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Abstract

Incorporating expert knowledge at the time machine learning models are trained holds

promise for producing models that are easier to interpret. The main objectives of this study

were to use a feature engineering approach to incorporate clinical expert knowledge prior to

applying machine learning techniques, and to assess the impact of the approach on model

complexity and performance. Four machine learning models were trained to predict mortal-

ity with a severe asthma case study. Experiments to select fewer input features based on a

discriminative score showed low to moderate precision for discovering clinically meaningful

triplets, indicating that discriminative score alone cannot replace clinical input. When com-

pared to baseline machine learning models, we found a decrease in model complexity with

use of fewer features informed by discriminative score and filtering of laboratory features

with clinical input. We also found a small difference in performance for the mortality predic-

tion task when comparing baseline ML models to models that used filtered features. Encod-

ing demographic and triplet information in ML models with filtered features appeared to

show performance improvements from the baseline. These findings indicated that the use

of filtered features may reduce model complexity, and with little impact on performance.

Introduction

Improved access to large longitudinal electronic health record (EHR) datasets through secure

open data platforms [1] and the use of high-performance infrastructure [2] are enabling appli-

cations of sophisticated machine learning (ML) models in decision support systems for major
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health care practice areas. Areas with recent successes include early detection and diagnosis [3,

4] treatment [5, 6] and outcome prediction and prognosis evaluation [7, 8]. Relying on ML

models trained on large EHR datasets, however, may lead to implementing decision-support

systems as black boxes—systems that hide their internal logic to the user [9]. A recent survey

of methods for explaining black box models highlights two main inherent risks [10]: (1) using

decision support systems that we do not understand, thus impacting health care provider and

institution liability; and (2) a risk of inadvertently making wrong decisions, learned from spu-

rious correlations in the training data. This work takes a feature engineering approach that

incorporates clinical expert knowledge in order to bias the ML algorithms away from the spu-

rious correlations and towards meaningful relationships.

Background

Severe asthma as a case study

We explored severe asthma as a case study given the multiple limitations of current computa-

tional methods to optimize asthma care management. Documented limitations include: the

low prediction accuracy of existing approaches to project outcomes for asthma patients, limita-

tions with communicating the reasons why patients are at high risk, difficulty explaining the

rules and logic inside an approach and a lack of causal inference capability to provide clear

guidance on what patients could safely be moved off care management [11]. Incorporating

clinical expert knowledge at the time that computational models are trained may help to over-

come these limitations.

Expert clinical knowledge and model performance

Incorporate expert knowledge into the computational model building process has potential to

produce ML models that show performance improvements. One previous study, for example,

found that including known risk factors of heart failure (HF) as features during training

yielded the greatest improvement in the performance of models to predict HF onset [12]. Dif-

ferent from that approach, we use a feature engineering approach to incorporate clinical expert

knowledge.

Our feature engineering approach involved first extracting triplets from a longitudinal clin-

ical data set, ranking those triplets according to a discriminative score, and then filtering those

triplets with input from clinical experts. Triplets explored in this work were laboratory results

and their relationship to clinical events such as medical prescriptions (i.e., lab-event-lab

triples).

The goal of this research was to apply the feature engineering approach with a severe

asthma case study and to assess model performance for a range of ML approaches: gradient

boosting [13], neural network [14], logistic regression and k-nearest neighbor. Non-zero coef-

ficients were assessed as a metric of model complexity for two ML approaches: logistic regres-

sion and gradient boosting.

For each ML model, we conducted several experiments to understand the impact of ranking

features based upon discriminative score and of filtering features with clinical input on model

complexity and performance. To assess performance, we used measures of model accuracy

and fidelity. Experiments were completed with a case study of patients with severe asthma in

the MIMIC-III [1] dataset for a mortality prediction task.
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Methods

Discovering triplets from longitudinal clinical data

First, we discovered triplets, defined as a lab-event-lab sequence where the value of a labora-

tory result is captured before and after a clinical event. These triplets occur within the context

of an ICU stay. Clinical events captured in this study were medication prescriptions and clini-

cal procedures. The ranking step used an information theoretic approach to calculate and asso-

ciate a discriminative score for triplets. The filtering step involved input from clinical experts

who filtered out triplets that were not considered relevant to asthma. The final list of ranked

and filtered laboratory results were used to select or weight features in a range of machine

learning models.

In order to discover triplets, laboratory results were pre-processed as follows:

1. Laboratory values were cleaned by merging laboratory result names according to

the approach described in ref [17]. That work provided a file outlining bundled

laboratory names (e.g., heart rate) that grouped name variations (e.g., pulse rate), abbre-

viations (e.g., HR) and, misspellings (e.g., heat rate) of the same concept [18]. In addi-

tion, there were circumstances where laboratory values consisted of both numerical and

textual representations. In those cases, we converted the textual values to numbers

according to simple rules (e.g., “�1” converted “1”). Many laboratory result entries had

values such as “error” which could not be converted. In those instances, entries were

ignored.

2. Laboratory values were divided into a finite number of bins. Bin boundaries were defined

by a clinical expert familiar with the normal ranges of each laboratory test. For tests where

normal ranges were unknown, six dividers were defined based upon mean and standard

deviation (i.e., μ − 2σ, μ − σ, μ − σ/2, μ + σ/2, μ + σ, μ + 2σ).

Next, triplets were discovered according to the following steps:

1. Laboratory value bins before and after a clinical event (i.e., a lab-event-lab triplet) were cap-

tured. A laboratory result could involve different clinical events—resulting in multiple trip-

lets. In addition, each patient in our dataset could have multiple triplets. The amount of

time between the clinical event and lab measurement also varies depending upon the lab.

For each event, lab test time duration before and after each event were calculated. For each

lab test, time duration before an event was defined as the time immediately after the prior

lab test until (and including) the time of the event. The duration after an event was defined

as the time immediately after the event until the next lab measure occurred. The start time

for the first recorded lab measure for an individual, was defined as the start time for the

ICU stay. Similarly, the end time for the last recorded lab measure, was the defined as the

end time for the ICU stay.

