Skip to main content
. 2020 Mar 25;20(7):1813. doi: 10.3390/s20071813

Table 6.

Regression accuracies of shallow machine learning algorithms to predict the mixing time remaining of the honey-water blending process. E—Energy, SAA—Sum Absolute Amplitude, G—Gradients of Features, PCs—Principle Components, DWT—Discrete Wavelet Transform.

ANN (R2) SVM (R2) LSTM (R2)
Features Non-central Central Combined Non-central Central Combined Non-central Central Combined
E, SAA 0.751 0.788 0.920 0.276 0.223 0.795 0.852 0.818 0.954
E, SAA, G 0.875 0.806 0.922 0.894 0.663 0.780 0.755 0.853 0.969
PCs 0.810 0.882 0.956 0.622 0.503 0.817 0.705 0.584 0.959
PCs, G 0.910 0.904 0.972 0.771 0.190 0.721 0.939 0.936 0.969
DWT, E, SAA 0.862 0.960 0.949 0.713 0.570 0.907 0.963 0.895 0.957
DWT, E, SAA, G 0.758 0.892 0.948 0.827 0.722 0.899 0.965 0.865 0.959
DWT, PCs 0.786 0.881 0.957 0.552 0.551 0.806 0.857 0.751 0.973
DWT, PCs, G 0.916 0.914 0.972 0.787 0.503 0.854 0.914 0.930 0.972