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Abstract: The critical roles of keratinocytes and resident mast cells in skin allergy and inflammation
have been highlighted in many studies. Cyclic adenosine monophosphate (cAMP), the intracellular
second messenger, has also recently emerged as a target molecule in the immune reaction underlying
inflammatory skin conditions. Here, we investigated whether undecane, a naturally occurring plant
compound, has anti-allergic and anti-inflammatory activities on sensitized rat basophilic leukemia
(RBL-2H3) mast cells and HaCaT keratinocytes and we further explored the potential involvement of the
cAMP as a molecular target for undecane. We confirmed that undecane increased intracellular cAMP
levels in mast cells and keratinocytes. In sensitized mast cells, undecane inhibited degranulation
and the secretion of histamine and tumor necrosis factor α (TNF-α). In addition, in sensitized
keratinocytes, undecane reversed the increased levels of p38 phosphorylation, nuclear factor
kappaB (NF-κB) transcriptional activity and target cytokine/chemokine genes, including thymus and
activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8
(IL-8). These results suggest that undecane may be useful for the prevention or treatment of skin
inflammatory disorders, such as atopic dermatitis, and other allergic diseases.
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1. Introduction

Mast cells are hematopoietic cells derived in the bone marrow from progenitor cells. They are
involved in the pathophysiology of allergic diseases, especially in IgE-mediated hypersensitivity
reactions in the skin and gastrointestinal tract, such as atopic dermatitis (AD) and asthma [1,2].
Mast cells express the high-affinity IgE receptor, FcεRI, on their surface and can be stimulated by
antigen-regulated aggregation of IgE bound to the receptor. Antigen then leads to degranulation of
mast cells, secreting a broad array of mediators, such as cytokines/chemokines and biogenic amines
including tumor necrosis factor α (TNF-α) and histamine [3,4]. It is also noteworthy that the presence of
these mediators plays an important role in regulating inflammatory responses in other immune-related
cells such as keratinocytes and lymphocytes [5]. In particular, activated keratinocytes release a
variety of proinflammatory cytokines and chemokines that can sustain allergic reactions, thus possibly
contributing to AD [6].

Cyclic adenosine monophosphate (cAMP), identified as the major second messenger for
extracellular ligand action in 1968, is now accepted as a master regulator in diverse physiological
processes [7]. In particular, this second messenger has recently emerged as an important player in
the immune system underlying inflammatory skin diseases such as AD. Modulations of intracellular
cAMP, thus, can greatly affect immune responses in a variety of immune cells in a cell-specific
manner, where increased cAMP generally suppresses inflammatory response [8]. A large number
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of studies over more than five decades have revealed that cAMP has a critical role in inhibiting a
pathologically increased mast cell activity by reducing calcium flux, which is critically required for
mast cell degranulation. For example, elevations in the intracellular levels of cAMP induced by
diverse stimuli, including adenosine and β-adrenoceptor agonists, have been shown to dampen mast
cell responses [9–11]. On the other hand, in keratinocytes, cAMP-induced protein kinase A (PKA)
activation results in cAMP-response element-binding protein (CREB) phosphorylation, resulting an the
increase of anti-inflammatory cytokines [12]. It has also been reported that PKA activation decreases the
transcriptional activity of nuclear factor kappaB (NF-κB), one of the master regulators of inflammation,
possibly via p38 activation [12–14].

Steroids and immunosuppressants currently remain the most common treatment for most
allergic inflammatory skin disorders such as AD. However, conventional treatments have shown
limited improved efficacy because of the development of pharmacoresistance and accompanying
side effects [15–18]. Using phytochemical library screening in mast cells, we identified that undecane
inhibited inflammatory mediators such as histamine. Undecane is a naturally occurring plant
compound mainly found in Salvia verbenaca seed oil and Dialium guineense fruit oil [19]; however, its
biological activity is still unknown. The goal of this investigation was to evaluate the anti-allergic and
anti-inflammatory activities of undecane on sensitized rat basophilic leukemia (RBL-2H3) mast cells
and HaCaT keratinocytes and to explore the potential involvement of the cAMP as a molecular target
for undecane in the process of reducing immune responses.

