n=13) Total (n = 41) (n=21) (n=10) Total (n = 31)
No. of patients in population 28 13 41 21 10 31
No. of patients by sex

Male 18 (64.3) 10 (76.9) 28 (68.3 13 (61.9) 7 (70.0) 20 (64.5)

Female 10 (35.7) 3 (23.1) 13 (31.7) 8 (38.1) 3 (30.0) 11 (35.5)
No. of patients by age (yr)

<65 16 (57.1) 6 (46.2) 22 (53.7) 15 (71.4) 5 (50.0) 20 (64.5)

=65 12 (42.9) 7 (53.8) 19 (46.3) 6 (28.6) 5 (50.0) 11 (35.5)
Median (range) age (yr) 61 (19-77) 65 (49-80) 63 (19-80) 59 (19-75) 61 (49-80) 59 (19-80)

Median (range) wt (kg)

No. of patients with the following
APACHE Il score:

=15
>15

No. of patients with the following
primary diagnosis:

HABP
VABP
clAl

cUTI (urinary tract abnormalities)
cUTI (acute pyelonephritis)

No. of patients with the following creatinine
clearance (ml/min):

=90

<90 to =60
<60 to =30
<30 to =15
Not available

No. of patients with the following qualifying
baseline pathogens:
Citrobacter freundii
Enterobacter aerogenes
Enterobacter cloacae

Escherichia coli

Klebsiella oxytoca
Klebsiella pneumoniae
Pseudomonas aeruginosa

No. of patients with isolates with the
following B-lactamases®:

Class A

Older-spectrum B-lactamases

SHv®
TEM
ESBLs
CTX-M
SHv®
VEB

KPC serine carbapenemase

Class C

Chromosomal AmpC (PDC)
Plasmid-mediated AmpC

ACT
cmy
DHA

Class D, OXA-48

79.3 (53.0-140.0)

20 (71.4)
8 (28.6)

8 (28.6)
14 (50.0)
4 (14.3)
1(3.6)

1 (3.6)

1(34)
0

2 (6.9)
134
0
6 (20.7)
19 (65.5)

4 (14.3)
12 (42.9)

12 (42.9)
2(7.7)

0
5(17.9)

19 (67.9)
0
1(3.6)

1(3.6)
4 (14.3)

75.8 (52.8-117.0)

2 (15.4)

78.0 (52.8-140.0)

2 (4.9)
10 (24.4)
8 (19.5)
11 (26.8)
10 (24.4)

13 (31.7)
18 (43.9)
7 (17.1)
2 (4.9)
1024)

6 (14.6)
15 (36.6)

18 (43.9)
2 (4.9)

0

6 (14.6)

27 (65.9)

75 (53.0-132.3)

14 (66.7)
7 (33.3)

2(9.5)
7 (33.3)

7 (33.3)
1(4.8)

4 (19.0)

16 (76.2)

75.6 (52.8-117.0) 75 (52.8-132.3)

8 (80.0) 22 (71.0)
2 (20.0) 9 (29.0)
1(10.0) 2 (6.5)

2 (20.0) 9 (29.0)
2 (20.0) 4 (129
3 (30.0) 8 (25.8)
2 (20.0) 8 (25.8)
3 (30.0) 11 (35.5)
4 (40.0) 12 (38.7)
2 (20.0) 5 (16.1)
1 (10.0) 2 (6.5)

0 1(3.2)
0 1(3.2)
0 0

0 1(3.2)
0 0
1(10.0) 1(3.2)

1 (10.0) 4 (129
8 (80.0) 24 (77.4)
1(10.0) 3(9.7)

3 (30.0) 10 (32.3)
4 (40.0) 11 (35.5)
0 1(3.2)
0 0
1(10.0) 5 (16.1)
8 (80.0) 24 (77.4)
0 0

0 1(3.2)
0 1(3.2)

