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Abstract

Hemostatic clot formation is the result of a balance between the procoagulant system responding 

to tissue trauma and the anticoagulant system, which restricts clot formation to the injury site. 

Imbalances in coagulation lead to a tendency towards either thrombosis or bleeding. Over the past 

two years, studies published in Arteriosclerosis, Thrombosis, and Vascular Biology have provided 

insights into the regulation of this crucial system. Here, we highlight recent discoveries concerning 

the two pathways of thrombin formation, the extrinsic tissue factor (TF) pathway and the intrinsic 

contact pathway, and the contributions of platelet activation to the thrombotic process.

Regulation of Tissue Factor Expression and Activity

Tissue factor is a transmembrane glycoprotein cofactor constitutively expressed by 

subendothelial cells that serves as a high affinity receptor for, and promotes the catalytic 

activity of factor VIIa (FVIIa).1, 2 Upon vascular injury, TF initiates the extrinsic 

coagulation pathway by binding FVIIa and promoting the activation of factor X (FX) and 

factor IX (FIX). The importance of TF activity was explored in a recent microfluidic study 

by Zhu et al,3 which showed that a single molecule of TF can generate up to 92,000 

molecules of thrombin and more than 200,000 fibrin monomers during a 500-second clotting 

window. They also calculated that the produced thrombin only has a 70 msec half-life. Thus, 

a single molecule of thrombin is only active long enough to produce three fibrin monomers, 

and robust thrombin generation is required to produce a stable clot.

Many intravascular cells, including neutrophils and monocytes, can be stimulated to express 

detectable levels of TF.4 These cells might also release TF into the circulation, either as the 

soluble extracellular form or as full-length protein incorporated into microvesicles.5 Recent 

studies have identified additional mechanisms regulating TF expression. Neutrophils can 

release neutrophil extracellular traps (NETs), which consist of DNA, histones, and granular 
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enzymes, and Folco et al.6 showed that NET-associated effectors induce endothelial cell 

expression of TF through an interleukin 1α and cathepsin G-dependent pathway. According 

to a recent study by Liang and colleagues,7 the transcription factor Krüppel-like factor-11 

(KLF11) binds to the F3 promoter to inhibit TF transcription. Under basal condition, 

endogenous KLF11 is sufficient to maintain low levels of TF in vascular smooth muscle and 

endothelial cells. Knockout of TF specifically in vascular smooth muscle cells inhibits 

thrombus formation in the ferric chloride injury model, while vascular smooth muscle-

specific Klf11−/− mice have increased TF and a prothrombotic phenotype. Conversely, 

overexpression of Klf11 potently inhibited TNF-α-induced TF expression in human aortic 

smooth muscle cells at both the mRNA and protein levels. Thus, through its regulation of 

TF, KLF11 is a key controller of vascular smooth muscle cell procoagulant activity.

While procoagulant TF is clearly expressed in the vascular subendothelium, it has also been 

proposed that many different cell types express an inactive, encrypted form of TF that 

requires de-encryption.8 A recent article by Baker et al.9 has provided insight into the 

regulation of TF de-encryption. Hepatocytes have direct exposure to the plasma due to the 

fenestrated endothelium of the liver vasculature. Consequently, hepatocytes express an 

encrypted form of the TF/FVIIa complex. Baker et al. showed that bile acids stimulate the 

de-encryption of this TF/FVIIa complex in a murine cholestasis model, possibly explaining 

the hypercoagulability seen in patients with liver disease. The contribution of microvesicle 

TF activity has also been explored. Stark et al.10 found a clear correlation between cancer-

derived microvesicle TF activity and the risk of deep vein thrombosis (DVT) in prostate 

cancer, one of the most prothrombotic type of cancers. They also showed that tumor-derived 

microvesicles can induce thrombosis in animal models. However, microvesicle TF was not 

sufficient by itself to cause DVT. Clot formation also required synergistic endothelial cell TF 

and surface exposure of the phospholipid phosphatidylethanolamine, but not 

phosphatidylserine.

