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Abstract

The software programs STRUCTURE and NEWHYBRIDS are widely used population

genetic programs useful in addressing questions related to genetic structure, admixture,

and hybridization. These programs usually require a large number of independent runs with

many iterations to provide robust data for downstream analyses, thus significantly increas-

ing computation time. Programs such as Structure_threader and parallelnewhybrid were

previously developed to address this problem by processing tasks in parallel on a multi-

threaded processor; however some programming knowledge (e.g., R, Bash) is required to

run these programs. We developed EasyParallel as a community resource to facilitate prac-

tical and routine population structure and hybridization analyses. The multi-threaded paral-

lelization of EasyParallel allows processing of large genetic datasets in a very efficient way,

with its point-and-click GUI providing ready access to users who have little experience in

script programming. Performance evaluation of EasyParallel using simulated datasets

showed similar speed-up and parallel execution time when compared to Structure_threader

and Parallelnewhybrid. EasyParallel is written in Python 3 and freely available on the GitHub

site https://github.com/hzz0024/EasyParallel.

1. Introduction

Recent advances in next-generation sequencing (NGS) technologies and the decreased cost of

NGS have led to a rapid accumulation of genetic data for both model and non-model organ-

isms [1]. To accommodate this data explosion, new tools and computation platforms were

developed to perform parallelized data analyses [2,3]. However, most of these programs were

compiled and executed in command-line based environments (e.g., Linux, R), which could

make them less accessible and appealing to users who have little programming background.

Moreover, some programs require independent runs with many iterations to provide robust

data for downstream analysis, making it time-consuming when the dataset includes a large

number of individuals and genetic markers.
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One such example is STRUCTURE [4]. This Bayesian-based clustering approach utilizes

individual genotypes and population allele frequencies to cluster individuals, with the assump-

tions of Hardy–Weinberg and linkage equilibrium of marker loci within populations [4]. Since

its publication, STRUCTURE has been widely applied to address questions related to popula-

tion structure, species or individual assignment, hybridization and introgression [5–10].

Because STRUCTURE requires to minimize the effect of the starting configuration, many iter-

ations are needed during the burnin process [6]. More importantly, STRUCTURE is usually

run with many iterations for different genetic cluster values (K) to determine the optimal num-

ber of populations [11], thus significantly increasing computational times.

Another program requiring a large number of independent runs is NEWHYBRIDS [12].

Using Bayesian model-based clustering and MCMC simulation, NEWHYBRIDS computes

the posterior probability of each individual that falls into distinct hybrid classes [12]. Although

both programs were designed with graphical interfaces and cross-platform compatibility

(Linux, Windows, and MacOS), the native GUIs do not facilitate multiple independent analy-

ses. Additionally, parameters and input files must be copied and edited manually between

runs, which introduces the potential for human errors [13]. To increase the efficiency and

speed of running these programs, strategies such as parallel processing and script program-

ming on multiple cores/threads have been previously proposed for STRUCTURE or NEWHY-

BRIDS analyses [13–16]. Although these strategies are invariably more convenient and

efficient, some knowledge of programming languages is still needed.

The program EasyParallel presented in this article is provided as a free cross-platform tool

that utilizes a multi-thread parallel algorithm for processing multiple iterations of STRUC-

TURE and NEWHYBRIDS analyses. EasyParallel employs a user-friendly graphical user inter-

face (GUI) and multi-core parallelization for multiple independent runs of a dataset.

2. Materials and methods

2.1 Overview

EasyParallel is freely available at https://github.com/hzz0024/EasyParallel with installation

instructions and a brief demo provided in the Documentation site. EasyParallel requires the

command-line version of STRUCTURE and NEWHYBRIDS programs. Thus, a user must

download the correct version of the target program and load the main directory (with execut-

able files) to EasyParallel. Python is used for directory creation, data processing, parallel runs,

and file writing operations. At present, EasyParallel can perform parallel replication runs for

STRUCTURE and NEWHYBRIDS across MacOS and Windows operating systems, with all

source code packaged for the direct run without installation. However, the open-source design

of EasyParallel can be extended to other compatible software that requires multiple iterations

or simulations for data analysis.