1 (10.0) 13

aQualifying baseline pathogens could have had multiple B-lactamases detected.
bOlder-spectrum B-lactamases were SHV-1 and SHV-11; ESBLs were SHV-26 and SHV-28.
cAPACHE Il, Acute Physiologic Assessment and Chronic Health Evaluation II; clAl, complicated intra-abdominal infection; cUTI, complicated urinary tract infection; ESBL,
extended-spectrum B-lactamase; HABP, hospital-acquired bacterial pneumonia; IMI, imipenem-cilastatin; mMITT, microbiological modified intent-to-treat; REL,
relebactam; SmMITT, supplemental microbiological modified intent-to-treat; VABP, ventilator-associated bacterial pneumonia.
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TABLE 2 Central versus local MICs of qualifying baseline pathogens for patients included in the SmMMITT population but excluded from
the mMITT population®

MIC (ng/ml [susceptibility])<

Imipenem IMI-REL Colistin

Qualifying pathogen  Local interpretive  Local Central Local Central Local Central
Patient no. TG Infection type name criteria used lab lab lab lab lab lab
1 2 HABP/VABP E. aerogenes CLSI 2 (D) 1(S) 05(S) 012(S) 025(S) <1(9
24 1 clAl K. pneumoniae EUCAST 8 () 4 () 2(S) 2 (S) 2 (S) 4 (R)
3 2 clAl E. cloacae CLSI 2(l) <0.5(S) 05(5 0.12(5) 1(S) <1(S)
4 1 clAl E. cloacae CLSI 2() <0.5(S) 1(S) 012(S) 1(9 <1 (S)
5 1 clAl K. pneumoniae CLSI 4 (R) 4 (R) 1(S) 2 0.5 (S) <1 ()
6 1 cUTI E. coli CLSI 2 () 2 () 1(S) 2(D 012 (S) <1(S)
7 2 cUTI K. pneumoniae CLSI 2 () 2 () 1(S) 2 () 0.12 (S) <1 (S)
8 1 cUTI K. pneumoniae CLSI 16 (R) 32 (R) 1(S) 2(D 025(S) <1(S)
9 1 cUTI P. aeruginosa CLSI 8 (R) 2(S) 2(5) 0.5 (S) 1(S) <1 (S)
10 1 cUTI P. aeruginosa CLSI 16 (R) 2(S) 1(5 025(S) 0.12(S) <1(S)

aThe participant had a polymicrobial infection, including an infection caused by a qualifying P. aeruginosa isolate, but was unevaluable for the mMITT population due
to the presence of colistin-nonsusceptible K. pneumoniae.

bclAl, complicated intra-abdominal infection; CLSI, Clinical and Laboratory Standards Institute; cUTI, complicated urinary tract infection; EUCAST, European Committee
on Antimicrobial Susceptibility Testing; HABP, hospital-acquired bacterial pneumonia; |, intermediate; IMI-REL, imipenem-cilastatin plus relebactam; mMITT,
microbiological modified intent-to-treat; R, resistant; S, susceptible; SmMMITT, supplemental microbiological modified intent-to-treat; TG, treatment group; VABP,
ventilator-associated bacterial pneumonia.

<Data in boldface indicate differences in susceptibility test interpretation (susceptible versus intermediate versus resistant) between the local laboratory and central
laboratory, based on MIC values.

were imipenem-REL nonsusceptible, and 1 had a pathogen that was colistin nonsus-
ceptible.

