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TUTORIAL

Efficient Pharmacokinetic Modeling Workflow With the 
MonolixSuite: A Case Study of Remifentanil

Pauline Traynard1,*,†, Géraldine Ayral1,†, Monika Twarogowska1 and Jonathan Chauvin1

MonolixSuite is a software widely used for model-based drug development. It contains interconnected applications for data 
visualization, noncompartmental analysis, nonlinear mixed effect modeling, and clinical trial simulations. Its main assets are 
ease of use via an interactive graphical interface, computation speed, and efficient parameter estimation even for complex 
models. This tutorial presents a step-by-step pharmacokinetic (PK) modeling workflow using MonolixSuite, including how to 
visualize the data, set up a population PK model, estimate parameters, and diagnose and improve the model incrementally.

Drug development is increasingly supported by mathemat-
ical models that allow one to better understand the drug’s 
behavior and to optimize the next development steps, for 
example, during clinical trials. Examples of applications 
include the characterization of the pharmacokinetics (PK), 
pharmacodynamics (PD), disease progression, or patient 
survival.

The data supporting these models are typically pa-
tient-level longitudinal (i.e., over time) data. A powerful 
framework to capture this type of data is the population 
approach, which aims at describing the typical drug be-
havior in the population as well as the variability observed 
from individual to individual. These two aspects are best de-
scribed using nonlinear mixed effect (NLME) models. The 
term nonlinear refers to the function describing the physical 
and biological mechanisms, also called “structural model.” 
The structure of the structural model is the same for all indi-
viduals, but its parameter values vary between individuals. 
“Mixed effect” refers to the probabilistic description of the 
individual parameter values, which includes fixed effects 
(same for all individuals), random effects, and possibly in-
dividual characteristics called covariates. Together with the 
measurement error model (also called residual error), this 
constitutes the statistical part of the NLME model.

The NLME framework is a rigorous environment to model 
and simulate different types of data, but it requires (i) efficient 
algorithms to fit possibly complex models to large data sets 
and (ii) a user-friendly way to define and interpret the models. 
Monolix (Lixoft, Antony, France) was developed after a 7-year 
research program to meet both requirements. It incorporates 
many innovations, such as the stochastic approximation ex-
pectation-maximization (SAEM) estimation algorithm1 and 
its extension to censored data,2 numerous diagnostic tools,3 
and automatic model-building procedures. The combination 
of quick and efficient algorithms with a clear and interactive 
interface leads to a particularly fast learning curve for the user.

Monolix is now part of MonolixSuite—a set of intercon-
nected software applications that covers all stages of drug 

development. These applications help in data visualiza-
tion (Datxplore), noncompartmental analysis of the data 
(PKanalix), NLME model development and parameter esti-
mation (Monolix), simulations of new situations (Simulx), and 
workflow management (Sycomore). Moreover, MonolixSuite 
satisfies regulatory requirements and it has been routinely 
and successfully used for regulatory submissions.

The aim of this tutorial is to show step-by-step a modeling 
workflow using MonolixSuite on a typical PK data set. We 
assume that the reader has no familiarity with the software, 
but we recommend basic knowledge of population PK/PD 
modeling. For a didactic and comprehensive introduction to 
this topic, we refer the reader to previous tutorials presented 
in this journal.4,5

OUTLINE

This tutorial is structured in four sections. We first give a brief 
introduction of the software applications of MonolixSuite. 
Then we show step by step how to develop a model on a typ-
ical PK data set. This includes the structural model definition, 
its diagnosis, and a covariate search. More advanced features, 
not directly used in this tutorial, are also briefly reviewed.

All the material necessary to reproduce the results from 
this tutorial is available as Supplementary Material: data 
set, step-by-step instructions with numerous screenshots, 
all Monolix runs and the Sycomore project, as well as a 
video showing the main modeling steps.

SOFTWARE

MonolixSuite is composed of several interconnected appli-
cations that enable a very efficient modeling and simulation 
workflow.6 A project can be carried from one application 
to another without having to redefine the project’s funda-
mental features such as the data set or model. The role of 
each application is presented next. In this tutorial, we use 
Datxplore, Monolix, and Sycomore.
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Datxplore
Datxplore is an interactive software for the exploration and 
visualization of longitudinal data. It provides various graph-
ics (spaghetti plots, survival curves, covariates histograms, 
etc.) to give insights about the data at hand. Plots can easily 
be customized by splitting/filtering/coloring.

Monolix
Monolix is dedicated to NLME modeling. Its graphical user 
interface, large library of built-in models, and robust and fast 
parameter estimation make it an easy to use and efficient 
application. Moreover, it includes automated generation 
of diagnostic plots, statistical tests to guide the model 
development, and automatic model-building procedures. 
Monolix also comes with an R API (http://monol​ix.lixoft.
com/monol​ix-api/) and thus can be used via R scripts. In 
addition, the R package Rsmlx (R Speaks Monolix; http://
rsmlx.webpo​pix.org) provides further methods for model 
building and evaluation, such as bootstrap and likelihood 
profiling.

Sycomore
Sycomore enables the visual and interactive explorations of 
a modeling workflow. It allows users to keep an overview of 
the Monolix runs and their hierarchy and launch and com-
pare them side by side.

Simulx
Simulx is a powerful and flexible simulator to study new sit-
uations and plan clinical trials. It is also used for interactive 
exploration and visualization of complex models.

PKanalix
PKanalix is a user-friendly and fast application for com-
partmental and noncompartmental analysis. It uses 
industry-standard methods within a straightforward work-
flow, which includes clear settings, output tables, and 
automatic plots.

MonolixSuite is available for all major operating systems, 
and a free license can be requested for academic usage 
at http://lixoft.com/downl​oads/#Reque​stLic​ense. Readers 
from industry can ask for a trial license.