2. Results

2.1. Undecane Has no Effect on Cell Viability in RBL-2H3 Cells and HaCaT Cells

The structure of undecane is shown in Figure 1A. The 3-[4-C-dimethylthiazole-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) assay showed that undecane (1–100 µM) did not affect the
cell viability of RBL-2H3 cells (Figure 1B). We also found that undecane had no effect on the cell
viability of HaCaT cells at all concentrations except 100 µM compared to the control group (Figure 1C).

2.2. Undecane Suppresses Degranulation of Sensitized RBL-2H3 Cells

To evaluate whether undecane treatment inhibits dinitrophenyl immunoglobulin E/human
serum albumin (DNP-IgE/HSA)-stimulated degranulation in mast cells, toluidine blue staining and
histamine/TNF-α release assay were performed. While we confirmed an elongated shape structure
and dense intracellular granule content in the control group, DNP-HSA stimulation resulted in
typical degranulated morphology characterized by irregular shapes and reduced granule content as
evidenced by staining intensities. Notably, undecane significantly inhibited the DNP-IgE/HSA-induced
morphological changes and degranulation in a dose-dependent manner (Figure 2A). We further
measured cAMP concentration to examine whether the inhibitory effect of undecane on cell degranulation
was related to intracellular cAMP. We confirmed that undecane (1 µM) significantly increased the levels of
intracellular cAMP in RBL-2H3 mast cells. The peak elevation of cAMP levels was seen at 30–60 min
and the intracellular cAMP concentration returned to the basal value by 240 min (Figure 2B). The release
of histamine and TNF-αwas markedly upregulated in the DNP-IgE/HSA group compared with the
basal group, but undecane significantly inhibited the histamine and TNF-α release compared with
DNP-IgE/HSA control (Figure 2C,D).
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Figure 1. Effect of undecane on cell viability in RBL-2H3 cells and HaCaT cells. (A) The structure of 
undecane. (B) Cell viability was determined after incubation with vehicle (DMSO) or various 
concentrations of undecane (1, 10, 20, 50 and 100 μM) in RBL-2H3 cells and (C) HaCaT cells for 24 h. 
The data were expressed as the mean ± SEM (n = 3). Significant differences between groups are 
indicated by asterisks; ns, not significant (p > 0.05); **p < 0.01. 
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Figure 1. Effect of undecane on cell viability in RBL-2H3 cells and HaCaT cells. (A) The structure
of undecane. (B) Cell viability was determined after incubation with vehicle (DMSO) or various
concentrations of undecane (1, 10, 20, 50 and 100 µM) in RBL-2H3 cells and (C) HaCaT cells for 24 h.
The data were expressed as the mean ± SEM (n = 3). Significant differences between groups are
indicated by asterisks; ns, not significant (p > 0.05); ** p < 0.01.
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that the cell morphology was irregular and unclear. Purple granules were secreted outside the cells. 
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Figure 2. Effect of undecane on degranulation in dinitrophenyl immunoglobulin E/human serum
albumin (DNP-IgE/HAS) stimulated RBL-2H3 cells. RBL-2H3 cells were pretreated with gradient
concentrations of undecane (0.5, 1 and 5 µM) for 1 h and stimulated with DNP-IgE/HSA (50 ng/mL each)
for 5 h. After that, (A) the images of toluidine blue-stained cells were captured. Arrows show that the
cell morphology was irregular and unclear. Purple granules were secreted outside the cells. The scale
bar represents 100 µm. (B) RBL-2H3 cells were incubated with undecane (1 µM) for various times and
the effect of undecane on intracellular cAMP levels was determined. RBL-2H3 cells were preincubated
with undecane for 1 h and stimulated with DNP-IgE/HSA (50 ng/mL each) for 5 h. (C) The histamine
and (D) tumor necrosis factor α (TNF-α) concentrations were then measured in the supernatants.
The final concentrations were normalized to the total cellular protein amount. The data were expressed
as the mean ± SEM (n = 3). Significant differences between groups are indicated by asterisks; * p < 0.05;
** p < 0.01; *** p < 0.001.