The results for the SmMMITT and mMITT populations were generally consistent, and
most patients achieved a favorable overall response (Table 3). Favorable overall re-
sponse rates in the IMI-REL treatment group were >70% for both the SmMITT and
mMITT populations. Favorable clinical response rates at day 28 were 71.4% for IMI-REL
and 40.0% for colistin plus IMI in the mMITT population, whereas they were 75.0% for
IMI-REL and 53.8% for colistin plus IMI in the SmMITT population. Day 28 all-cause
mortality rates were 9.5% for IMI-REL and 30.0% for colistin plus IMI in the mMITT
population, whereas they were 10.7% for IMI-REL and 23.1% for colistin plus IMI in the
SmMITT population. Among the 10 patients excluded from the mMITT population, a

TABLE 3 Treatment responses in patients in mMITT and SmMITT populations©

n/m (%) % (90% Cl)
Response and patient group IMI-REL Colistin plus IMI Unadjusted difference Adjusted difference?
Favorable overall response
mMITT population 15/21 (71.4) 7/10 (70.0) 14 —7.3(—27.5t0 21.4)
HABP/VABP 7/8 (87.5) 2/3 (66.7) 20.8
clAl 0/2 0/2 0.0
cUTI 8/11 (72.7) 5/5 (100.0) —27.3 (—52.8 to 12.8)b
SMMITT population 21/28 (75.0) 10/13 (76.9) -1.9 —4.5 (—24.2 to 20.7)
HABP/VABP 7/8 (87.5) 3/4 (75.0) 12.5 (—25.4 to 56.6)°
clAl 2/5 (40.0) 1/3 (33.3) 6.7
cUTI 12/15 (80.0) 6/6 (100.0) —20.0 (—41.4 to 14.2)
Favorable clinical response (day 28)
mMITT population 15/21 (71.4) 4/10 (40.0) 314 26.3 (1.3 to 51.5)
SMMITT population 21/28 (75.0) 7/13 (53.8) 21.2 17.6 (—5.9 to 42.5)
All-cause mortality (through day 28)
mMITT population 2/21 (9.5) 3/10 (30.0) —20.5 —17.3 (—46.4 t0 6.7)
SmMITT population 3/28 (10.7) 3/13 (23.1) —124 —10.5 (—35.2 to 9.6)

aAdjusted differences and 90% confidence intervals are based on the values obtained by the Miettinen and Nurminen method (36) stratified by infection site.
bThe 90% confidence intervals were calculated by the Miettinen and Nurminen method (36).

<Cl, confidence interval; clAl, complicated intra-abdominal infection; cUTI, complicated urinary tract infection; HABP, hospital-acquired bacterial pneumonia; IMI,
imipenem-cilastatin; mMITT, microbiological modified intent-to-treat; n/m, number of patients with a favorable response or all-cause mortality/number of patients
evaluable; REL, relebactam; SmMITT, supplemental microbiological modified intent-to-treat; VABP, ventilator-associated bacterial pneumonia.
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favorable overall response was reported for 6/7 (85.7%) in the IMI-REL-treated group
and 3/3 (100.0%) in the colistin plus IMI-treated group; a favorable clinical response at
day 28 was reported for 6/7 (85.7%) in the IMI-REL-treated group and 3/3 (100.0%) in
the colistin plus IMI-treated group; all-cause mortality was 1/7 (14.3%) in the IMI-REL-
treated group, and no patients in the colistin plus IMI-treated group died.

DISCUSSION

The previously reported efficacy and safety results from the RESTORE-IMI 1 trial
support IMI-REL as a suitable treatment option for serious Gram-negative bacterial
infections, including those caused by carbapenem-nonsusceptible pathogens in high-
risk patients (20). These results were obtained in the primary efficacy population (i.e.,
the mMITT population), determined by qualifying baseline pathogen susceptibility
results from the central microbiology laboratory. Here, we describe the results of a
secondary analysis conducted in the protocol-defined SmMITT population, in which
eligibility was based on susceptibility results from the local microbiology laboratory.
The results of this secondary analysis lend further support to the primary study findings
from RESTORE-IMI 1, in that they are consistent, regardless of whether patients were
included in the analysis based on local or central laboratory susceptibility testing. In
both the secondary SmMITT population and the primary mMITT population, IMI-REL
and colistin plus IMI yielded favorable overall response rates of >70%. In both analysis
populations, there was an apparent trend toward more favorable clinical and mortality
outcomes among patients treated with IMI-REL than among those treated with a
colistin-based therapy.