TUTORIAL

Introduction
This tutorial shows how to use MonolixSuite to build a 
population PK model for remifentanil. Remifentanil is an 
opioid analgesic drug with a rapid onset and rapid re-
covery time. It may be used alone for sedation or be 
combined with other medications for general anesthesia. 
It is given in adults via continuous intravenous (i.v.) infu-
sion with doses that may be adjusted depending on the 
age and weight of patients. The goal of the PK analysis is 
to determine the influence of the patient’s covariates on 
the individual parameters.

The model development makes use of a publicly avail-
able data set of remifentanil’s PK.7 The data comprise dense 
remifentanil concentration measurements for 65 healthy 
adults following an i.v. infusion at a constant infusion rate. 

The infusion rate varies between subjects from 1 to 8 µg/kg/
minutes and lasts from 4 to 20 minutes.

The plan of this tutorial is as follows: The data set is 
first visualized with Datxplore to identify general trends of 
the data and to promote the formulation of modeling hy-
potheses. These hypotheses are then implemented in a 
population PK model, which is evaluated using Monolix. 
Sycomore is used to keep an overview of the stepwise 
model development.

Data set format
The data must be formatted as.txt or.csv text file with tab-
ulation, comma, space, or semicolon delimiters. It follows 
the usual format for patient-level data sets for pharmacom-
etrics: Each row corresponds to a dose or an observation 
record for one patient. In each row, separate columns 
record the subject identifier, the dose information (in this 
example time in minutes, dose amount in µg, and rate of in-
fusion in µg/minutes), the observations (PK measurements 
in µg/L), and the patient characteristics (age in years, sex 
(M = male, F = female), lean body mass (LBM) in kg, and in-
fusion duration in minutes). Columns names are written in a 
header and can be freely chosen. An extract of the data set 
used in this tutorial can be seen in the Supplementary 
Material.

When applicable, the data set can contain further infor-
mation such as the limit of quantification, several types of 
observations (PK and PD or parent and metabolite, for in-
stance), or flags to ignore specific lines from the analysis. A 
full description of all possible column types and their format 
rules is presented online (www.datas​et.lixoft.com).

Note that MonolixSuite does not handle units, and it is the 
user’s responsibility to ensure the consistency of the data 
set’s units and to infer the units of the thereafter estimated 
model parameters.

Data set visualization with Datxplore
As a first step of this tutorial, Datxplore is used to display 
a graphical representation of the data set. After open-
ing Datxplore, the data set must first be loaded (menu: 
Project > New > Browse). The data set table is displayed in 
the interface and drop-down menus allow to tag each col-
umn from a predefined set of column types. Columns with 
standard header names are automatically tagged. In this 
example, it is the case for the following columns: ID tagged 
as ID, TIME as TIME, AMT as AMOUNT, RATE as INFUSION 
RATE, DV as OBSERVATION, AGE as CONTINUOUS 
COVARIATE, and SEX as CATEGORICAL COVARIATE. 
The LBM and TINFCAT (infusion duration) columns can 
be manually tagged as CONTINUOUS COVARIATE and 
CATEGORICAL COVARIATE, respectively.

MonolixSuite allows the user to specify and save (menu: 
Settings > Preferences) data set header names that should 
be automatically associated with given column types.

Clicking on “accept” automatically generates several 
plots to visualize the data. The Data Viewer tab shows the 
observations vs. time as a spaghetti plot (i.e., dots corre-
sponding to the same individual are connected by lines). In 
all MonolixSuite applications, the panel on the right of the 
interface offers many customization options. The “Settings” 

http://monolix.lixoft.com/monolix-api/
http://monolix.lixoft.com/monolix-api/
http://rsmlx.webpopix.org
http://rsmlx.webpopix.org
httpRequestLicense://lixoft.com/downloads/#RequestLicense
http://www.dataset.lixoft.com
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tab allows to choose what to display: Linear/log scale, dis-
play of dosing times as vertical lines, display of the number 
of individuals, etc. The “Preferences” tab allows to choose 
the size of labels, the background color, etc. The “Stratify” 
tab allows to split, color, or filter the plot using the columns 
tagged as continuous or categorical covariates.

In Figure 1a, the spaghetti plot of concentrations vs. 
time is split in four stratification groups using the infusion 
duration categorical covariate TINFCAT. The stratification is 
created by selecting TINFCAT in the Stratify panel with the 
“split” option and rearranging the seven TINFCAT categories 
into four groups (see the Supplementary Material for the 
click-by-click instructions). For the purpose of the tutorial, 
the data are also colored according to two LBM groups with 
an equal number of individuals in each group.

These plots show that the remifentanil concentration in-
creases during the infusion and decreases afterward. The 
elimination phase of the remifentanil’s concentration in a 
y-log scale has several slopes over time, which suggests 
using a PK model with several compartments. Moreover, 
LBM seems to influence the PK as the PK curves corre-
sponding to the high values of LBM (in green) appear mostly 
above the others (in red).

The “Covariate Viewer” (Figure 1b) tab presents a ma-
trix of the covariate-by-covariate plots. The subplots on the 
diagonal show the distribution of each covariate. The off-di-
agonal subplots are useful to identify correlations between 
covariates, such as between LBM and AGE, and LBM and 
SEX.

Upon saving the Datxplore project, all settings, prefer-
ences, and stratifications options are stored and can be 
retrieved by loading the saved.datxplore file into Datxplore.

In summary, the data exploration in Datxplore has re-
vealed the following insights:

•	 A model with several compartments is probably 
necessary to describe this data  set.

•	 LBM might influence the PK.
•	 LBM and AGE are negatively correlated, and males have 

higher LBM values than females.

These insights will guide the model-building process de-
tailed in the next sections.

Model development and diagnosis using Monolix
Monolix run setup. The Monolix interface is organized in 
successive tabs that guide the user to define a run.