2. Lab-event-lab triplets were categorized as no change, decreasing or increasing by assessing

the laboratory value bin before and after the anchoring clinical event.

3. Cross tabulations where then performed for each triplet category (no change, decreasing,

increasing) for two patient sub-groups (patients who died and patient that did not die).

4. Triplets with cross tabulation values of 10 or fewer were excluded from further analysis. We

did this because small counts cannot reliability determine whether there is a statistically

meaningful relationship.
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Ranking and filtering laboratory result features

We used an information theoretic approach to calculate discriminative scores for triplets and

used those scores to rank and filter laboratory result features. In particular, we calculated

mutual information [19] score, MIscore (Eq 1) to rank triplets that may be estimators of mortal-

ity. MIscore was chosen as simple and fast measure that can be used to highlight triplets that

may be relevant for clinical experts. The MIscore is a measure of the marginal association of

each triplet category with patient mortality sub-group, thus it is based on a table with three

columns (no change, increase, decrease) and two rows (died or survived). An illustration of

MIscore calculations for triplets is shown in (Table 1).

MIscore ¼
P

PðXYÞlog
PðXYÞ

PðXÞPðYÞ

� �

ð1Þ

Due to table dimensions (two by three), the MIscore will always be between 0 and

log2 � 0.6931. For this reason, we did not use normalized mutual information. While more

sophisticated measures of association between features and outcomes, conditional on other

features, such as conditional mutual information are potentially informative, they are also

very challenging to evaluate in our setting. Given that our models include high dimensional

feature sets, we choose this more simple measure.

After MIscore’s were calculated for triplets, clinical experts hand-picked the subset that were

clinically relevant to asthma. The selected triplets were then used to filter laboratory result fea-

tures. Filtered features were those laboratory tests that were represented among the clinically

meaningful triplets. The filtered laboratory result features were used in experiments described

in the “Evaluation” section.

We also calculated a composite discriminative score that was used to rank laboratory results

features. For each laboratory result represented among all triplets, a discriminative score was

calculated by taking the sum of MIscore’s from each triplet in which it appeared. The discrimi-

native scores were used to rank laboratory result features used in experiments described in the

“Evaluation” section.

Machine learning models for longitudinal clinical datasets

For all machine learning models explored in this study (gradient boosting, neural network,

logistic regression and k-nearest neighbors), time series data was used. KNN allows us to spec-

ify feature importance. The other models do not support the input of feature weights. How-

ever, we performed experiments selecting subsets of the most important features.

For all four models, we normalized the training data and normalized features by removing

the mean and scaling to unit variance. Normalization is done to prevent biasing the

Table 1. A hypothetical case showing mutual information (MIscore) calculation.

Drug B No change (Lab A) Increased (Lab A) Decreased (Lab A)

Survived 12 11 12

Died 22 22 21

MIscore = 0.00034354

Drug C No change (Lab A) Increased (Lab A) Decreased (Lab A)

Survived 25 8 5

Died 12 23 27

MIscore = 0.11523

https://doi.org/10.1371/journal.pone.0231300.t001
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algorithms. For example, many algorithms tend to sum together features, which would cause

bias towards features with a wide range of values.

This same pipeline was used on the test dataset. 10-fold cross validations with a limited

hyper parameter search was used to predict mortality. Baseline ML models and clinical input-

informed ML models were created. Baseline ML models included 42 top ranked features

according to discriminative score. Different from baseline ML models, clinical input-informed

ML models included filtered features (i.e., a subset of laboratory result features determined to

be clinically relevant). We used both feature selection and weighting approaches, depending

on the modeling approach. For logistic regression, gradient boosting, and neural network

(using shallow decision trees as week learners), we used feature weights to perform feature

selection. For KNN, we used weighted distance as described by others [20] to do prediction.

Evaluation

We evaluated model complexity and model performance with two characteristics of the feature

engineering approach: ranking features by discriminative score, and filtering features accord-

ing to input on which triplets are clinically meaningful. We used one measure of model com-

plexity and two measures of performance (model accuracy and model fidelity). Our specific

research questions were:

• What is the impact of our approach to rank laboratory result features according to discrimi-

native score on model complexity? and on model performance (model accuracy and model

fidelity)?

• What is the impact of our approach to filter features on model complexity? and on model

performance (model accuracy and model fidelity)?

• What is the impact of encoding triplet information directly into the model on model com-

plexity? and on model performance (model accuracy and model fidelity)?

• What is the model complexity and performance trade off of ranking laboratory result fea-

tures according to discriminative score? of filtering features? and of encoding triplet infor-

mation directly into the model?

A summary of data acquisition and data pre-processing steps to enable these analyses, as

well a description of what was analyzed is summarized in Fig 1 and below.

Data source, study population and machine learning models

Previous work indicates that admission to the intensive care unit for asthma is a marker for

severe disease [21]. Thus we chose to use the MIMIC-III (‘Medical Information Mart for

Intensive Care’) public dataset [1] that includes de-identified health care data collected from

patients admitted to critical care units at Beth Israel Deaconess Medical Center from 2001 to

2012.

Patients included in our analyses had an asthma diagnosis or medication to treat asthma

according to criteria proposed by the eMERGE (Electronic Medical Records and Genomics)

consortium [22]. We also use the in-hospital mortality labels defined in MIMIC-III for our

case study task to predict whether a patient dies in the hospital. This task was treated as a

binary classification problem. For the task to predict patient mortality, we narrowed our

cohort to include only those patients included in a MIMIC III benchmark dataset [17] and

with an admission period of�48 hours. We selected logistic regression, gradient boosting,

neural network and KNN ML models that were trained as implemented by the scikit-learn

Python package [14].
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We considered gradient boosting models to be “black-box” due to the lack of direct inter-

pretation with the use of boosted classifiers with multiple trees. Neural network models are

also considered “black-box” given that there are often many layers of neurons and it is difficult

to relate connection weights to specific concepts. For logistic regression, the coefficients have

an interpretation in terms of log odds. KNN also offers some interpretability because we know

the closest data points to the current query point being used for making a decision. Note, how-

ever that these notions of what is considered black-box may be appropriate in different

contexts.