In contrast to recent open-label clinical trials comparing the efficacy and safety of
new antibacterial agents with the best available therapy (BAT) for the treatment of
resistant infections (29-31), the RESTORE-IMI 1 trial was a double-blind study with a
single active comparator. Limiting the study to a single comparator rather than BAT
reduced treatment variability and ensured that all patients received early appropriate
therapy, given that only patients with colistin-susceptible infections were enrolled.
Generally, in antibacterial clinical trials, pathogen isolates are commonly cultured in
local laboratories for initial pathogen identification and subsequently sent to a central
laboratory for confirmatory pathogen identification and susceptibility testing. The use
of standardized susceptibility panels in local laboratories for the RESTORE-IMI 1 trial
further distinguishes this trial from other similar resistant-pathogen trials in 2 important
ways: (i) by ensuring the consistency of the susceptibility results for qualifying baseline
pathogens from all sites, thereby allowing the rigorous selection of patients eligible for
inclusion into the study, and (ii) by enabling enrollment in the trial (with initiation of
appropriate therapy for all patients) at a consistent time point for all patients (i.e., as
soon as susceptibility results are known).

The use of microbiological criteria for the identification of study populations for
enrollment in clinical trials evaluating antibacterial agents presents a substantial chal-
lenge (32). As with similar studies, the primary analysis (mMITT) population in RESTORE-
IMI 1 was small due to the difficulty in identifying patients with the desired resistance
profile who qualified for a clinical trial, as well as the impact of the global study design
with variable clinical practices and clinical trial experience across institutions (29, 30).
Also consistent with similar trials, the RESTORE-IMI T mMITT population included a
limited number of enrolled patients with clAl, primarily because there were fewer
prescreening isolates from intra-abdominal specimens than from urinary and lower
respiratory tract specimens (29, 30). This secondary analysis expanded the participant
population analyzed and doubled the size of the clAl cohort from 4 to 8 patients.
Compared with the mMITT population, the SmMMITT population may better represent
patients seen in a real-world setting, where treatment decisions are based on pathogen
identification and susceptibility data provided by the local microbiology laboratory.

In this analysis, susceptibility testing results obtained from the local laboratory were
similar to those obtained from the central laboratory. Among the 10 patients who were
excluded from the mMITT population, most qualifying baseline isolates had minor
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EFU, early follow-up; EOT, end of therapy; IMI, imipenem-cilastatin; i.v., intravenous; REL, relebactam; SOP, standard operating procedure.

differences (1 to 2 dilutions) in MIC results between the 2 laboratory settings, and
differences in susceptibility determinations occurred to a similar extent for all 3 tested
drugs. The differences in susceptibility results between the 2 laboratory settings, with
MICs generally being higher at the local laboratories, may be due to differences
inherent to the 2 susceptibility panels used (i.e., Sensititre in local laboratories versus
custom frozen panels in the central laboratory). Local laboratory testing identified a
patient population consistent with the population in which IMI-REL is expected to be
used: those with Gram-negative bacterial infections caused by carbapenem-resistant
pathogens. The similarity of the results obtained from both laboratory settings suggests
that clinicians can rely on local laboratory data to guide decision-making and the use
of IMI-REL. In addition, this analysis offers insight into study design options for anti-
bacterial trials conducted in this challenging patient population.

Overall, IMI-REL was effective for the treatment of adults with imipenem-nonsusceptible,
serious Gram-negative bacterial infections, including clAl, cUTI, and HABP/VABP, with the
response rates being comparable to the response rate of a commonly used regimen
(20). The results of this secondary analysis, in which treatment response was evaluated
among patients with qualifying baseline pathogens identified based only on local
microbiology laboratory culture and susceptibility results, provide support for the
expected future clinical use of IMI-REL for the treatment of infections caused by
multidrug-resistant Gram-negative bacteria, where therapeutic decisions will typically
be made based on local laboratory data.