Definition of the data. The Datxplore project can be directly 
exported into Monolix with “Export  >  Export to Monolix.” 
This opens Monolix and transfers the data set information 
(i.e., path to data set file and column tagging) from Datxplore 
to Monolix. Clicking on “Next” leads the user to the next 
Monolix tab “Structural model.”

Alternatively, the user could open Monolix, start a new 
project, load the data set, and tag the column as described 
for Datxplore. For data visualization, it is also possible to 
open Datxplore from Monolix using the “Data Viewer” button.

Definition of the structural model. In Monolix, the struc-
tural model is defined in a separate text file. It is possible 
to write a new model file from scratch or pick a model file 
from the wide collection of predefined models, which are 
available in the following seven model libraries: PK, PD, 
joint PKPD, PK with double absorptions (with any combina-
tion of absorption types), target-mediated drug disposition, 
time-to-event, and count models. Each library can be easily 
browsed using filters.

For this tutorial data set, a two-compartment model is 
chosen as a first try because data visualization in Datxplore 

Figure 1  Data visualization with Datxplore. (a) Spaghetti plot of remifentanil concentrations (y axis) with respect to time (x axis) split 
by TINFCAT and colored by LBM. (b) Covariate viewer with LBM, AGE, and SEX selected. Correlation coefficients are overlaid on the 
scatterplots. DV, observed concentrations; LBM, lean body mass.
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suggested a model with several compartments. This model 
is available under the name infusion_2cpt_ClV1QV2.txt in 
the Monolix PK library via “Load from library” and selecting 
the following filters: “infusion,” “2 compartments,” and “lin-
ear elimination.” Once the model is selected, it is displayed 
within the interface in the tab “Structural model”:

DESCRIPTION:

The administration is via an infusion (requires 

INFUSION RATE or INFUSION DURATION column-type in 

the data set). The PK model has a central compart-

ment (volume V1), a peripheral compartment (volume 

V2, intercompartmental clearance Q), and a linear 

elimination (clearance Cl).

[LONGITUDINAL] 

input = {Cl, V1, Q, V2} 

EQUATION: 

; Parameter transformations 

V = V1 

k = Cl/V1 

k12 = Q/V1 

k21 = Q/V2 

; PK model definition 

Cc = pkmodel(V, k, k12, k21) 

OUTPUT: 

output = Cc

Library and user-defined models are written using the 
Mlxtran language, which has been developed to ease the 
definition of pharmacometric models. The input line con-
tains the parameters to estimate, whereas the output line 
defines the model variable(s) corresponding to the obser-
vations recorded in the data set. In between, the model 
can be defined using either a system of ordinary differential 
equations or macros, which are simple shortcuts to de-
fine the model components. In the previous example, the 
model definition relies on the macro pkmodel (documenta-
tion: http://mlxtr​an.lixoft.com/pkmod​el/), which allows one 
to define standard PK models based on the list of param-
eters acting as recognized keywords. In the backend, the 
pkmodel macro is automatically replaced by the closed-
form analytical solution written in efficient C++ code.

To write user-defined models, it is often convenient to 
start from a library model and modify it in the MlxEditor. 
This Mlxtran dedicated editor allows to check the model 
consistency by clicking on the button “compile.” Syntax 
errors prompt clear messages to help the user identify the 
mistakes. A comprehensive documentation of the Mlxtran 
language with numerous examples is available online (http://
mlxtr​an.lixoft.com/).

When a model contains several outputs, the mapping 
panel on the right-hand side of the “structural model” tab 
allows to flexibly map the model outputs to the several 
observation types present in the data set.

Finally, it has to be noted that the model file contains only 
the structural model. The statistical part of the model, which 
includes the error model and parameter distributions, is de-
fined via the interface at next steps. Moreover, the likelihood 
objective function is always inferred by Monolix automati-
cally, for any type of data (continuous, time to event, count, 
categorical, and any combination of those). This is also the 
case for censored data: Data below the lower limit of quan-
tification, for instance, are automatically taken into account 
in the likelihood as the probability of having an observation 
within an interval.

Selection of the initial values. Selecting the structural 
model leads the user to the next tab “Initial estimates” to 
set the initial values for the population parameters. The 
“Check initial estimates” subtab displays individual plots 
to easily compare the predictions, based on the given ini-
tial values, with the individual data. Although Monolix is 
quite robust with respect to initial parameter values as a 
result of its efficient implementation of SAEM, choosing 
reasonable initial estimates is a good practice to speed up 
the convergence of the parameter estimation. The key is 
to find initial values such that the predictions display the 
key features of the model. For a two-compartment model, 
this corresponds to two slopes in the elimination phase 
on log-scale. For models from the PK library, initial values 
are found automatically by Monolix, when clicking on the 
“autoinit” button, via computation of noncompartmental 
analysis–like empirical rules followed by an optimization 
step on the pooled data.

To finalize this step, the initial values must be applied by 
clicking “Set as initial values.” This also brings the user to 
the next tab: “Statistical model & Tasks.”

Definition of the statistical model. The “Statistical model 
& Tasks” tab is used to define the statistical model and run 
estimation tasks. The statistical model is composed of the 
residual error model (also called observation model) and the 
individual model for the parameters.

By default, the observation model is set to a combined 
residual error model with an additive and a proportional 
term. Its formula, which can also be seen in the interface, 
is:

where DV represents the observations from the data set (its 
name comes from the header of the observation column), 
Cc is the output of the structural model, and a and b are the 
parameters of the residual error model. e is a standard nor-
mal random variable generating the residual error.

A combined error model is usually a good choice for the 
first run. If necessary, the error model can later be changed 
to constant, proportional, or combined2 (which includes a 
square root in the formula) from the drop-down menu. It is 
also possible to define a transformation of the observations 
and model outputs directly via the interface, for instance, to 
implement an exponential error model.