Data subsets and machine learning experiments

To conduct our study, we performed experiments with laboratory results and data subsets that

incrementally added encoded information on patient demographics, on clinical events from

triplets, and on laboratory results from triplets. These four data subsets were used to train the

ML models. The first Labs data subset comes directly from the MIMIC III benchmark dataset.

It contained, for each patient, the sequence of laboratory results collected during their first

ICU admission. The values at each hour over a 48 hour period were included. For each one

hour period, we could have zero values, one value or more than one value. For each of the

f × 48 slots (where f is the number of labs or features used in the machine learning experiment),

we computed mean, min, max, standard deviation and skew. This created a total of f × 48 × 5

inputs to the ML models. We also normalized our datasets so that the mean is zero and vari-

ance is one. This was done using sklearn’s StandardScalar [14].

The second Labs+demo data subset added demographic information: age group at the time

of admission to the ICU, race/ethnicity and sex. Age groups included:<2, 2 − 17, 18 − 34,

35 − 49, 50 − 69 and 70+ years old. Race and ethnicity’s included: white, black, asian, hispanic,
multi and other. The other category was used when we could not determine the group based

Fig 1. Summary of data acquisition, data pre-processing, and data analysis steps.

https://doi.org/10.1371/journal.pone.0231300.g001
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on the MIMIC III entry. For sex, groups included male and female. For each patient, these val-

ues were repeated for all time slots.

The third Labs+demo+events data subset added a column for each clinical event (ie., drug

prescriptions and procedures) from triplets considered clinically relevant. Each column

includes a zero or a one, with one indicating that the clinical event was recorded during the

time slot being considered, and zero otherwise.

The fourth Labs+demo+events+triples data subset duplicates columns from the Labs data

subset and for a given time slot, replaces laboratory values with a zero if all clinical event values

are zero. Otherwise, the laboratory values were left as-is.

The Labs+demo+events and Labs+demo+events+triples data subsets allowed us to examine

the extent to which model complexity and performance was impacted by encoding triplet

information. See “Machine learning experiments and analyses of model complexity and per-

formance trade-off” for details on experiments with these data subsets.

Analysis of triplet ranking

The ranking of triplets according to discriminative score was assessed by three co-authors (XZ,

CGC, JAE) who manually reviewed the clinical relevance of all features in our severe asthma

case study. A two-step strategy was applied. The first step was to evaluate whether the medica-

tion/procedure was generally known to or could conceivably have an impact (directly or indi-

rectly) on a laboratory result (e.g., we consider arterial blood gas and pulmonary function test

results to have medical relevance in asthma patients). The second step was to evaluate whether

the combination is considered relevant to asthma case study (e.g., ‘Gauge Ordering’ does not

indicate specific clinical uses). This process allowed us to filter lab-event-lab triplets that were

not relevant to our case study. For top ranked triplets according to MIscore, we calculated preci-
sion in the top k ranked triplets, i.e. the fraction of the count of individual triplets selected by

our experts within the top k ranked patterns, divided by k. This set was used in the ML predic-

tors explored in this study. All of steps to analyze the model complexity and performance

trade-off were computational.

Machine learning experiments and analyses of model complexity and

performance

We conducted several experiments to assess the model complexity and performance of ML

models. We used one measure of model complexity and two measures of performance (model

accuracy and model fidelity). Complexity, accuracy and fidelity are three characteristics used

to describe ML algorithms that have been summarized by others [9, 23].

Measuring ML model complexity. To assess the impact of using ranked laboratory result

features on model complexity, we conducted experiments analyzing the number of non-zero

coefficients with use of fewer than the baseline 42 features (k = 32, 16, 8, 4, and 2). In order to

assess the impact of using filtered features on model complexity, we conducted experiments

comparing the number of non-zero coefficients in the baseline ML model and in the ML

models based on filtered features. In order to assess the impact of encoding triplet informa-

tion into the model on model complexity, we compared the number of non-zero coefficients

in ML model subsets that included triplet information (i.e., Labs+demo+events and

Labs+demo+events+triples) to the data subset that includes laboratory results and demo-

graphic information (i.e., Labs+demo). This assessment was conducted for logistic regression

and gradient boosting. We did not assess non-zero coefficients for neural network or KNN

because the number of non-zero coefficients is not related to the complexity for these models.

For all comparisons, we assessed the degree of difference.
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Measuring ML model accuracy. Model accuracy was assessed by examining the extent to

which ranking laboratory result features according to discriminative score and filtering fea-

tures in ML models can accurately predict mortality. For models with ranked features and

with filtered features, we also examined the extent to which encoding demographic informa-

tion and triplet information influences model accuracy. Model fidelity was assessed by observ-

ing the extent to which ML models with filtered features (with and without encoding triplet

information directly) are able to imitate the baseline ML predictors.

In order to assess the model accuracy of ranking according to discriminative score, we per-

formed feature selection experiments with logistic regression, gradient boosting, and neural

network models. For these experiments, we selected the top k = 2, 4, 8, 16, 32, and 42 labora-

tory results ranked according to model weights for gradient boosting and neural network

models, and according to the sum of MIscore for logistic regression models. For KNN we did

not assess performance changes when considering ranking according to discriminative score.

For each experiment, receiver operating characteristic (ROC) curves and area under the ROC

curve (AUC) were reported. The range of AUC values was also reported for feature selection

experiments.