2.3. Undecane Regulates cAMP-Mediated Inflammatory Signaling Pathway in HaCaT Cells

To find whether undecane has anti-allergic and anti-inflammatory activities in HaCaT cells and
if these effects were regulated by the cAMP signaling pathway, we first assessed the NF-κB p65
DNA-binding activity. TNF-α/interferon gamma (IFN-γ) treatment markedly increased the NF-κB
transcriptional activity in nucleus compared to controls, but treatment with gradient concentrations of
undecane (1, 5 and 10µM) significantly inhibited increased NF-κB activation in TNF-α/IFN-γ-stimulated
HaCaT cells in a dose-dependent manner, which was saturated around 5 µM (Figure 3A). Thereafter, we
evaluated intracellular cAMP levels affected by undecane treatment (5µM). The peak elevation of cAMP
levels was seen at 60 min and the concentration was returned to the basal value by 120 min (Figure 3B).
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Furthermore, our data also showed that TNF-α/IFN-γ treatment did not significantly change the
protein level of PKA (Figure 3C) while undecane enhanced the protein levels of PKA compared with
basal in 2 h (Figure 3D). TNF-α/IFN-γ treatment significantly increased the phosphorylation of both
CREB and p38. Treatment of undecane significantly enhanced phospho-CREB (p-CREB) and reversed
the upregulation of p-p38 (Figure 3E).Molecules 2020, 25, x FOR PEER REVIEW 6 of 14 
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Figure 3. Effect of undecane on cyclic adenosine monophosphate (cAMP)-mediated inflammatory
signaling pathway in HaCaT cells. (A) After pretreatment (1 h) of vehicle (DMSO) or undecane (1, 5
and 10 µM), the cells were incubated with TNF-α/IFN-γ (10 ng/mL each) for 1 h and nuclear factor
kappaB (NF-κB) transcriptional activity was measured in nuclear extraction of each group. (B) HaCaT
cells were incubated with undecane (5 µM) for various times and the effect of undecane on intracellular
cAMP levels was determined. Western blot was performed to assess the protein levels of (C, D) protein
kinase A (PKA), (E) p-CREB, cAMP-response element-binding protein (CREB), p-p38 and p38 in HaCaT
cells. (C) HaCaT cells were incubated with TNF-α/IFN-γ (10 ng/mL each) for various times and PKA
level was measured. (D) In a similar manner, TNF-α/IFN-γ-stimulated HaCaT cells were cultured with
vehicle or undecane for various times and PKA level was determined. (E) After pretreatment (1 h) of
vehicle or undecane (5 µM), the cells were incubated with TNF-α/IFN-γ for 1 h and phosphorylation of
CREB and p38 was measured. All the protein expression data were normalized against glyceraldehyde
3-phosphate dehydrogenase (GAPDH) level. The data were expressed as the mean ± SEM (n = 3).
Significant differences between groups are indicated by asterisks; ns, not significant (p > 0.05); * p < 0.05;
** p < 0.01; *** p < 0.001.
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2.4. Undecane Reduces the mRNA Expression of Inflammatory Cytokines in HaCaT Cells

To investigate whether undecane attenuated the TNF-α/IFN-γ-mediated inflammation in HaCaT
cells, we evaluated the gene expression of NF-κB related inflammatory cytokines. In parallel to
NF-κB activity results, the mRNA expression of proinflammatory cytokines such as thymus and
activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8
(IL-8) (Figure 4A–C) were dramatically increased in the TNF-α/IFN-γ treatment group compared
with the control group, while undecane significantly reduced mRNA expression of these cytokines.
In addition, undecane reversed the TNF-α /IFN-γ-induced reduction of IL-10 mRNA levels (Figure 4D).

Molecules 2020, 25, x FOR PEER REVIEW 7 of 14 

 

expressed as the mean ± SEM (n = 3). Significant differences between groups are indicated by asterisks; 
ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; ***p < 0.001. 

2.4. Undecane Reduces the mRNA Expression of Inflammatory Cytokines in HaCaT Cells 

To investigate whether undecane attenuated the TNF-α/IFN-γ-mediated inflammation in 
HaCaT cells, we evaluated the gene expression of NF-κB related inflammatory cytokines. In parallel 
to NF-κB activity results, the mRNA expression of proinflammatory cytokines such as thymus and 
activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) and interleukin-8 
(IL-8) (Figure 4A–C) were dramatically increased in the TNF-α/IFN-γ treatment group compared 
with the control group, while undecane significantly reduced mRNA expression of these cytokines. 
In addition, undecane reversed the TNF-α /IFN-γ-induced reduction of IL-10 mRNA levels (Figure 
4D). 