The default choice for the individual parameters Cl, V1, 
Q, and V2 is a log-normal distribution within the population 

DV=Cc+ (a+b∗Cc)∗e

http://mlxtran.lixoft.com/pkmodel/
http://mlxtran.lixoft.com/
http://mlxtran.lixoft.com/
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because their values should stay positive. Other available 
distributions are normal, logit-normal, and probit-normal. 
More complex distributions are also possible but must be 
encoded directly in the structural model.

By default, no correlations between random effects are  
assumed. This corresponds to a diagonal variance–covariance  
matrix. Similarly, covariate effects are not included at first. 
The set of formulas describing the parameter distribution 
can be seen in the interface. For example, the formula for 
the parameter Cl is the following:

where eta_Cl represents the random effect defining the in-
terindividual variability for Cl. It is automatically defined in 
Monolix as a normal random variable with zero mean and 
a standard deviation to be estimated. The distribution of 
Cl is thus defined with two population parameters: Cl_pop, 
the typical value of Cl in the population, and omega_Cl, the 
standard deviation of eta_Cl.

Running the estimation tasks. Once all of the elements of 
the model have been specified, several tasks can be run in 
the “Statistical model & Tasks” tab. It is important to save 
the project before running (Project  >  Save as) because it 
will save the results as text files in the same folder. In this 
tutorial, the first run is saved as PK_01.mlxtran. This hu-
man-readable text file contains all the elements necessary 
to define the run, ensuring the reproducibility.

Tasks can either be run one by one by clicking on the 
corresponding buttons, or several tasks can be run at 
once by selecting all desired tasks and clicking on the 
green arrow “Run scenario.” Below each task is described 
in detail.

Estimation of the population parameters. The estimation of 
the population parameters is the first and a mandatory task. It 
is run by clicking on “Population parameters” (link to docum-​
entation). Monolix relies on a very efficient implementation of 
the SAEM algorithm1 to find the population parameters that 
maximize the likelihood, i.e., the objective function. When 
launching the task, a pop-up window opens so that the user 
can follow the evolution of the population parameter esti-
mates over each of the algorithm iterations (Figure 2a).

The SAEM algorithm is split in two phases separated by the 
vertical red line on each subplot. During the first phase, called 
exploratory, the algorithm explores the parameter space and 
gets to a neighborhood of the maximum likelihood estimate. 
In the second phase, called smoothing, the estimates sta-
bilize toward the maximum likelihood. The switch from the 
exploratory to the smoothing phase is done according to 
convergence criteria, which take among other into account 
the stability of the parameter estimates. In case the algorithm 
fails to converge, a warning message appears and the con-
vergence trajectories for each parameter help the user spot 
which parameter did not stabilize and might be unidentifiable.

Once the task is completed, the estimated values can be 
found in the tab “Results” (Figure 2b) as well as in a text 
file in the result folder created by Monolix next to the saved.
mlxtran file.

Estimation of the empirical Bayes estimates (EBEs). The 
EBEs are the modes of the conditional distributions for the 
parameters of each individual (conditional on the estimated 
population parameters and on the individual data). They 
represent the most likely parameter values for each individ-
ual. They can be calculated by clicking on the task “EBEs” 
(link to docum​entation). The estimated individual parameter 
values are displayed in the tab “Results” as well as saved 
in the result folder. These values are used to calculate the 
individual predictions in the plots “individual fits” and “ob-
servations vs. predictions.”

Estimation of the conditional distribution. The con-
ditional distribution represents the uncertainty of the 
individual parameter value given the estimated popula-
tion parameters and the data for each individual. The task 
“conditional distribution” allows to sample sets of indi-
vidual parameters from the conditional distributions via a 
Monte Carlo Markov Chain procedure (link to docum​enta-
tion). These sets are plausible parameter values for each 
individual, whereas the EBEs presented previously are the 
most probable parameter values. They are useful to calcu-
late the corresponding random effects used for instance 
in the plots “correlation between random effects” or “in-
dividual parameters vs covariates.” Because they take 
into account the uncertainty of the individual parameters, 
they circumvent the phenomenon of shrinkage, which can 
affect EBEs when the data are sparse. In this way, they 
increase the reliability of diagnostic plots.3

Estimation of the standard errors. The standard errors 
correspond to the uncertainty of the estimated population pa-
rameters. In Monolix, they are determined via the calculation 
of the Fisher Information Matrix. To calculate the standard 
errors using bootstrap instead, a function is provided in 
the R package Rsmlx (for “R speaks Monolix”) to generate 
case-resampled data sets and run Monolix on each.

When clicking on the task “standard errors” (link to 
docum​entation), the Fisher Information Matrix is calcu-
lated either via a linear approximation based on the Taylor 
expansion around the EBEs (if the option “use linearization 
method” is checked) or via a stochastic approximation 
using the exact model. The linearization method is usu-
ally faster but can be less accurate than the stochastic 
approximation.

After running the task, the standard errors and rela-
tive standard errors associated with each parameter are 
displayed in the table of population parameters in the 
tab “Results.” Small relative standard errors (RSEs), e.g., 
RSE < 15%, mean that parameters are estimated with good 
confidence. In the “Std.Errors” tab, the correlation matrix 
of the estimates is shown. Values close to 1 or −1 on off- 
diagonal terms indicate that the corresponding population 
parameter values are highly correlated. Strong correlations 
often suggest a poorly identifiable model. The condition 
number is displayed in the same tab as “max/min eigen-
value” and can also be used to detect overparameterization.