In order to assess the model accuracy of baseline and clinical input-informed ML models,

for all three models we performed experiments with data subsets. Baseline ML models

included models with 42 features and its data subsets. Filtered features were laboratory results

represented among triplets determined to be clinically relevant. For logistic regression, gradi-

ent boosting, and neural network models, the Labs+demo data subset enabled assessing the

influence of encoding demographic information on model accuracy. The Labs+demo+events
and Labs+demo+events+triples data subsets enabled assessing the influence of encoding triplet

information on model accuracy. KNN experiments were conducted with the Labs data subset

only, so we did not assess the influence of encoding triplet information. For each experiment,

ROC curves and AUC were reported.

Measuring ML model fidelity. Fidelity was assessed by examining the extent to which the

clinical input-informed ML features (with and without triplet information) are able to accu-

rately imitate our baseline ML predictors. We conducted experiments that enabled comparing

clinical input-informed ML model performance to baseline ML model performance. For logis-

tic regression, gradient boosting, and neural network models, clinical input-informed ML

models were compared to baseline ML models for three data subsets: Labs, Labs+demo and

Labs+demo+events. For KNN, we used the Lab data subset and compared the performance of

models with filtered features (with and without weights) to the baseline ML model. We report

the difference in AUC for clinical input-informed ML models with and without encoding trip-

lets (i.e., the Labs+demo+events and Labs+demo+events+triples data subsets) compared to the

baseline for logistic regression, gradient boosting, and neural network ML models.

Results

Triplet identification and ranking

We discovered 218 prescription and 535 procedure triplets with more than 10 instances. These

two lists of triplets were sorted by MIscore prior to manual clinical review. Upon clinical review,

we found that 82 triplets (27 prescription and 55 procedure triplets, see S1 and S2 Tables) were

meaningful for our case study. Precision at k in a top-k problem for prescription and proce-

dure events according to MIscore are shown in Table 2. Triplets used in this calculation are sum-

marized in S3 and S4 Tables. For prescription triplets, precision at k = 3, 5, 10, and 20 in a top-

k ranked list ranged from 20% to 67% i.e., the percentage of the triplets that were relevant to
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the case study. For procedure triplets, precision at k = 3, 5, 10, and 20 in a top-k ranged from

0% to 20%.

The triplets were used to enable more interpretable ML models through their use to select

and weight features. Eleven laboratory tests were represented among the 82 clinically meaning-

ful triplets discovered at this step (i.e., filtered laboratory results, see S5 Table). The “Perfor-

mance result: ML model accuracy” section shows how feature selection using the 11 laboratory

tests (i.e., filtered features) impacted the ML result accuracy).

Machine learning results

The ML experiments are based on a subset of 7777 patient records from the MIMIC III data-

base that are also included in a benchmark dataset used by others [17]. This dataset of 7777

patients was divided into 6222 training cases (death rate 0.489) and 1555 for testing cases

(death rate 0.494). An overview of the final dataset, data pre-processing and data analysis steps

are shown in Fig 1 and Table 3. The rankings of the top 42 ranked laboratory tests used in

logistic regression and gradient boosting model experiments are shown in S6 and S7 Tables.

ML model complexity results

The ML models for logistic regression and gradient boosting for k� 42 laboratory result fea-

tures are illustrated in Tables 4 and 5. For both, model complexity decreased with use of fewer

features informed by discriminative score (Tables 4 and 5). For logistic regression models,

there was a -1.8 fold change in non-zero coefficients between with 16 and 8 features, a -2.8 fold

change between models with 4 and 2 features. For gradient boosting models, there was -1.7

fold change in non-zero coefficients between models with 32 and 16 features, a -1.7 fold

change between models with 8 and 4 features, and a -2.5 fold change for models with 4 and 2

features. All other model fold changes were 0 to 0.5 and were interpreted as no difference.

The use of clinical input-informed (filtered) features decreased model complexity for logis-

tic regression and gradient boosting ML models. For logistic regression and gradient boosting

models, they both had a -1.7 fold change in non-zero coefficients between the models with fil-

tered features for Labs data subsets and the baseline model. There was no difference between

models with filtered features for Labs+demo and Labs+demo+events data subsets, and the base-

line model (i.e., fold changes were 0 to 0.5).

When examining the influence of encoding demographic and triplet information for mod-

els with non-filtered features, we found that model complexity decreased. Among logistic

Table 3. Summary of dataset.

Data Total

# Admissions in the MIMIC-III (v1.4) database 58 576

# Admissions with asthma medication 8359

# Admissions with visit duration > = 48 hours 7777

# Training set of patients for the model 6222

# Testing set of patients the model 1555

https://doi.org/10.1371/journal.pone.0231300.t003

Table 2. Precision for top k prescription and procedure triplets.

Triplet event Precisiontop3 Precisiontop5 Precisiontop10 Precisiontop20

Prescription 67.0% 40.0% 30.0% 20.0%

Procedure 0.0% 0.0% 0.0% 20.0%

https://doi.org/10.1371/journal.pone.0231300.t002
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regression models, there was a -1.7 fold change in non-zero coefficients between models that

encode demographic information (Labs+demo) compared to the baseline model (Labs), and a

-1.6 fold change between models that encode triplet information (Labs+demo+events) com-

pared to the baseline model. Among gradient boosting models, there was a -1.9 fold change in

non-zero coefficients between models that encode demographic information (Labs+demo)

compared to the baseline model, and a -2.0 fold change between models that encode triplet

information (Labs+demo+events) compared to the baseline model.

When examining the influence of encoding demographic and triplet information for mod-

els with filtered features, the model complexity increased for one model that encoded triplet

information. There was a 2.3 fold change for the gradient boosting model with filtered features

for the Labs+demo+events+triples data subset compared to the baseline model. There were no

differences between other models encoding demographic and triplet information with filtered

features and the baseline model (i.e., fold changes were 0 to 0.5 for Labs+demo and Labs+demo
+events data subsets).

Table 5. Trained gradient boosting model parameters.