 
Figure 4. Effect of undecane on mRNA expression of inflammatory cytokines in HaCaT cells. After 
pretreatment (1 h) of vehicle (DMSO) or undecane (5 μM), the cells were incubated with TNF-α/IFN-
γ for 6 h and the mRNA expression levels of the proinflammatory cytokines such as (A) thymus and 
activation-regulated chemokine (TARC), (B) macrophage-derived chemokine (MDC) and (C) 
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Figure 4. Effect of undecane on mRNA expression of inflammatory cytokines in HaCaT cells.
After pretreatment (1 h) of vehicle (DMSO) or undecane (5 µM), the cells were incubated with
TNF-α/IFN-γ for 6 h and the mRNA expression levels of the proinflammatory cytokines such as
(A) thymus and activation-regulated chemokine (TARC), (B) macrophage-derived chemokine (MDC)
and (C) interleukin-8 (IL-8) and anti-inflammatory cytokine, (D) interleukin-10 (IL-10), were determined.
All gene expression data were normalized against GAPDH. The data were expressed as the mean ±
SEM (n = 3). Significant differences between groups are indicated by asterisks; * p < 0.05; ** p < 0.01;
*** p < 0.001.

3. Discussion

Although it has been reported that various proinflammatory molecules are associated with an
allergic reaction, histamine is still the major inflammatory regulator that is responsible for, at least, half
of the symptoms and signs of the allergic response in the skin [20]. Functional diversity of histamine
as a mediator of allergic symptoms can be derived from a variety of cell types that express different
histamine receptors (H1-4 receptors) [21,22]. For example, it has been accepted that typical immediate
hypersensitivity responses of skin allergic reactions, such as swelling, redness and itching, are the
result of histamine H1 receptor activation in epithelial and nerve cells [23,24]. In addition, Schmelz
et al. demonstrated that histamine delayed the barrier repair process mainly via histamine H1 and
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H2 receptors and topical application of the histamine H1 and H2 receptor antagonists attenuated the
barrier disruption-induced epidermal hyperplasia [25]. Most of the allergic symptoms stimulate further
histamine release from leukocytes, consequently producing a vicious circle of disease exacerbation.
Among these cells, since mast cells are the dominant source of stored histamine, the regulation of
histamine release from mast cells is critical for reducing allergic symptoms and a vicious cycle of
immune dysfunction.

There is accumulating evidence that keratinocytes directly take part in skin immune diseases
although they are not professional immune cells: Keratinocytes are capable of responding to a variety
of cytokines because of a broad range of surface receptors that they carry [26]. Activated keratinocytes
are then able to produce numerous inflammatory regulators (e.g., IL-8) again that could control their
own function, influence neighboring cells, or even extend the circulation and affect other sites [26].
In addition, keratinocytes are the major sources of various chemokines (e.g., MDC and TARC).
Chemokines represent small, secreted molecules that regulate directional migration and importantly,
mediate leukocyte trafficking [27,28]. Indeed, keratinocytes from skin allergy patients show an
intrinsically unregulated chemokine level that can promote the initial immune cell recruitments
into the skin, causing the commencement and maintenance of allergic symptoms [27,28]. In the
current experiment, undecane treatment improved abnormally upregulated cytokine and chemokine
in stimulated HaCaT cells.

In the present study, the intracellular cAMP levels increased within a few minutes after the
initial exposure to undecane and returned to near basal level by 120–240 min in both mast cells and
keratinocytes. Overall, similar patterns were also observed in previous studies: cAMP levels after the
addition of various cAMP-elevating agents such as forskolin and prostaglandin E reached a peak mostly
within 60 min in many cell types [29–31]. It is widely accepted that cellular cAMP levels are dynamically
regulated by two classes of enzymes that act in opposition: Adenylyl cyclases (ACs) immediately
stimulate cAMP signaling in response to transmembrane G protein-coupled receptor activation by an
extracellular ligand, while phosphodiesterases (PDEs) perform the sole role of degradation of cAMP.
An increase in cellular cAMP by ACs stimulates PKA, which directly performs anti-inflammatory
activities [32]. On the other hand, there is abundant biochemical evidence that stimulated PKA
activated PDEs in a variety of cells, contributing to the maintenance of restricted cAMP signals. This
rapid negative feedback allows specific cellular cAMP concentrations to be achieved only for a short
time, which may result in agent-specific effects [33–35].