Once activated, TF/FVIIa is inhibited by the anticoagulant tissue factor pathway inhibitor α 
(TFPIα), which is down-regulated in women taking hormonal contraception.11 Recently, 

Tanratana et al.12 showed that reduced TFPIα in premenopausal women on hormonal 

contraception results in a 2–3-fold increase in the rate of FIX activation and an increase in 

the amount of circulating FIXa. They also observed an inverse correlation between 

circulating FIXa and plasma concentrations of TFPIα and the cofactor protein S (PS). PS 

promotes TF/FVIIa inhibition by TFPIα, and also directly inhibits FIXa activity.11, 13 Plautz 

et al.14 defined the mechanism of this latter function, showing that PS interacts with the 

heparin-binding exosite of FIXa and that infusion of the FIXa K132A/R170A mutant 

protein, which cannot bind PS, significantly increases clot formation in Hemophilia B mice.

Contributions of the Contact Pathway

FIXa is also generated through the contact pathway of coagulation, a proteolytic cascade 

initiated by factor XII (FXII), which activates both factor XI (FXI) and the proinflammatory 

kallikrein‐kinin system.15 Upon exposure to negatively charged surfaces (e.g. DNA) or 

pathogens (e.g. long-chain polyphosphates), FXII undergoes a conformational change and 

produces activated FXII (FXIIa). Subsequently FXIIa activates the intrinsic coagulation 
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system by factor XI (FXI) cleavage to form activated FXI (FXIa). FXIa then proteolytically 

activates FIX. FXIIa also digests prekallikrein to release plasma kallikrein (PK), which 

reversely activates FXII to produce an enhanced positive feedback activation loop.15

Multiple lines of evidence have shown that factor XII is dispensable for hemostasis, but 

promotes thrombotic processes, such as venous thromboembolism (VTE), suggesting this 

pathway as a viable therapeutic target.15 Lorentz et al.16 showed that AB023, an antibody 

which selectively blocks FXI activation by FXIIa and demonstrates a dose-dependent 

duration of limited anticoagulation in mice, has antithrombotic activity in a baboon model 

but does not increase bleeding time. They then performed a first-in-human study of the 

antibody. They reported a prolonged activated partial thromboplastin time in patients treated 

with the antibody, demonstrating its efficacy, and confirmed that the antibody does not 

impair either thrombin-mediated FXII activation or FXIa enzymatic activity. Most 

importantly, they reported no severe adverse events were observed, with only one patient 

experiencing a bruise at the injection site.

Similar to the TF pathway, the contact pathway is tightly downregulated in vivo, by C1 

esterase inhibitor, which targets both FXIIa and PK.15 Puy et al.17 showed that the 

endothelial serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) also 

downregulates the contact pathway. Specifically, PAI-1 forms an inhibitory complex with 

FXIa, which is then either shed into circulation or endocytosed by endothelial cells, 

trafficked through endosomes and lysosomes, and degraded. Promoting these natural 

suppressive mechanisms represents a potential therapeutic strategy to prevent thrombosis 

through contact pathway inhibition.

In addition, the contact pathway influences the host response to a variety of pathological 

processes besides thrombosis, including atherosclerosis, stroke, and sepsis.15 Jevgenia et al.
43 demonstrated that long-chain polyphosphates released by bacterial pathogens induce 

platelet activation and fibrin generation in vivo through a FXII-dependent mechanism and 

that pre-treatment with FXIa antibody suppresses platelet and fibrin consumption in a 

bacterial sepsis model.18, 19 Meanwhile, data also suggest cross-talk between the 

proinflammatory and procoagulant processes.20 Mayken et al.21 found that PK, the major 

proinflammatory downstream mediator of FXIIa, also contributes to FIXa activation by 

FXIIa, a process which operates parallel to the FXIa pathway. The ability of PK to activate 

FIXa could be explained by the high sequence homology between the active sites of PK and 