Features Data subsets Number of coefficients Number of non-zero coefficients

2 features Labs 480 148

4 features Labs 960 365

8 features Labs 1920 612

16 features Labs 3840 452

32 features Labs 7680 778

42 features Labs 10080 732

Labs+demo 10224 384

Labs+demo+events 11568 374

Labs+demo+events+triples - -

11 filtered features Labs 2640 431

Labs+demo 2784 330

Labs+demo+events 4128 468

Labs+demo+events+triples 95136 995

https://doi.org/10.1371/journal.pone.0231300.t005

Table 4. Trained logistic regression model parameters.

Features Data subsets Number of coefficients Number of non-zero coefficients

2 features Labs 480 123

4 features Labs 960 344

8 features Labs 1920 418

16 features Labs 3840 770

32 features Labs 7680 894

42 features Labs 10080 1058

Labs+demo 10224 619

Labs+demo+events 11568 684

Labs+demo+events+triples - -

11 filtered features Labs 2640 614

Labs+demo 2784 448

Labs+demo+events 4128 609

Labs+demo+events+triples 47568 686

https://doi.org/10.1371/journal.pone.0231300.t004
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Performance result: ML model accuracy and fidelity

Model accuracy and fidelity for logistic regression, gradient boosting, and neural network ML

models (top k = 2, 4, 8, 16, 32, 42 features, and 11 filtered features) are summarized in Table 6.

The top performing models yielded AUC’s of 0.73 for logistic regression, 0.75 for gradient

boosting, and 0.68 for neural network models. For KNN the baseline model accuracy was

AUC42 = 0.57.

For logistic regression, gradient boosting, and neural network ML models, we found model

accuracy to be robust to feature removal informed by discriminative score (Figs 2, 3 and 4).

Table 6. Logistic regression, gradient boosting, and neural network: AUC of top k features.

Features Data subsets Logistic regression Gradientboosting Neural networks

2 features Labs 0.54 0.60 0.57

4 features Labs 0.55 0.63 0.55

8 features Labs 0.56 0.63 0.57

16 features Labs 0.60 0.66 0.61

32 features Labs 0.64 0.68 0.64

42 features Labs 0.64 0.69 0.63

Labs+demo 0.73 0.74 0.67

Labs+demo+events 0.73 0.75 0.65

Labs+demo+events+triples - - -

11 filtered features Labs 0.64 0.68 0.62

Labs+demo 0.72 0.73 0.67

Labs+demo+events 0.73 0.74 0.68

Labs+demo+events+triples 0.72 0.74 0.65

AUC = area under the receiver operating characteristic curve

https://doi.org/10.1371/journal.pone.0231300.t006

Fig 2. ROC curves for logistic regression classifiers.

https://doi.org/10.1371/journal.pone.0231300.g002
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Fig 3. ROC curves for gradient boosting classifiers.

https://doi.org/10.1371/journal.pone.0231300.g003

Fig 4. ROC curves for neural network classifiers.

https://doi.org/10.1371/journal.pone.0231300.g004

PLOS ONE Feature engineering with clinical expert knowledge

PLOS ONE | https://doi.org/10.1371/journal.pone.0231300 April 23, 2020 12 / 19

https://doi.org/10.1371/journal.pone.0231300.g003
https://doi.org/10.1371/journal.pone.0231300.g004
https://doi.org/10.1371/journal.pone.0231300


We observed slightly lower AUC’s between models with 32 and 16 features (ΔAUC32k16 = 0.04,

0.02, and 0.03 for logistic regression, gradient boosting, and neural network models, respec-

tively). Step-wise feature removal otherwise yielded negligible differences (i.e., ΔAUC� 0.01).

Across all data subsets, the maximum difference from baseline was ΔAUCmax = 0.1 for logistic

regression, ΔAUCmax = 0.09 for gradiant boosting, and ΔAUCmax = 0.06 for neural network

models.

For all ML models, the clinical input-informed ML features (i.e., filtered features) yielded

comparable model accuracy to the baseline (Figs 5, 6 and 7). The top performing models with

filtered features were 0.73 for logistic regression, 0.74 for gradient boosting, 0.68 for neural

network, 0.54 for KNNunweighted, and 0.56 for KNNweighted models. The magnitude of the

Fig 5. ROC curves for logistic regression classifiers.

https://doi.org/10.1371/journal.pone.0231300.g005

Fig 6. ROC curves for gradient boosting classifiers.

https://doi.org/10.1371/journal.pone.0231300.g006
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difference in AUC from baseline models were>0.01 for the KNNunweighted model that achieved

lower but comparable accuracy (ΔAUC = 0.03), and for the neural network model for the Labs

+demo+events data subset achieved higher but comparable accuracy (ΔAUC = 0.03). Differ-

ences from the baseline were negligible for all other models.

Findings from feature engineering experiments used to assess the influence of encoding

demographic and triplet information on model accuracy are also illustrated in Figs 4, 5 and 6.

ML models encoding demographic information (i.e., Labs+data data subsets) showed higher

accuracy than baseline ML models. Among ML models without filtered features, the perfor-

mance of those encoding demographic information (i.e., Labs+demo data subsets) were 0.73

for logistic regression, 0.74 for gradient boosting, and 0.67 for neural network models. The

magnitude of performance improvement of Labs+demo data subsets from the baseline were

ΔAUC = 0.09 for logistic regression, ΔAUC = 0.05 for gradient boosting, and ΔAUC = 0.04 for

neural network models. Among ML models with filtered features, the performance of models

encoding demographic information were 0.72 for logistic regression, 0.73 for gradient boost-

ing, and 0.67 for neural network models. The magnitude of the performance improvements

from the baseline were ΔAUC = 0.08 for logistic regression, ΔAUC = 0.04 for gradient boost-

ing, and ΔAUC = 0.04 for neural network models.