MATERIALS AND METHODS

Study design. RESTORE-IMI 1 (protocol MK-7655A-013) was a phase 3, randomized, double-blind,
active comparator-controlled, parallel-group, multicenter clinical trial that evaluated the efficacy and
safety of IMI-REL compared with those of colistin plus IMI (ClinicalTrials.gov identifier NCT02452047). The
protocol was approved by appropriate institutional review boards and regulatory agencies, and the trial
was conducted in accordance with the principles of Good Clinical Practice and the Declaration of
Helsinki. The full methodology was previously published (20).

Patients. Inclusion and exclusion criteria have been previously described (20). Patients were adults
(age, =18 years) who required hospitalization and treatment with intravenous (i.v.) antibiotics for serious
infections (clAl, cUTI, and HABP/VABP) caused by imipenem-nonsusceptible but imipenem-REL- and
colistin-susceptible Gram-negative pathogens. As part of routine standard-of-care testing at each par-
ticipating investigational site, all Gram-negative pathogens isolated from intra-abdominal, lower respi-
ratory tract, and urinary tract specimens were evaluated for susceptibility to the 3 study drugs by broth
microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines (Fig. 2) (33). For
this purpose, all local microbiology laboratories (i.e., those used by the individual investigational sites)
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TABLE 4 Primary endpoint (overall response) definition by infection type©

Infection type Time point Outcome

HABP/VABP Day 28 All-cause mortality (survival)
clAl Day 28 Favorable clinical response (sustained cure or cure?)
cUTI EFU visit Favorable microbiological response (sustained eradication®) and favorable clinical response (sustained cure or cure?)

aAll pretherapy signs and symptoms of the index infection(s) had resolved (or returned to preinfection status), no additional intravenous antibiotic therapy was
required, and, for patients with clAl, no unplanned surgical procedures or percutaneous drainage procedures had been performed (cure was sustained if there was
no evidence of a resurgence of the index infection).

A culture of urine taken at the EFU visit still showed eradication of the uropathogen found at study entry (i.e., a count of =10> CFU/ml was reduced to <10*
CFU/ml).

<clAl, complicated intra-abdominal infection; cUTI, complicated urinary tract infection; EFU, early follow-up; HABP, hospital-acquired bacterial pneumonia; VABP,
ventilator-associated bacterial pneumonia.

were provided with Sensititre susceptibility panels (Thermo Fisher Scientific Inc., Waltham, MA, USA), a
broth microdilution method, to standardize testing of the susceptibility of the isolates to imipenem,
imipenem-REL, and colistin. This prescreening process identified patients with potentially eligible
infections caused by imipenem-nonsusceptible, imipenem-REL-susceptible, and colistin-susceptible
Gram-negative pathogens. The study investigators then decided whether to enter the identified patients
into the formal screening process of this trial (i.e., obtaining informed consent and determining whether
all other inclusion and exclusion criteria were met). In order to be eligible, a patient’s primary infection-
site sample had to be collected within 1 week before study entry. Patients were eligible for enrollment
into the study and randomization based on the local susceptibility test results for the Gram-negative
isolates. In addition to local laboratory testing, all Gram-negative isolates from infection-site specimens
from randomized patients were evaluated at a central microbiology reference laboratory (International
Health Management Associates, Inc. [[HMA], Schaumburg, IL, USA). At the central laboratory, species
identification was confirmed by matrix-assisted laser desorption ionization-time of flight spectroscopy
(Bruker Daltonics, Billerica, MA, USA), and susceptibility testing was performed by broth microdilution
according to CLSI guidelines using custom frozen panels prepared at IHMA (33). Repeat testing was
performed for isolates for which the susceptibility results obtained at the central and local laboratories
were not consistent. MIC values were interpreted using CLSI (34) and European Committee on Antimi-
crobial Susceptibility Testing (EUCAST) 2017 (35) guidelines. Imipenem susceptibility breakpoints were
also applied to imipenem-REL.