Over the past several decades, downregulation of certain cytokines/chemokines in several immune
cell types was considered to be a common approach to AD treatment and, indeed, the molecules
targeting specific immunomodulatory pathways such as interleukin-2 (IL-2) and TNF-α demonstrated
the effectiveness of this approach [36–38]. However, side effects have been associated with their
long-term use [39]. For example, tacrolimus, the agent acting directly on T helper type 1 (Th1) to inhibit
IL-2 transcription, results in Th1/Th2 imbalance with increased circulating IgE and Th2-related cytokine
levels seen in vivo and in clinical trials [40,41]. It has been acknowledged that AD is immunologically
complicated, relate to diverse cell types and inflammatory signals in its initiation, progression and
pathological status and, therefore, a better strategy in the treatment of AD is moving from the
development of molecules that are capable of mediating the physiological function of a single target to
multi-target-directed ligands in a gradual way [42–44]. Notably, due to multiple actions of cAMP in
cell physiology, cAMP has wide regulatory effects on diverse AD-related cells, including mast cells,
keratinocytes, eosinophils, neutrophils and macrophages [8,45]. Further study is needed to determine
the anti-inflammatory activities of undecane in other immune cells.

Although CREB activation often promotes anti-inflammatory immune responses, we unexpectedly
found that treatment with inflammation-inducing agents (TNF-α/IFN-γ) increased CREB phosphorylation
at Ser-133 in keratinocytes. We also investigated that the inflammatory effect of TNF-α/IFN-γ on
keratinocyte contrasts with the evident anti-inflammatory effect of undecane, possibly meaning that
only CREB phosphorylation is not sufficient for its anti-inflammatory effect, which further relies on
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the other factors. This speculation is suggested by the investigation of Montminy et al., showing
stimulus-specific CREB activity. It was demonstrated that both PKA and other stimuli phosphorylated
CREB at Ser-133 to similar levels. Nevertheless, only the activity of PKA led to CREB-induced
anti-inflammatory activity (e.g., IL-10 gene increase) [46,47]. Thus, it was suggested that not only
phosphorylation of CREB, but a second PKA-regulated stimulus is needed for transcriptional CREB
activation [47]. We speculate that the contradictory results of CREB Ser-133 phosphorylation by
TNF-α/IFN-γ, which did not increase the PKA levels, may be similarly understood.

In summary, we demonstrated that undecane increased intracellular cAMP levels and led to the
inhibition of the degranulation of mast cells and the cytokines/chemokines expression in keratinocytes
(Figure 5). Based on its effects on the two cell types, which are closely responsible for the skin inflammatory
processes, our data suggest that undecane may be useful for the prevention or treatment of AD-like skin
inflammatory conditions and other allergic diseases. More studies are needed to further confirm the
potential for developing undecane as a pharmacological strategy for ameliorating skin inflammatory
diseases such as AD.
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Figure 5. Proposed mechanism by which undecane suppresses inflammatory responses in keratinocytes
and mast cells.

4. Materials and Methods

4.1. Cell Culture

RBL-2H3 mast cells were obtained from the American Type Culture Collection (Manassas, VA,
USA) and HaCaT keratinocytes were purchased from AddexBio technologies (San Diego, CA, USA).
RBL-2H3 and HaCaT cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM;
HyClone, Logan, UT, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS; 56 ◦C
for 30 min; Gibco, Grand Island, NY, USA) and 1% 100 unit/mL penicillin–streptomycin (Gibco,
Grand Island, NY, USA). The cells were grown at 37 ◦C in a 5% CO2 atmosphere incubator (Sanyo,
Osaka, Japan).

4.2. Cell Viability Assay

Cell viability was determined by MTT (Sigma Aldrich, St. Louis, MO, USA) assay. RBL-2H3
(1 × 104 cells/well) and HaCaT cells (1 × 104 cells/well) were seeded in 96-well plates and incubated
for 24 h. The cells were treated with or without 1–100µM of undecane (purity ≥99%; Sigma Aldrich,
St. Louis, MO, USA) and cultured for an additional 24 h. After the media was discarded, MTT solution
(4 mg/mL in phosphate-buffered saline (PBS; Welgene, Daegu, Korea)) was added to each well and
the cells were incubated for further 3 h. Thereafter, the supernatant was aspirated and the formazan
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crystals were solubilized in dimethyl sulfoxide (DMSO; Sigma Aldrich, St. Louis, MO, USA) for 30 min.
Relative absorbance was measured at 570 nm with an Infinite M200 PRO microplate reader (Tecan,
Männedorf, Switzerland).