ML models encoding triplet information (i.e., Labs+data+events and Labs+demo+events+-
triples data subsets) showed higher accuracy than baseline ML models. Among ML models

encoding triplet information, the top performing models were 0.73 for logistic regression,

0.75 for gradient boosting, and 0.68 for neural network models. For ML models without fil-

tered features, when compared to baseline models, the performance improvements were

ΔAUC = 0.7 for logistic regression, ΔAUC = 0.05 for gradient boosting, and ΔAUC = 0.02 for

neural network models for Labs+demo+events data subsets. The same differences were

observed for logistic regression and gradient boosting ML models with filtered features for

Labs+demo+events data subsets. For the neural network model with filtered features for the

Labs+demo+events data subset, ΔAUC = 0.05. For models with filtered features for Labs

Fig 7. ROC curves for neural network classifiers.

https://doi.org/10.1371/journal.pone.0231300.g007
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+demo+events+triples data subsets, when compared to baseline models, the performance

improvements were ΔAUC = 0.8 for logistic regression, ΔAUC = 0.05 for gradient boosting,

and ΔAUC = 0.02 for neural network models.

Discussion

Clinically meaningful triplets and utility of discriminative score

Eighty two clinically meaningful triplets were discovered for a severe asthma case study (S1 and

S2 Tables). We found that the precision of MIscore rankings to discover those triplets was low to

moderate for prescriptions (20% to 67%) and low for procedures (0% to 20%). This finding

indicates that more work is needed in order to move from manual clinical review to an auto-

mated process. Through further assessment of MIscore rankings, we found that similar model

performance for the mortality prediction task can be achieved with decreased model complex-

ity (i.e., fewer features selected according to discriminative score, Figs 2, 3 and 4). These find-

ings suggest that MIscore alone cannot replace clinical input, but that the use of MIscore-informed

rankings has potential to decrease model complexity at little cost to model performance.

Model complexity and performance of machine learning models

We assessed model complexity for logistic regression and gradient boosting. We found decreases

in model complexity with the use of fewer features informed by discriminative score and with

clinical input (Table 4 and Table 5). We also found decreases in model complexity when demo-

graphic information was encoded. Results were mixed for models that encoded triplet informa-

tion, with decreases in model complexity observed with Labs+demo+events data subsets, and an

increase in complexity observed with one Labs+demo+events+triples data subset.

When considering model performance for approaches that decreased model complexity,

we found that logistic regression, gradient boosting, and neural network ML models were

robust to feature removal informed by discriminative score. We did however observe dimin-

ishing performance with fewer features. Among the machine learning models we explored, the

neural network model was the most robust to feature removal.

For logistic regression, gradient boosting, neural network, and KNN models with filtered

features, we found small differences in performance when compared to baseline ML models.

(ΔAUC was�0.03 across all modeling approaches). For logistic regression, gradient boosting

and neural network models with filtered features, we also found that encoding demographic

and triplet information showed both decreases in model complexity and improvements in per-

formance for the Labs+demo and Labs+demo+events subsets. The results were mixed for the

Labs+demo+events+triples subsets, with observed decreases in model complexity and improve-

ments in performance observed for the logistic regression and gradient boosting models with

filtered features for the Labs+demo+events+triples subsets. For the neural network model with

filtered features for the Labs+demo+events+triples subset, model complexity increased and the

improvement in performance was very small.

Limitations and implications for future work

Our use of the MIMIC-III dataset in this case study may influence generalizability of our

approach to other clinical datasets given that the dataset derives exclusively from patients in

intensive care settings. Because of this, information typically collected in routine outpatient

settings, such as pulmonary function tests, would not be included in our model. This limitation

was mitigated in part through our filtering approach that excluded routine features of intensive

care.
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There are also some limitations due to our approach to define triplets. First, when consider-

ing prescriptions as the anchor event for triplets, the half-life of the medications may be rele-

vant. Our approach to discover triplets as lab-event-lab triples (i.e., laboratory results prior to

and immediately following a prescription) may exclude some triplets relevant to medications

with a longer half-life. Second, under circumstances where we used a default binning approach

for laboratory results, extreme outliers skewed the boundaries. There are other approaches to

discretize time series data such as SAX [24] and Temporal Discretization for Classification

(TD4C) [25] methods that might be considered to overcome this limitation.

In addition, the performance of our ML approaches may be influenced by our cohort

description. First, severe asthma patients were selected according to asthma medications and

diagnoses listed for those patients. Our inclusion criteria may be improved by processing the

free text “admission reason” to determine if asthma or asthma-like terms are mentioned. Sec-

ond, we did not consider the presence of co-morbid conditions in our predictive modeling.

Future work may draw from others to improve prediction or treatment guidelines for severe

asthma. For example, there are many studies such as [26] that aim to detect factors that can

predict asthma. We anticipate that such considerations can provide improved predictions over

approaches explored here.

A major contribution of this work to the ML literature is our approach to incorporate clini-

cal expertise. When reviewing ML and temporal data mining research broadly, we found that

this was a gap. [4, 6, 8, 27–33]. Unlike with previous efforts, our experiments tested the impact

of using a feature engineering approach to incorporate clinical input on model complexity and

performance. We also provided a simplified framework to encode triplets (lab-event-lab pat-

terns) for direct inclusion into our models that warrants further exploration. Furthermore,

well-known feature selection methods such as Lasso [34] do not incorporate expert knowledge

and rely on statistical methods to choose features. Findings from our work motivate future

efforts to explore ways to use statistical methods together with approaches such ours that

incorporate clinician-informed information on the relationship between clinical events and

laboratory measurements into the machine learning process.