FXIa, a well-described FIX activator.22

Platelet Activation

Whether generated through the TF or contact pathway, the final substrate thrombin amplifies 

its own production, in part through the activation of protease-activated receptors 1 and 4 

(PAR1, PAR4) on platelets, and generation of a platelet surface capable of supporting 

prothrombinase assembly.23 PAR1 activity is inhibited by the antiplatelet agent vorapaxar,24 

and a recent study by Tourdot et al.25 has highlighted the importance of PAR4 activation in 

thrombosis. This group previously identified a variant in PAR4 (PAR4-Thr120), which is 

prevalent in African Americans and accounts for ~50% of the platelet hyperactivity observed 

Li et al. Page 3

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in this group.26 They have now shown that platelets expressing PAR4-Thr120 have increased 

Gq and G13 activation in response to thrombin, undergo a more dramatic shape change, and 

produce larger clots under flow. These data suggest that PAR receptors, such as PAR4, may 

be valuable targets for antithrombotic therapy, particularly in individuals with the Thr120 

variant.

Two recent publications have assessed the therapeutic potential of anti-PAR4 agents. First, 

Wilson et al.27 studied the effects of BMS-986120, a reversible PAR4 antagonist, on ex vivo 
platelet thrombus formation in a Phase I clinical trial. They found that platelets from 

BMS-986120-treated patients had dramatically reduced responses to PAR4 stimulation and 

formed smaller clots under high shear flow conditions, which were similar in size to those 

formed by platelets from patients treated with aspirin or a combination of aspirin and 

clopidogrel. Second, Lin et al.28 showed that the non-anticoagulant heparin SCH-28 

specifically blocks thrombin-mediated PAR4 activation and reduces platelet thrombus 

formation under flow, and suggest that SCH-28 may be a safer alternative to traditional 

heparin therapy, as it does not promote FXa or thrombin inhibition by antithrombin.

Platelets are also activated through the collagen receptor glycoprotein VI (GP-VI).29 This 

interaction is often described as the initial activator of platelets, as collagen is exposed at the 

subendothelial site of injury. Recent work by Lehmann et al.30 has described an important 

role for GP-VI in clot progression, in a model for venous thromboembolism. They 

developed a microfluidic system to mimic the low-flow conditions of a venous valve. In this 

system, they found that TF activity promotes fibrin deposition, platelets adhere to the fibrin 

and expose phosphatidylserine, and additional platelets are recruited to promote thrombus 

growth. This final step was dependent on GP-VI, as it could be inhibited by the anti-GP-VI 

antibody Fab fragment ACT017 or by the fibrin fragment d-dimer, which binds GP-VI. GP-

VI is also being actively pursued as a therapeutic target. Voors-Pette and colleagues31 have 

reported the results of a first-in-human study of ACT017. This was a safety study in healthy 

volunteers, and the authors reported no serious adverse events, no change in platelet count, 

no change in GP-VI expression on platelets, and no change in the concentration of shed, 

soluble GP-VI in plasma.

New studies have also elucidated the signaling pathways that lead to platelet activation in 

response to either thrombin or collagen. Adam et al.32 knocked out the motor protein 

kinesin-1 heavy chain in mice and observed a re-bleeding phenotype following tail clip and 

thrombus instability in the ferric chloride injury model. They subsequently showed that the 

platelets responded less to low-dose thrombin or collagen stimulation, defined by reduced 

aggregation, ATP and platelet factor-4 (PF4) secretion, and P-selectin exposure. These 

deficiencies could be overcome by stimulation with high concentrations of thrombin. Thus, 

kinesin-1 is a component of the thrombin signaling pathway in platelets. In addition, work 

by Wersall et al.33 identified a specific role for the Ral family of small GTPases. They 

knocked out either RalA or RalB or both in a mouse model and observed reduced P-selectin 

exposure in response to either thrombin or collagen, though total P-selectin was actually 

slightly increased. In contrast, they saw no change in activation of integrin αIIbβ3, secretion 

of α-granule cargos PF4 and TGFβ, or ex vivo thrombus formation. Though both RalA and 

RalB contributed to P-selectin exposure, the most dramatic phenotype was observed in 

Li et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



double-knockout mice. However, they did observe decreased formation of platelet-leukocyte 

aggregates, a P-selectin-dependent process. This work shows that P-selectin exposure is 

regulated differently than α-granule release and is not essential for thrombus formation. 