Estimation of the likelihood. The likelihood is the objective 
function used during the population parameter estimation. 

log (Cl)= log (Cl_pop)+eta_Cl⇔Cl=Clpope
ηcl

http://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/
http://monolix.lixoft.com/tasks/population-parameter-estimation-using-saem/
http://monolix.lixoft.com/tasks/ebes/
http://monolix.lixoft.com/tasks/conditional-distribution/
http://monolix.lixoft.com/tasks/conditional-distribution/
http://monolix.lixoft.com/tasks/standard-error-using-the-fisher-information-matrix/
http://monolix.lixoft.com/tasks/standard-error-using-the-fisher-information-matrix/
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Although the likelihood is maximized during the population 
parameter estimation task, its final value is not known be-
cause the SAEM algorithm does not require to compute it 
explicitly during the optimization. Therefore, there is a dedi-
cated task to calculate the likelihood (link to documentation) 
using importance sampling or a linearization method to 
speed up the calculation.

Once the task is completed, the value of −2 log-likelihood 
(−2LL), the Akaike information criteria (AIC), the Bayesian in-
formation criteria (BIC), and a corrected version of the BIC 
(BICc) are displayed in the “Result” tab. In opposition to the −2LL,  
the information criteria include a penalty based on the num-
ber of parameters.8

Generation of diagnostic plots. Monolix provides a large 
set of built-in diagnostic plots that greatly help the user to 
diagnose the model. The plots are generated by running the 
“Plots” task (link to docum​entation). By default, a subset of 
possible plots is generated and other plots can be selected 
via the list icon next to the button “Plots.” The following 
plots are available:

•	 Data
a	 Observed data

•	 Model for the observations
a	 Individual fits
b	 Observations vs. predictions
c	 Scatter plot of the residuals
d	 Distribution of the residuals

•	 Model for the individual parameters
a	 Distribution of the individual parameters
b	 Distribution of the random effects
c	 Correlation between random effects
d	 Individual parameters vs. covariates

•	 Predictive checks and predictions
a	 Visual predictive check
b	 Numerical predictive check

c	 Below level of quantification predictive check
d	 Prediction distribution

•	 Convergence diagnosis
a	 Population parameters (SAEM) convergence
b	 Conditional distribution (Monte Carlo Markov Chain) 

convergence
c	 Likelihood (via importance sampling) convergence

•	 Tasks results
a	 Likelihood individual contributions
b	 Standard errors of the estimates

The plots are interactive. For instance, if the user clicks on 
any point belonging to an individual, all points of this individ-
ual will be highlighted in all plots. This greatly helps to identify 
misspecifications and understand their causes. Furthermore, 
the user can customize plots: Display additional elements, 
modify scales and axes, and define colors and sizes. The 
plots have publication quality and can be exported as images 
(PNG or SVG format).

Finally, the tab “Comments” can be used both before and 
after the run to record the user’s comments, which is useful 
to note the key characteristics of a run for future work.

Development and diagnosis of the structural model
A two-compartment model has been chosen in PK_01.
mlxtran. The first goal is to assess if this structural model 
properly captures the data.

After running the tasks, the estimated parameters and 
standard errors are displayed in Figure 2b. The small RSE 
values indicate that the parameters are estimated with a 
good confidence. Among the diagnostic plots, the “in-
dividual fits” and the “observations vs. predictions” are 
particularly useful to assess the structural model. Figure 3a 
shows the observations vs. predictions plot in log–log scale. 
A deviation from the y  =  x line is clearly visible for small 
concentrations, which suggests that the two-compartment 
model is not sufficient. The user can use the interactivity of 

Figure 2  First Monolix run. (a) Scenario window with the convergence of population estimates. (b) Table of population parameter 
estimates and their standard errors.

http://monolix.lixoft.com/graphics/


204

CPT: Pharmacometrics & Systems Pharmacology

Efficient PK Modeling with the MonolixSuite
Traynard et al.

the plots to clicks on any outlier point to highlight all points 
corresponding to this individual. The coloring is applied to 
all plots, which allows to easily find the individual fit plot cor-
responding to this individual (Figure 3b). This plot shows 
that low remifentanil concentrations at large time points are 
not well fitted because of the two-compartment model being 
unable to capture the third slope of remifentanil’s elimination 
phase. This suggests trying a structural model with three 
compartments.

The second run is setup by loading the model infusion_3cpt_
ClV1Q2V2Q3V3.txt from the PK library, which corresponds to a 
three-compartment model with i.v. infusion and linear elimina-
tion. As previously, reasonable initial values for the parameters 
are automatically computed with the “auto-init” button. The 
default “combined1” error model and log-normal distributions 
for all parameters are kept unchanged. The modifications are 
saved in a new file PK_02.mlxtran to avoid overwriting the 
results of the previous run. All estimation tasks are then run 

Figure 3  Assessment of the structural model. (a) Plot of observations vs individual predictions for PK_01.mlxtran. The dots are 
not symmetrically spread around the diagonal, suggesting that the model does not properly captures the data. Clicking on any 
underpredicted point colors all the points from the same individual (id 26). (b) Plot of individual fit for the id 25 to 28 for PK_01.mxtran. 
The misspecification is visible with underpredictions at the end of the elimination. (c) Plot of observations vs. individual predictions 
for PK_02.mlxtran. No misspecification is visible. (d) Plot of individual fit for the id 25 to 28 for PK_02.mxtran. No misspecification is 
visible. DV, observed concentrations.
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again. The diagnostic plots reveal that the three-compartment 
model captures the data much better (Figure 3c,d). The in-
dividual fits, observations vs. predictions, or residuals plots 
do not reveal any misspecification. In addition, all parameters 
have a low RSE. Hence, the three-compartment model seems 
to be an appropriate structural model.

Development and diagnosis of the statistical model
The next step of the model development is the investigation 
of the statistical model, which includes the individual pa-
rameter distributions with their covariates and correlations 
as well as the residual error model. Before, to speed up the 
convergence of the next runs, the estimated parameters 
are saved as new initial values. This is done by clicking on 
the button “Use last estimates: all” in the “Initial estimates” 
tab.