Conclusion

This work explored a feature engineering approach with longitudinal data that enabled incor-

porating clinical input in ML models. We assessed the impact of two characteristics of the

approach on the complexity and performance of ML models for a mortality prediction task

for a severe asthma case study: ranking features by discriminative score (e.g., MIscore sum), and

filtering laboratory features according to input on lab-event-lab triplets that are clinically

meaningful. We found that ML models that use fewer input features selected based on discrim-

inative score or according to which triplets are clinically meaningful, can both decrease model

complexity with little cost to performance. Furthermore, for models with lower model com-

plexity through the use of filtered features, the performance of ML models showed improve-

ments from the baseline for data subsets that encode demographic and triplet information.

Such approaches to reduce ML model complexity at little cost to performance warrant further

comparison and consideration to combine with state-of-the-art feature selection methods, as

well as exploration beyond the severe asthma case study.

Supporting information

S1 Table. Clinically meaningful prescription triplets ranked by discriminative score.

(PDF)

PLOS ONE Feature engineering with clinical expert knowledge

PLOS ONE | https://doi.org/10.1371/journal.pone.0231300 April 23, 2020 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s001
https://doi.org/10.1371/journal.pone.0231300


S2 Table. Clinically meaningful procedure triplets ranked by discriminative score.

(PDF)

S3 Table. Top 20 prescription triplets ranked by discriminative score.

(PDF)

S4 Table. Top 20 procedure triplets ranked by discriminative score.

(PDF)

S5 Table. Laboratory tests found in list of clinically meaningful triplets.

(PDF)

S6 Table. Forty-two laboratory tests used in gradient boosting experiments, sorted by

weight.

(PDF)

S7 Table. Forty-two laboratory tests used in logistic regression experiments, sorted by

weight.

(PDF)

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments and suggestions

for improving this manuscript. We also want to thank Brant Chee (Johns Hopkins University

Applied Physics Laboratory), Matt Kinsey (Johns Hopkins University Applied Physics Labora-

tory), and Richard Zhu (Institute for Clinical and Translational Research, Johns Hopkins Uni-

versity) for their valuable input.

Author Contributions

Conceptualization: Kenneth D. Roe, Casey Overby Taylor.

Formal analysis: Kenneth D. Roe, Vibhu Jawa, Xiaohan Zhang, Jeremy A. Epstein.

Methodology: Kenneth D. Roe, Ilya Shpitser, Casey Overby Taylor.

Project administration: Casey Overby Taylor.

Supervision: Casey Overby Taylor.

Validation: Vibhu Jawa, Christopher G. Chute, Casey Overby Taylor.

Writing – original draft: Casey Overby Taylor.

Writing – review & editing: Kenneth D. Roe, Vibhu Jawa, Xiaohan Zhang, Christopher G.

Chute, Jeremy A. Epstein, Jordan Matelsky, Ilya Shpitser, Casey Overby Taylor.

References

1. Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible

critical care database. Scientific data. 2016; 3:160035. https://doi.org/10.1038/sdata.2016.35 PMID:

27219127

2. Chennamsetty H, Chalasani S, Riley D. Predictive analytics on Electronic Health Records (EHRs) using

Hadoop and Hive. In: 2015 IEEE International Conference on Electrical, Computer and Communication

Technologies (ICECCT); 2015. p. 1–5.

3. Soleimani H, Hensman J, Saria S. Scalable Joint Models for Reliable Uncertainty-Aware Event Predic-

tion. ArXiv e-prints. 2017;.

PLOS ONE Feature engineering with clinical expert knowledge

PLOS ONE | https://doi.org/10.1371/journal.pone.0231300 April 23, 2020 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231300.s007
https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://doi.org/10.1371/journal.pone.0231300


4. Singh A, Nadkarni G, Gottesman O, Ellis SB, Bottinger EP, Guttag JV. Incorporating temporal EHR

data in predictive models for risk stratification of renal function deterioration. Journal of Biomedical Infor-

matics. 2015; 53:220–228. https://doi.org/10.1016/j.jbi.2014.11.005 PMID: 25460205

5. Schulam P, Saria S. Reliable Decision Support using Counterfactual Models. ArXiv e-prints. 2017;.

6. Moskovitch R, Polubriaginof F, Weiss A, Ryan P, Tatonetti N. Procedure prediction from symbolic Elec-

tronic Health Records via time intervals analytics. Journal of Biomedical Informatics. 2017; 75:70–82.

https://doi.org/10.1016/j.jbi.2017.07.018 PMID: 28823923

7. Schulam P, Saria S. A Framework for Individualizing Predictions of Disease Trajectories by Exploiting

Multi-resolution Structure. In: Proceedings of the 28th International Conference on Neural Information

Processing Systems—Volume 1. NIPS’15. Cambridge, MA, USA: MIT Press; 2015. p. 748–756. Avail-

able from: http://dl.acm.org/citation.cfm?id=2969239.2969323.

8. Verduijn M, Sacchi L, Peek N, Bellazzi R, de Jonge E, de Mol BAJM. Temporal abstraction for feature

extraction: A comparative case study in prediction from intensive care monitoring data. Artificial Intelli-

gence in Medicine. 2007; 41(1):1–12. https://doi.org/10.1016/j.artmed.2007.06.003 PMID: 17698331

9. Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A Survey Of Methods For

Explaining Black Box Models. ACM computing surveys (CSUR). 2018; 51(5):93.

10. Goldstein BA, Navar AM, Pencina MJ, Ioannidis J. Opportunities and challenges in developing risk pre-

diction models with electronic health records data: a systematic review. Journal of the American Medical

Informatics Association. 2017; 24(1):198–208. https://doi.org/10.1093/jamia/ocw042 PMID: 27189013

11. Luo G, Sward K. A Roadmap for Optimizing Asthma Care Management via Computational Approaches.

JMIR medical informatics. 2017; 5(3):e32–e32. https://doi.org/10.2196/medinform.8076 PMID:

28951380

12. Sun J, Hu J, Luo D, Markatou M, Wang F, Edabollahi S, et al. Combining knowledge and data driven

insights for identifying risk factors using electronic health records. In: 2012 AMIA Annual Symposium;

2012. p. 901.

13. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining. ACM; 2016. p. 785–794.

