Table 2.
Hyperparameters for neural networks training on gene expression data. All neural networks are fully connected, and decoders have an architecture symmetric to the encoders.
| Hyperparameter | Value |
|---|---|
| Molecular Encoder | GRU; hidden size 128; 2 layers |
| Expression Encoder | IN(978)→256→OUT(128) |
| Difference Encoder | IN(129)→128→OUT(10 + 10) |
| Discriminator | IN→1024→512→OUT(1) |
| Batch Normalization | After each linear layer in encoders |
| Activation Function | LeakyReLU |
| Learning Rate | 0.0003 |