Skip to main content
. 2020 Apr 23;21:155. doi: 10.1186/s12859-020-3483-0

Table 9.

Averaged AUC values for different methods

Classifier Decision Tree Random Forest GA with Rotation Forest BFA + RF SVM SVM
Kernel Linear kernel RBF kernel
GSE32394 0.7589 ± 0.2256 0.8000 ± 0.2449 0.7000 ± 0.3317 0.8000 ± 0.2449 0.9644 ± 0.0422 0.9344 ± 0.0456
GSE59993 0.8099 ± 0.0740 0.7484 ± 0.1438 0.8663 ± 0.0983 0.8474 ± 0.1381 0.8371 ± 0.0331 0.8287 ± 0.0247
GSE1872 1.0000 ± 0.0000 0.9951 ± 0.0178 0.9667 ± 0.1000 1.0000 ± 0.0000 0.3977 ± 0.2008 0.2042 ± 0.0686
GSE76260 0.8313 ± 0.0813 0.7889 ± 0.0441 0.8583 ± 0.0500 0.8167 ± 0.1856 0.7857 ± 0.0629 0.8357 ± 0.0213
GSE59246 0.6455 ± 0.0795 0.8486 ± 0.0349 0.8474 ± 0.1026 0.7646 ± 0.1304 0.8896 ± 0.0375 0.7629 ± 0.0094
BRCA1 0.9925 ± 0.0115 0.9727 ± 0.4166 0.9818 ± 0.3636 0.9909 ± 0.2727 0.9598 ± 0.0317 0.9918 ± 0.0060
BRCA2 0.9997 ± 0.0026 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
BRCA3 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9997 ± 0.0026 1.0000 ± 0.0000
Classifier SVM MKL(d = 3) MKL(d = 3) MKL(d = 3) MKL(d = 21) HMKL
Kernel Hadamard kernel RBF kernel Hadamard kernel Mixed kernels Mixed kernels
GSE32394 0.9778 ± 0.0222 0.9422 ± 0.0422 0.9844 ± 0.0511 0.9867 ± 0.6333 0.9899 ± 0.0333 0.9933 ± 0.0378
GSE59993 0.8661 ± 0.0510 0.7073 ± 0.0532 0.8973 ± 0.0445 0.8990 ± 0.0336 0.9018 ± 0.0175 0.9069 ± 0.0178
GSE1872 1.0000 ± 0.0000 0.2667 ± 0.0894 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
GSE76260 0.8595 ± 0.0126 0.8302 ± 0.0419 0.8467 ± 0.0313 0.8604 ± 0.0416 0.8633 ± 0.0313 0.8735 ± 0.0190
GSE59246 0.8996 ± 0.0250 0.8939 ± 0.0317 0.8991 ± 0.0179 0.9006 ± 0.0292 0.9008 ± 0.0282 0.9048 ± 0.0047
BRCA1 0.9953 ± 0.0047 0.9921 ± 0.0061 0.9953 ± 0.0045 0.9957 ± 0.0032 0.9960 ± 0.0026 0.9967 ± 0.0027
BRCA2 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
BRCA3 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000