Finally, Laurent and colleagues34 used knockout mice and inhibitors to show that 

phosphoinositide 3-kinase alpha (PI3Kα) is involved in platelet activation in response to low 

doses of collagen. Unlike kinesin-1 and Ral GTPases, PI3Kα was not involved in thrombin 

signaling. In response to collagen, knockout or inhibited platelets had reduced aggregation, 

dense granule secretion, and adhesion to immobilized von Willebrand factor. The mice also 

had reduced thrombus formation in a laser injury model, but did not show any impairment in 

the tail clip bleeding assay.

Platelet activation through GP-VI, PARs, and other receptors requires release of intracellular 

calcium stores into the cytosol.35 Recent work by Gotru and co-workers showed that these 

stores are regulated by transient receptor potential cation channel, subfamily M, member 7 

(TRPM7), a protein which they had previously identified as a regulator of magnesium in 

megakaryocytes.36, 37 Platelets from TRPM7−/− mice exhibit decreased calcium release, 

aggregation, P-selectin exposure, and integrin activation in response to either collagen or 

thrombin. In addition, the authors observed reduced thrombus formation ex vivo in a whole 

blood flow system and showed that the mice were protected from ferric chloride-induced 

thrombosis and from cerebral ischemia, while there was no change in the tail bleed assay. 

Lopez et al.38 added to these observations by showing that calcium signaling is regulated by 

the calcium sensor stromal interaction molecule 1 (STIM1) and by the phosphorylation of 

Ser2152 on the cytoskeletal protein filamin A, which promotes its interaction with STIM1. 

They showed that inhibition of the STIM1-filamin A interaction enhances calcium release 

and platelet aggregation. Collectively, these studies have identified several new potential 

downstream therapeutic targets, which could selectively inhibit specific aspects of platelet 

function to prevent thrombosis.

Other Regulators of Platelet Function

Platelet function is also influenced by several other factors, including the adhesive protein 

von Willebrand Factor (vWF) and flow forces. Platelets bind to vWF through the 

glycoprotein IB-IX-V receptor complex.39 Chen and colleagues40 showed that by blocking 

vWF binding with the aptamer ARC1779, they can improve the ex vivo stability of stored 

platelets. They found that refrigerated murine and human platelets incubated with ARC1779 

had increased recovery and half-life post-transfusion. They also had increased hemostatic 

function, evidenced by a reduced clot time in the tail bleed model, suggesting that vWF 

binding is at least partially responsible for the loss of activity and lifetime that has been 

observed with cold-stored platelets. Abdelgawwad et al.41 used a different approach to show 

the potential therapeutic benefit of blocking the platelet/vWF interaction. Thrombotic-

thrombocytopenic purpura (TTP) is caused when congenital or acquired loss of the enzyme 

ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats 13) 

results in an increase in circulating high molecular weight vWF multimers.42 Abdelgawwad 

used the natural endocytic machinery to load platelets with ADAMTS13 and showed that 

these platelets have antithrombotic properties when transfused into ADAMTS13−/− mice or 

added into whole blood from TTP patients, supporting this process as a novel treatment 
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approach.41 Adili and Holinstat43 similarly assessed the efficacy of introducing ADAMTS13 

to treat TTP. They showed that ADAMTS13−/− mice are prone to vWF-dependent 

microvascular thrombi in the brain, which are independent of fibrin, and that infusion of 

BAX930, a recombinant form of ADAMTS13, was able to resolve these thrombi.

vWF is stored in Weibel-Palade bodies of endothelial cells and secreted into plasma.44 

Recent work from Biswas et al.45 showed that vWF secretion is promoted by high mobility 

group box 1, and this process is dramatically enhanced by the presence of polyphosphate 

chains in the same size range as those secreted by activated platelets. The released vWF then 

supports platelet adhesion and formation of platelet/vWF “strings” on the endothelial 

surface, suggesting a positive feedback loop between platelets and vWF in this process. 