Covariates. Investigation of the relationships between 
individual parameters and covariates aims at better under-
standing how the PK depends on easily measurable patient 
characteristics, such as age or body weight. Adding infor-
mative covariates in the definition of the individual parameter 
distributions reduces the unexplained interindividual vari-
ability, which is represented by the standard deviations of 
the random effects. To identify the informative covariates, 
the user can rely on the correlations between covariates and 
individual parameters, which are displayed as diagnostic 
plot and are analyzed in the tab “Results > Tests.”

The plot “individual parameters vs. covariates” (Figure 4a) 
displays all possible pairs of random effects and covariates. 
Trends indicate a possible covariate effect. The random ef-
fects are by default calculated using the samples from the 
conditional distribution. This method produces more reliable 
trends and avoids the spurious correlations that may occur 
when using EBEs affected by shrinkage. Figure 4a shows a 
strong trend between the random effects of the clearance Cl 
and the AGE covariate, for instance.

In parallel of the diagnostic plots, Monolix performs 
statistical tests to help the user identify significant cor-
relations. Pearson’s correlation tests for continuous and 
analysis of variance tests for categorical covariates are dis-
played in the tab “Results > Tests” for each pair of random 
effects and covariates (Figure 4b). The samples from the 
conditional distribution are again used to avoid bias in the 
statistical tests. Small P values are colored in yellow/or-
ange/red and highlight significant correlations. In the case 
of remifentanil, many correlations appear significant, but 
they may not all be needed in the model. Once a covariate 
is added on a parameter, a correlation between another 
covariate and the random effects of this parameter may 
disappear as the covariates themselves may be correlated 
with each other.

In this tutorial, the workflow for the covariate search will 
be the following: Covariates are added one by one, start-
ing with the strongest significant correlation and checking 
at each step that the likelihood improves. This stepwise 
manual method is suited for relatively simple models with 
few covariates. It allows the user to control each step of the 
model building process and to decide which covariate to 
include based on statistical criteria as well as physiological 

plausibility. It is also possible to use an automatic covariate 
search procedure, which is explained later.

The first step in the covariate search is to add AGE as a 
covariate on clearance, as it has the smallest P value and 
is reasonable biologically. In Monolix, adding a covariate 
effect is easily done by clicking on the corresponding box 
in the individual model part of the tab “Statistical model & 
Tasks.” This creates automatically a linear relationship be-
tween the transformed parameter and the covariate, with a 
new parameter named βCl_AGE. For the lognormally distrib-
uted parameter Cl, the transformed parameter is log(Cl). The 
default relationship between Cl and AGE is thus exponential:

Another option is to implement the typical power law re-
lationship. For this, AGE needs to be log-transformed 
first. Clicking on the arrow icon next to AGE and then on 
“Add log-transformed” automatically creates a new co-
variate  named logtAGE defined by the following formula 
logtAGE= log

(

AGE

36.6299

)

, where AGE is divided by the 
weighted mean, i.e., the average from the individual AGE 
values of the data set weighted by the number of observa-
tions per individual. The centering value can be modified by 
the user by clicking on “EDIT.”

Selecting logtAGE for the covariate effect defines the de-
sired relationship:

This formula involves a new population parameter to esti-
mate named βCl_logtAGE and can be displayed with a click on 
“Formula.”

The modified model is saved as PK_03.mlxtran, and all 
estimation tasks are run again. Monolix provides differ-
ent ways to assess the performance of the new statistical 
model. The following list of observations show that the co-
variate effect is relevant.

•	 The relative standard error of βCl_logtAGE is low, so the 
confidence in the estimation is good.

•	 The estimate of ωCl has decreased from 0.228 to 0.164, 
meaning that the interindividual variability for Cl is now 
partly explained by the covariate.

•	 Low P values of the Pearson’s correlation test, which 
checks whether the correlation between Cl and logtAGE 
is significant, and of the Wald test, which checks if the 
estimate of βCl_logtAGE is significantly different from 0, 
mean that the covariate effect is relevant.

•	 The −2LL has decreased by 64 points and the BICc by 52 
points.

log (Cl)= log
(

Clpop
)

+βCl_AGE ∗AGE+ηCl

⇔Cl=Clpope
βCl_AGE∗AGE

e
ηCl

log (Cl)= log
(

Clpop
)

+βCl_logtAGE ∗ log

(

AGE

36.6299

)

+ηCl

⇔Cl=Clpop

(

AGE

36.6299

)βCl _logtAGE

e
Cl
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Once the first covariate effect has been confirmed, the 
new population parameter estimates are set as initial values 
by clicking on the button “use last estimates” in the “Initial 
Estimates” tab, and the stepwise covariate search procedure 
can be continued.

Table 1 summarizes the successive steps in the covariate 
search and indicates the difference in AIC and BICc values 
between two successive runs. The effects of the continu-
ous covariates AGE and LBM are always added with power 
laws. Adding covariates does not always improve the model. 

For example, a relationship between SEX and V2 in the run 
PK_10.mlxtran increases the BICc value. This relationship 
is thus not kept in the model. The final covariate model is 
PK_09.mlxtran and includes the effect of logtAGE on Cl, Q2, 
Q3, and V3, logtLBM on Cl and V1, and SEX on V3.

Correlations between random effects. Correlations be-
tween random effects take into account that individuals 
with a large value of one parameter (for instance, the volume 
V1) tend to also have a large value for another parameter 

Figure 4  Assessment of the covariate model. (a) Plot of correlations between random effects and covariates. (b) Statistical tests of 
the correlations between random effects and covariates. ANOVA, analysis of variance; COEFF, coefficient; LBM, lean body mass; ηCl, 
ηQ2, ηQ3, ηV1, ηV2, ηV3, random effects for Cl, Q2, Q3, V1, V2 and V3.
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(for instance, the clearance Cl), independently of the effect 
of the covariates on these parameters. Significant correla-
tions can be identified for each pair of random effects in the 
matrix scatter plot “correlations between random effects” 
plot (see Supplementary Material) and with the P values 
of the Pearson correlation tests. When random effects ap-
pear correlated, it is important to estimate this correlation 
as part of the population parameters to include the correla-
tion when sampling new individuals in later simulations.

