Table 1.
Area under curve (AUC) for ROC analysis to discriminate between responders and non-responders. CI is 95% confidence interval.
Data Set A/B (Train Data) | Data Set D (Test Data) | Patients (Test Data) | |
---|---|---|---|
GLMNET | — | 0.95 (CI: 0.83, 1.00) | 0.97 (CI: 0.82, 1.00) |
PCA-LDA1 | 0.97 (CI: 0.93, 1.00) | 1.00 (CI: 1,1) | 0.94 (CI: 0.73, 1.00) |
PCA-LDA2 | 0.96 (CI: 0.91, 1.00) | 0.88 (CI: 0.77, 1.00) | 0.99 (CI: 0.9, 1.00) |
ROI-LDA (Conventional) | 0.78 (CI: 0.68, 0.87) | 0.66 (CI: 0.40, 0.92) | 0.39 (CI: -0.01, 0.79) |
PE-LDA | 0.74 (CI: 0.64, 0.83) | 0.76 (CI: 0.53, 0.99) | 0.61 (CI: 0.19, 1.00) |
AUC-LDA | 0.43 (CI: 0.33, 0.52) | 0.51 (CI: 0.23, 0.79) | 0.28 (CI: -0.08, 0.64) |
MTT-LDA | 0.62 (CI: 0.51, 0.72) | 0.65 (CI: 0.39, 0.91) | 0.17 (CI: -0.11, 0.45) |
TP-LDA | 0.43 (CI: 0.33, 0.52) | 0.38 (CI: 0.11, 0.64) | 0 (CI: 0, 0) |