Procedures. Patients were randomized 2:1 (stratified by primary infection type) into 2 groups. The
first group received i.v. IMI-REL (imipenem at 500 mg and cilastatin at 500 mg plus relebactam at 250 mg
every 6 h) plus placebo to colistin; the second group received i.v. colistin (as colistimethate sodium at a
loading dose to achieve 300-mg colistin base activity, followed by maintenance doses every 12 h up to
150-mg colistin base activity) plus IMI (imipenem at 500 mg and cilastatin at 500 mg every 6 h). Dosing
of both study treatments was adjusted based on renal function. The treatment duration was =5 days for
clAl and cUTI and =7 days for HABP/VABP and did not exceed 21 days. Patients were screened for
eligibility at =24 h before randomization (Fig. 2); study visits were performed on day 1 (randomization),
on day 3 (on-therapy visit), and at the end of therapy (EOT; day 5/7 to day 21). Patients were also
evaluated following completion of the i.v. study therapy at an early follow-up (EFU) visit (5 to 9 days
post-EOT) and on day 28 (which could occur on the same day as the EFU visit).

For patients with HABP/VABP or clAl, the collection of a baseline sample from the infection site was
strongly preferred; however, collection at the time of study entry was not required for patients in whom
infection-site specimen collection was not medically acceptable (e.g., a patient with clAl in whom
collection of an additional sample would require surgical intervention). Instead, a pure isolate of the
suspected causative pathogen from a prior culture of a specimen collected within 1 week of enrollment
was submitted to the central laboratory for evaluation. Additional unscheduled cultures of specimens
from the infection site with pathogen susceptibility testing were performed at any time that there was
clinical or laboratory evidence of infection persistence or progression (e.g., persistent fever, elevated
white blood cell count, or significant changes in the patient’s clinical condition) and at the time of any
surgical or drainage procedure in patients with HABP/VABP or clAl. For patients with cUTI, infection-site
specimens were required for visits on day 1, on day 3, at the EOT, and at the EFU visit.

Treatment response analysis. Treatment response was defined using unique criteria for each
infection type (Table 4). Key secondary endpoints included a favorable clinical response (sustained cure
or cure) at day 28 after initiation of trial treatment and all-cause mortality (survival) at day 28 after trial
treatment.

Treatment responses were evaluated in 2 protocol-prespecified analysis populations: the mMITT
population, which was the primary efficacy population from the primary analysis, and the SmMITT
population. Both the mMITT and SmMITT populations comprised patients who received =1 dose of study
drug and had =1 qualifying baseline pathogen, a Gram-negative pathogen isolated from a culture of a
specimen obtained from the primary infection site within 1 week of randomization and meeting
protocol-specified criteria for susceptibility to imipenem, imipenem-REL, and colistin based on local
laboratory susceptibility interpretive criteria (i.e.,, CLSI or EUCAST criteria). The eligibility of the baseline
pathogens for the mMITT population was determined by MIC results obtained from the central
laboratory. The SmMITT population included all patients in the mMITT population plus additional
patients who had =1 qualifying baseline pathogen meeting susceptibility criteria according to local
laboratory MIC results, regardless of the central laboratory MIC results.
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This was an estimation trial; no formal statistical testing was performed for treatment response.

Between-group 90% confidence intervals for the primary and key secondary endpoints were calculated
using the stratified Miettinen and Nurminen method, an unconditional, asymptotic method (36). The

between-group estimates were stratified by infection type, where appropriate.
Data availability. The data sharing policy of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co.,

Inc., Kenilworth, NJ, USA, including restrictions, is available at http://engagezone.msd.com/ds_documentation
.php. Requests for access to the clinical study data can be submitted through the EngageZone site or via
email to dataaccess@merck.com.
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