Correlations between random effects can be defined via 
tickboxes in the Monolix graphical user interface. Several 
groups of correlated random effects are possible, which is 
equivalent to a block-diagonal variance–covariance matrix.

Following the same approach as for the covariate search, 
relevant correlations are added to the model one by one. The 
highest significant t-test (i.e., lowest P value) is between Q3 
and V3. After adding the correlation, the scenario is run to 
update the population parameters, the scatter plots for pairs 
of random effects, and the results of correlation tests. Table 1 
summarizes the steps that lead to the final correlation model, 
saved as PK_15.xmltran. It includes correlations between Cl, 
Q3, and V3 and a correlation between Q2 and V2.

Error model. The last step is the assessment of the error 
model. In the table of estimated population parameters in the 
section “Pop. Parameters” of the tab “Results,” the estimate 
for the constant part of the combined residual error (param-
eter a) is low compared with the concentration range in the 
data set (a = 0.00076 vs. concentrations in 0.1–300 in the 
data set). In addition, the RSE for a is high (209%). This sug-
gests that a simpler observation model, with a proportional 
residual error, may be more appropriate. The procedure is 
the same as when changing other elements of the statistical 
model: First the last estimates are set as new initial values, 
then the error model is changed to “proportional” using the 
drop-down menu, and finally the modified model is saved 
under a new name, as PK_16.mlxtran.

After executing the scenario, the BICc decreased 
(ΔBICc  =  9.74), so the proportional error model is indeed 
more appropriate for this data set.

Final model overview. The final model is composed of a 
three-compartment structural model with a proportional 
error model. All parameters follow a lognormal distribution. 
AGE is included as a covariate on Cl, Q2, Q3, and V3; LBM 
on Cl and V1; and SEX on V3. The random effects of Cl, Q3, 
and V3 are correlated as well as those of Q2 and V2.

The ability of this model to capture the data can be as-
sessed using the visual predictive check (VPC) available in 
the list of plots (see Supplementary Material). The VPC 
(Figure 5) is based on multiple simulations with the model 
and the design structure of the observed data grouped in 
bins over successive time intervals with optimized binning 
criteria.9 It is a useful tool to assess graphically whether 
simulations from the model can reproduce both the central 
trend and variability in the data. The median and percentiles 
of the observed data are plotted in blue curves and can be 
compared with the corresponding prediction intervals in blue 
and pink, respectively. Discrepancies are highlighted in red.

In Figure 5a, corrected predictions10 have been selected 
in “Settings” to take into account the high heterogeneity in 
doses. The y axis is in log-scale, and the number of bins is 
set to 10. The plot shows a good predictive power of the 
model. In Figure 5b, the same VPC plot is split according 
to groups of similar infusion durations using the covariate 
TINFCAT. This allows one to better see the predictions for 
more homogeneous subpopulations.

Advanced features of Monolix
Monolix implements advanced options for automatic co-
variate search, automatic statistical model building, and 
convergence assessment. Although their usage is beyond 
the scope of this tutorial, this section gives a brief summary 
of the available approaches. For more information, the user 
can see the onlin​e docum​entation.

Automatic covariate search. The manual search for sig-
nificant covariates is a tedious process, but it can easily be 
automatized after defining a search strategy and acceptance 
rules. Several automatic covariate strategies are available in 
Monolix. They are located in the “Model building” tab, which 

Table 1  Workflow for the manual covariate and correlation search 

Project name Covariate effect or correlation ΔBICc (by linearization) Keep the effect

PK_03 PK_02 + AGE on Cl 52 Yes

PK_04 PK_03 + LBM on V1 47 Yes

PK_05 PK_04 + AGE on Q3 35 Yes

PK_06 PK_05 + AGE on V3 17 Yes

PK_07 PK_06 + LBM on Cl 23 Yes

PK_08 PK_07 + AGE on Q2 18 Yes

PK_09 PK_08 + SEX on V3 5 Yes

PK_10 PK_09 + SEX on V2 −0.4 No

PK_11 PK_09 + LBM on V2 −7 No

PK_12 PK_09 + Q3−V3 60 Yes

PK_13 PK_12 + Cl−Q3−V3 29 Yes

PK_14 PK_13 + V1−V2 −10 No

PK_15 PK_13 + Q2−V2 10 Yes

Each row represents a Monolix run with a new covariate effect or a new correlation between random effects added in the statistical model.
ΔBICc, difference in BICc from the previous run; LBM, lean body mass.

http://monolix.lixoft.com/model-building/
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is opened with the first gray button next to the green “RUN” 
button in the tab “Statistical model & Tasks.”

The first strategy is the well-known stepwise covariate 
modeling method. It performs forward selection among all 
possible parameter–covariate relationships followed by 
backward elimination. This method is effective but expen-
sive in terms of number of runs, as it tests all possible 
parameter–covariate relationships at each step. A second 
method, called Conditional Sampling use for Stepwise 
Approach based on Correlation tests, selects which co-
variates to test using the information contained in the 
correlation statistical tests between random effects and 
covariates of the current run. This greatly reduces the 
number of iterations required to optimize the covariate 
model.

The automatic covariate search applied to PK_02.mlxtran 
requires 133 iterations for the stepwise covariate modeling 
method and 25 for Conditional Sampling use for Stepwise 
Approach based on Correlation tests. The BICc values of 
the final covariate models are comparable with those of the 
manual covariate search (< 2 points of difference). A detailed 
comparison table is given in the Supplementary Material.