Intracellularly, Schillemans et al.46 identified syntaxin-3 as a key mediator of the membrane 

fusion process that allows for vWF secretion. Syntaxin-3 functions with vesicle-associated 

membrane protein-8, a well described exocytosis regulator, to control this process, but has 

no impact on Weibel-Palade body formation. vWF is also found in platelet α-granules, but 

interestingly, Doddapattar et al.47 found that only endothelial vWF promotes platelet 

adhesion and subsequent inflammation and leukocyte adhesion in the ApoE−/− 

atherosclerosis model, suggesting that vWF may serve different functions depending on its 

source.

It has long been understood that shear forces regulate vWF activity and platelet aggregation, 

and this appears to be particularly true for turbulent flow.48 According to the work of Bortot 

and colleagues,49 vWF activity is specifically regulated by turbulent flow patterns. Bortot 

compared laminar, transitional, and turbulent flow patterns, and observed that turbulent flow 

resulted in the greatest loss of vWF multimers (indicating the highest activity of 

ADAMTS13) and the lowest vWF activity, as measured by its ability to bind platelets and 

collagen.49 These data offer a possible mitigating factor to prevent spontaneous thrombosis 

in venous valves, where turbulent flow patterns are prevalent.34 Anyanwu et al.50 described 

another potential mitigating factor, the ectonucleotidase CD39. They showed that CD39−/− 

mice have increased thrombus size in a stasis injury model, increased P-selectin exposure 

and vWF levels, and increased platelet-leukocyte aggregates. Thus, the ability of CD39 to 

hydrolyze ATP and/or ADP appears to protect from venous thrombosis.

The pathological environment also has the power to shape platelet phenotype and function, 

and can impact the efficacy of antiplatelet therapies, such as aspirin and clopidogrel.51 

Cameron et al.52 demonstrated that platelets isolated from patients with vascular and 

metabolic diseases, including patent ductus arteriosus, diabetes mellitus, and hypertension, 

have higher activity and are resistant to antiplatelet agents, when compared to platelets 

isolated from healthy volunteers. The mechanism underlying this change in platelet 

phenotype is not clearly understood, but is partly mediated by extracellular regulated protein 

kinase 5.51, 52

Summary

Over the past two years, studies published in Arteriosclerosis, Thrombosis, and Vascular 
Biology have improved our understanding of the regulation of thrombin generation, through 
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both the TF and contact pathway, and of platelet activation and function (Figure 1). These 

studies have identified new pathways and targets, which may lead to improved anticoagulant 

and antithrombotic agents in the years to come.
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Abbreviations:

TF tissue factor

FVIIa factor VIIa

FX factor X

FIX factor IX

KLF11 Krüppel-like factor 11

NET neutrophil extracellular trap

DVT deep vein thrombosis

TFPIα tissue factor pathway inhibitor α

PS protein S

FXII factor XII

FXI factor XI

PK plasma kallikrein

VTE venous thromboembolism

PAI-1 plasminogen activator inhibitor-1

PAR4 protease activated receptor 4

GP-VI glycoprotein VI

PF4 platelet factor-4

PI3Kα phosphoinositide 3-kinase alpha

TRPM7 transient receptor potential cation channel, subfamily M, member 7

STIM1 stromal interaction molecule-1

vWF von Willebrand factor

ADAMTS13 a disintegrin and metalloprotease with thrombospondin type 1 repeats 
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Figure 1. 
Recent advances have been made in our understanding of 1) TF expression, de-encryption, 

and downstream substrate FIXa activation; 2) regulation of the contact pathway and its 

crosstalk with inflammation; and 3) receptors, signaling and extracellular components that 

regulate platelet activation. Blue text indicates promoters, red indicates inhibitors, and italics 

indicate therapeutic agents.
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