14. SciKit;. Available from: https://www.scipy.org/scikits.html.

15. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of

patients from the electronic health records. Scientific reports. 2016; 6:26094. https://doi.org/10.1038/

srep26094 PMID: 27185194

16. Moskovitch R, Choi H, Hripcsak G, Tatonetti N. Prognosis of clinical outcomes with temporal patterns

and experiences with one class feature selection. IEEE/ACM Transactions on Computational Biology

and Bioinformatics (TCBB). 2017; 14(3):555–563. https://doi.org/10.1109/TCBB.2016.2591539

17. Harutyunyan H, Khachatrian H, Kale DC, Galstyan A. Multitask Learning and Benchmarking with Clini-

cal Time Series Data. arXiv preprint arXiv:170307771. 2017;.

18. YerevaNN. MIMIC III Benchmark Resources; 2018. Available from: https://github.com/YerevaNN/

mimic3-benchmarks/blob/master/mimic3benchmark/resources/itemid_to_variable_map.csv.

19. Wikipedia. Mutual information; 2004. Available from: https://en.wikipedia.org/wiki/Mutual_information.

20. Su MY. Real-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-

neighbor classifiers. Expert Systems with Applications. 2011; 38(4):3492–3498. https://doi.org/10.

1016/j.eswa.2010.08.137

21. Eisner MD, Boland M, Tolstykh I, Mendoza G, Iribarren C. Intensive care unit admission for asthma: a

marker for severe disease. Journal of Asthma. 2005; 42(5):315–323. https://doi.org/10.1081/JAS-

62959 PMID: 16036406

22. Vazquez L, Connolly J. CHOP. Asthma. PheKB; 2013; 2013. Available from: https://phekb.org/

phenotype/146.

23. Freitas AA. Comprehensible classification models: a position paper. ACM SIGKDD explorations news-

letter. 2014; 15(1):1–10. https://doi.org/10.1145/2594473.2594475

24. Lin J, Keogh E, Lonardi S, Chiu B. A symbolic representation of time series, with implications for stream-

ing algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining

and knowledge discovery. ACM; 2003. p. 2–11.

25. Moskovitch R, Shahar Y. Classification-driven temporal discretization of multivariate time series. Data

Mining and Knowledge Discovery. 2015; 29(4):871–913. https://doi.org/10.1007/s10618-014-0380-z

26. Puranik S, Forno E, Bush A, Celedón JC. Predicting Severe Asthma Exacerbations in Children. Ameri-

can journal of respiratory and critical care medicine. 2017; 195(7):854—859. https://doi.org/10.1164/

rccm.201606-1213PP PMID: 27710010

PLOS ONE Feature engineering with clinical expert knowledge

PLOS ONE | https://doi.org/10.1371/journal.pone.0231300 April 23, 2020 18 / 19

https://doi.org/10.1016/j.jbi.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25460205
https://doi.org/10.1016/j.jbi.2017.07.018
http://www.ncbi.nlm.nih.gov/pubmed/28823923
http://dl.acm.org/citation.cfm?id=2969239.2969323
https://doi.org/10.1016/j.artmed.2007.06.003
http://www.ncbi.nlm.nih.gov/pubmed/17698331
https://doi.org/10.1093/jamia/ocw042
http://www.ncbi.nlm.nih.gov/pubmed/27189013
https://doi.org/10.2196/medinform.8076
http://www.ncbi.nlm.nih.gov/pubmed/28951380
https://www.scipy.org/scikits.html
https://doi.org/10.1038/srep26094
https://doi.org/10.1038/srep26094
http://www.ncbi.nlm.nih.gov/pubmed/27185194
https://doi.org/10.1109/TCBB.2016.2591539
https://github.com/YerevaNN/mimic3-benchmarks/blob/master/mimic3benchmark/resources/itemid_to_variable_map.csv
https://github.com/YerevaNN/mimic3-benchmarks/blob/master/mimic3benchmark/resources/itemid_to_variable_map.csv
https://en.wikipedia.org/wiki/Mutual_information
https://doi.org/10.1016/j.eswa.2010.08.137
https://doi.org/10.1016/j.eswa.2010.08.137
https://doi.org/10.1081/JAS-62959
https://doi.org/10.1081/JAS-62959
http://www.ncbi.nlm.nih.gov/pubmed/16036406
https://phekb.org/phenotype/146
https://phekb.org/phenotype/146
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1007/s10618-014-0380-z
https://doi.org/10.1164/rccm.201606-1213PP
https://doi.org/10.1164/rccm.201606-1213PP
http://www.ncbi.nlm.nih.gov/pubmed/27710010
https://doi.org/10.1371/journal.pone.0231300


27. Shknevsky A, Shahar Y, Moskovitch R. Consistent discovery of frequent interval-based temporal pat-

terns in chronic patients’ data. Journal of Biomedical Informatics. 2017; 75:83–95. https://doi.org/10.

1016/j.jbi.2017.10.002 PMID: 28987378

28. Moskovitch R, Shahar Y. Classification-driven Temporal Discretization of Multivariate Time Series.

Data Min Knowl Discov. 2015; 29(4):871–913. https://doi.org/10.1007/s10618-014-0380-z

29. Moskovitch R, Shahar Y. Classification of Multivariate Time Series via Temporal Abstraction and Time

Intervals Mining. Knowl Inf Syst. 2015; 45(1):35–74. https://doi.org/10.1007/s10115-014-0784-5

30. Banaee H, Loutfi A. Data-Driven Rule Mining and Representation of Temporal Patterns in Physiological

Sensor Data. IEEE Journal of Biomedical and Health Informatics. 2015; 19:1557–1566. https://doi.org/

10.1109/JBHI.2015.2438645 PMID: 26340684

31. Orphanou K, Dagliati A, Sacchi L, Stassopoulou A, Keravnou E, Bellazzi R. Incorporating repeating
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