Skip to main content
. 2020 Apr 23;11:1946. doi: 10.1038/s41467-020-15781-0

Fig. 4. Spike imaging overview and results.

Fig. 4

a The output of FAST-IRES is a spatiotemporal distribution where spatial distributions correspond to a time-course of activity. To determine the epileptogenic tissue, the source signals’ energy is calculated around the spike peak-time and compared to clinical findings for validation. b Examples of spike-imaging results along the clinical findings in the same patients. c Quantitative results of spike-imaging results for all patients (top) and separated based on surgical outcome (bottom). Note that while the color scheme distinguishes precision vs. recall in these patients, for localization error it is used to denote seizure-free from non-seizure-free patient groups (bottom). Each gray circle corresponds to individual patient’s data. The horizontal black bar indicates the mean, the color bars indicate the 95% confidence interval for the mean and the dark vertical bars indicate the standard deviation. To compute precision (n = 29, 0.58 ± 0.38) and recall (n = 29, 0.58 ± 0.32), 29 data points were available in total (n = 29). The same analysis for seizure-free patients yielded higher precision (n = 20, 0.65 ± 0.39) and recall (n = 20, 0.61 ± 0.32) compared to the precision (n = 9, 0.41 ± 0.31) and recall (n = 9, 0.49 ± 0.32) in the non-seizure-free group. The localization error (n = 16, 18.1 ± 14.08 in mm) was calculated from the data of 16 patients (n = 16). The localization error (n = 9, 13.9 ± 11.96 in mm) in seizure-free patients was smaller than the same value (n = 7, 23.5 ± 15.7 in mm) in non-seizure-free patients. Reported values are (mean ± standard deviation). Source data are provided as a Source Data file.