4.3. Toluidine Blue Staining

RBL-2H3 cells were seeded into 24-well plates at 6 × 104 cells/well and incubated for 24 h. The cells
were then cultured for 1 h in serum-free medium containing vehicle (DMSO) or undecane (0.5, 1 and
5 µM), followed by sensitization with 50 ng/mL of DNP-IgE (Sigma Aldrich, St. Louis, MO, USA) for
4 h. The sensitized cells were washed two times with PBS and degranulation was induced by 50 ng/mL
of DNP-HSA (Sigma Aldrich, St. Louis, MO, USA). After 1 h, the cells were washed again with cold
PBS and fixed in 4% paraformaldehyde (Nest Biotechnology, Rahway, NJ, USA) at 25 ◦C. In the next
step, 0.1% toluidine blue (Sigma Aldrich, St. Louis, MO, USA) in 1% sodium chloride (pH 2.5) was
added to each well and cells were incubated for 30 min. After that, the stained cells were washed three
times with PBS. Images of the stained cells were captured with an Olympus IX71 microscope using a
DP-70 controller (Olympus, Center Valley, PA, USA).

4.4. cAMP Assay

RBL-2H3 and HaCaT cells were seeded into 24-well plates at a density of 6 × 104 cells/well.
RBL-2H3 and HaCaT cells were incubated with 1 and 5 µM undecane, respectively, for 15, 30, 60, 120
and 240 min or without undecane treatment. At the end of incubation, the medium was aspirated
and the cells were lysed with 0.1 M HCl for 10 min and scraped off and the cell lysates were collected.
cAMP concentrations of the cell lysates were measured with the cAMP ELISA kit (Enzo, Plymouth
Meeting, PA, USA) following the manufacturer’s protocols. The relative absorbance was measured at
400 nm using a microplate reader (Tecan, Männedorf, Switzerland). The cAMP level was normalized
to the total intracellular protein amount. The protein amount in cell lysates was estimated using the
Bradford reagent (Bio-Rad, Hercules, CA, USA). Bovine serum albumin (BSA; LPS solution, Daejeon,
Korea) was used as the standard.

4.5. Histamine and TNF-α Release Assays

RBL-2H3 cells were seeded onto a 12-well plate at 1 × 105 cells/well, cultured and sensitized
using the above-mentioned methods for toluidine blue staining. After induction of degranulation,
the supernatants were centrifuged (12,000× g, 5 min, 4 ◦C) and collected. Histamine and TNF-α
concentrations in the supernatants were estimated using ELISA kits (Enzo, Plymouth Meeting, PA,
USA) according to the manufacturer’s instructions. The histamine and TNF-α concentrations were
normalized to the total cellular protein amount. The total cellular proteins were extracted with cell
lysis buffer containing 100 mmol/L Tris–HCl (pH 7.4), 100 mmol/L orthovanadate, 50 mmol/L sodium
pyrophosphate, 50 mmol/L NaF, 50 mmol/L NaCl, 5 mmol/L EDTA, 1 mmol/L phenylmethanesulfonyl
fluoride, 1% Triton X-100, 2 µg/mL aprotinin, 1 µg/mL pepstatin A and 1 µg/mL leupeptin. The protein
amount was evaluated with the Bradford reagent as described above.