Automatic statistical model building. The section 
“Proposal” in the tab “Results” identifies the best improve-
ments to the statistical part of the model (residual error 
model, covariate effects, correlations between random ef-
fects) by comparing many correlation, covariate, and error 
models. For example, in the case of covariates, the evalu-
ated models correspond to linear regressions between the 
random effects sampled from the conditional distribution 
and the covariates. Selection is done according to a BIC cri-
terion relative to the linear regression and not the full model. 

Because these linear regressions use the random effects of 
the current run and are fast to calculate, the Proposal takes 
a negligible computing time. The proposed statistical model 
is displayed in a compact table format and can be applied 
with a single click before reestimating the population param-
eters with this new model.

Going one step further, in the “Model building” tab, 
Monolix proposes also an automatic statistical model 
building. The procedure is named SAMBA and performs it-
eratively the same procedure as the Proposal: It applies at 
each step the best proposed model that is then reestimated. 
Thus, this method allows one to find a good statistical model 
in very few iterations.

Convergence assessment. The SAEM algorithm is a sto-
chastic method, which means that the exact values of the 
estimated parameters depend on the sequence of random 
numbers set via the seed (the seed value can be seen in the 
global menu Settings > Project settings). The estimated pa-
rameters may also depend on the initial values, for example, 
if different local minima are found. To assess the robustness 
of the SAEM convergence, a so-called convergence assess-
ment can be run. This built-in tool executes a workflow of 
estimation tasks several times with different initial values for 
the fixed effects and/or different seeds.

The convergence assessment tool can be launched with 
the second gray button next to the green “RUN” button in 
the tab “Statistical model & Tasks.” The user can choose 
in the interface the number of runs used for the assess-
ment, the estimation tasks performed during each run, and 
the parameters whose initial values should be sampled 
randomly. The convergence assessment task returns a 
graphical report with the convergence of each parameter 

Figure 5  Final evaluation of the PK model. (a) Visual predictive check on the whole population. (b) Visual predictive check stratified by 
TINFCAT. DV, observed concentrations.
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estimation as well as with a comparison of the estimates 
and their standard errors for all runs.

In this tutorial case study, the good convergence of the 
SAEM algorithm is clear (Figure 2a). The convergence as-
sessment is performed for a didactic purpose only. The 
report in Figure 6 compares five replicates of the estimation 

of the population parameters, the standard errors, and 
log-likelihood for randomly picked initial values for all pa-
rameters. The report is composed of three plots. The first 
overlays the five trajectories of the population parameters 
estimates with respect to the iterations of the SAEM algo-
rithm (Figure 6a). The second compares the final estimates 

Figure 6  Convergence assessment. (a) Plots of population parameters estimates with respect to the iterations of stochastic 
approximation expectation-maximization. (b) Final estimates with their standard errors for the five runs.

(a) (b)

Figure 7  Overview of the modeling workflow in Sycomore with the summary table and tree diagram (zoomed on the last nodes). In 
this example, the user-defined ratings mean the following: red = no improvement compared with previous step, orange = improvement 
compared with previous step, green = final model. The table has been sorted by decreasing values of the corrected version of the 
Bayesian information criteria.
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with their standard errors (Figure 6b). The third compares 
the estimation of the log-likelihood by importance sampling 
across replicates (Supplementary Material). The results 
confirm a good convergence of all replicates to the same 
−2LL minimum.

Keeping track of the modeling workflow using 
Sycomore
Sycomore is designed to keep track of the modeling pro-
cess and to compare runs side by side. It is interconnected 
with Monolix, allowing to export and import runs to and 
from Monolix directly from the Sycomore interface.

Following the instructions described in the Supplementary 
Material, all Monolix runs are loaded into Sycomore. The 
runs are displayed in a table that includes an overview of 
each run (likelihood and BICc, structural model file, summary 
of the statistical model, comments). In the tree view panel 
located below the table, the runs can be added to the tree 
representation of the model development process. Defining 
parent–child relationships between models is done via drag 
and drop. Action buttons allow to load new runs, open a run in 
Monolix, duplicate a run, and select models to be run in batch 
mode. Moreover, the tab “Comparison” (Supplementary 
Material) compares two or more runs in detail, in particular 
the parameter estimates and exported diagnostic plots.

A Sycomore project that contains an overview of the 
whole modeling process in shown in Figure 7. On this fig-
ure, the tree diagram is zoomed on the steps after the run 
PK_09.mlxtran.

CONCLUSION

In this tutorial, MonolixSuite has been used to build a pop-
ulation model for remifentanil’s PK. With Datxplore, the 
data have been visualized to identify their key properties. 
With Monolix, a model has been developed stepwise: First 
the structural model and then the covariates and correla-
tions between random effects. Each model modification 
was guided by the diagnostic plots and statistical tests to 
assess the performance of the model and the improvement 
compared with the previous runs. The successive steps 
were tracked with Sycomore for a clear overview.

Population models provide a summary of the PK of a 
molecule (typical half-life, variability from individual to indi-
vidual, etc.). They can be used to explore new situations via 
simulations. Examples of applications include clinical trial 
simulations to determine the best dosing protocol or assess-
ing the uncertainty of an end point depending on the number 
of individuals per arm. For this purpose, the MonolixSuite 
includes the simulation application Simulx. Monolix runs can 

be imported into Simulx, and the simulation definition can 
efficiently reuse its elements. The user can also specify new 
elements, such as different treatments, number of subjects, 
or covariate values representing different populations.

MonolixSuite provides a unified suite of applications for 
the analysis, modeling, and simulation of pharmacometric 
data. Its ease of use through a clear graphical user interface 
and its efficient solvers and algorithms makes it a powerful 
software for both beginner and advanced users.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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