4.6. NF-κB p65 Transcriptional Activity

HaCaT cells were seeded into 60-mm cell culture dishes at 3 × 105 cells/well and incubated for 24 h.
The cells were then cultured for 1 h in serum-free medium containing vehicle or various concentrations
of undecane (1, 5 and 10 µM), followed by sensitization with 10 ng/mL each of TNF-α (R&D Systems,
Minneapolis, MN, USA) and IFN-γ (R&D Systems, Minneapolis, MN, USA) for 1 h. Nuclear proteins
were then separated from HaCaT cells using the Nuclear Extraction Kit (Abcam, Cambridge, MA,
USA) and NF-κB (a heterodimer of p50 and p65 subunits) activation was assessed using NF-κB p65
transcription factor assay kit (Abcam, Cambridge, MA, USA) following the manufacturer’s protocol.
Absorbance was quantified with a microplate reader (Tecan, Männedorf, Switzerland) at 450 nm.
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4.7. Western Blotting

HaCaT cells were seeded into 60-mm cell culture dishes at 3 × 105 cells, cultured for 24 h and
sensitized with TNF-α/IFN-γ (10 ng/mL each) with or without undecane (5 µM). The cells were then
harvested with cell lysis buffer, incubated for 10 min and centrifuged at 13,000× g for 5 min at 4 ◦C.
The concentrations of proteins were determined by Bradford assay as described above. The prepared
samples containing 20 µg total protein were separated in 10–12% SDS-PAGE gel and transferred
onto nitrocellulose membranes (Whatman, Dassel, Germany). After transfer, the membranes were
blocked with 5% BSA in TBST (20 mmol Tris–HCl, pH 7.6, containing 137 mmol NaCl and 0.05%
Tween-20). Primary antibody incubation was performed overnight at 4 ◦C in the presence of PKA
(Cat# 4782), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Cat# 5174), CREB (Cat# 9197),
p-CREB (Cat# 9198), p38 (Cat# 8690) and p-p38 (Cat# 4511) (Cell Signaling, Danvers, MA, USA)
using a 1:1000 dilution for each antibody. Membranes were then incubated with secondary antibody
(Cat# sc-2055; 1:10,000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at 20 ◦C.
Electrochemiluminescence (ECL) detection reagent (Bio-Rad, Hercules, CA, USA) was used as a
substrate and the band images were captured with a WSE-6100 LuminoGraph system (ATTO, Tokyo,
Japan). Band intensities were calculated with the Quantity One software (v 4.6.2, Bio-Rad, Hercules,
CA, USA) and normalized to the loading control (GAPDH).

4.8. Reverse Transcription and Quantitative Real-Time Polymerase Chain Reaction

HaCaT cells were seeded into 6-well plates at 3 × 105 cells/well and incubated for 24 h. The cells
were then cultured for 1 h in serum-free medium containing vehicle or undecane (5 µM), followed by
sensitization with 10 ng/mL each of TNF-α and IFN-γ for 6 h. Then, the treated cells were harvested
and RNA was isolated using the Trizol (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
protocol. RNA was reverse transcribed to generate cDNA according to the SuperScript IV reverse
transcriptase (Invitrogen, Carlsbad, CA, USA) protocol: 2 µg of RNA was reverse transcribed in the 5×
SuperScript IV buffer supplemented with 50 µM oligo (dT) primer, 200-unit SuperScript IV reverse
transcriptase, 10 mmol dNTP mixture and 20 unit RNase inhibitor. The reaction was incubated at 52 ◦C
for 1 h. Real-time polymerase chain reaction (PCR) quantification was conducted with a real-time PCR
system (CFX96 Touch; Bio-Rad, Hercules, CA, USA) in a 20 µL mixture containing 10 µL of SYBR
Green fluorescence (iQ SYBR Green Supermix; Bio-Rad, Hercules, CA, USA), 20 pmol primers and
50 ng of cDNA template. The relative gene levels were estimated by the threshold cycle method, using
GAPDH as the housekeeping gene. Primer sets used in quantitative real-time PCR are given in Table 1.

Table 1. Primer sequences.

Gene Description Sequence (5′→3)

Thymus and activation-regulated chemokine (TARC) F: CCTGGTCACCCTCCTCCTG
R: GGTACCACGTCTTCAGCTTTCT

Macrophage-derived chemokine (MDC) F: CCCTACGGCGCCAACAT
R: CAGACGGTAACGGACGTAATCA

Interleukin-8 (IL-8) F: TGACTTCCAAGCTGGCCGTG
R: TTCTGTGTTGGCGCAGTGTGG

IL-10 F: GATCCAGTTTTACCTGGAGGAG
R: CCTGAGGGTCTTCAGGTTCTC

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) F: GTGATGGCATGGACTGTGGT
R: GGAGCCAAAAGGGTCATCAT
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