2.2 Parallel scheme

In order to achieve parallelism, one intuitive approach is to copy the entire folder n times (n is

the number of the run) and run each copy in parallel. On the contrary, we use a “single execut-

able multiple working directories” scheme–i.e., each subprocess executes the same executable

file, but in different working directories. The “multiple working directories” design is imple-

mented with the subprocess management (https://docs.python.org/2/library/subprocess.html)

of Python Standard Library, a module which is able to set the child working directory before it

is executed. The benefit of our design is two-fold: 1) we execute the software n times in parallel

without the necessity to make n copies of the executable file. All the child processes share the

same executable file, and produce the outputs in an independent directory; 2) EasyParallel
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platform is not confined by output constraints (e.g., NEWHYBRIDS does not allow specifica-

tion of an output directory and generates outputs into the working directory instead). In our

design, such constraints are addressed by designated working directories.

2.3 User-friendly GUI

For the EasyParallel graphical user interface (GUI), we provide a progress bar and a window to

show the status of parallelization (Fig 1). Because both STRUCTURE and NEWHYBRIDS

require specific parameters for data running, the software interface for each module was

designed to support parameter modification (e.g., number of repeats and threads used for par-

allel execution). In addition, the user could specify the location of additional datasets and

parameter input files in an intuitive and convenient manner (e.g., drag mainparams and extra-
params files directly to the EasyParallel GUI for STRUCTURE analysis). If not supplied by the

user, the default settings of parameter files archived from the target program will be used.

2.4 Execution time analyses

We used two datasets available in Pina-Martins et al., [15] and Wringe [16] to evaluate the exe-

cution time and speed gain of EasyParallel in STRUCTURE and NEWHYBRIDS analyses,

respectively. We used the GUI version for execution time analyses. Four laptops with various

core architectures (2, 4, and 6 physical cores) and different operating systems (Windows and

MacOS) were used for performance comparison: Lenovo Y510, Windows 10, 2.4 GHz Intel

Core i7- 4700MQ with 8 GB RAM, 4 physical cores with 8 logical threads (i7 4700MQ);

Lenovo Y700, Windows 10, 2.6 GHz Intel Core i7-6700HQ with 8 GB RAM, 4 physical cores

Fig 1. A screenshot of EasyParallel running the STRUCTURE and NEWHYBRIDS analyses in parallel. (a) EasyParallel main

window allows user to choose the STRUCTURE or NEWHYBRIDS module for data analysis. (b) The module panel assisting the user in

adding major parameters (e.g. the number of thread or runs) and the input/parameter files. A progress bar at left shows the status of

parallelization. A command window at top right shows the commands used for data running. (c) Message window shows the folder

storing the outputs and the time to complete the analysis.

https://doi.org/10.1371/journal.pone.0232110.g001
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with 8 logical threads (i7 6700HQ); MacBook Pro, OS 10.14, 2.7 GHz Intel Core i5 with 16 GB

RAM, 2 physical cores (MacPro i5); MacBook Pro, OS 10.14, 2.6 GHz Intel Core i7 with 16 GB

RAM, 6 physical cores (MacPro i7). The test file used for STRUCTURE analysis consisted of

100 individuals and 80 single nucleotide polymorphism (SNP) loci (total 8,000 genotypes with

no missing data). This dataset was initially crafted based on data from the 1,000 Genomes Proj-

ect (The 1,000 Genomes Project Consortium, 2015) and is available in the program’s reposi-

tory. STRUCTURE was run using the admixture model with correlated allele frequencies and

5 × 104 burn-in period followed by 1 × 106 Markov Chain Monte Carlo (MCMC) repeats.

These settings were applied for values of K ranging from 1 to 4, with four independent runs for

each K (a total of 16 STRUCTURE runs). For NEWHYBRIDS, eight independent analyses

were run on a simulated data set with 100 loci and 200 individuals for each of the six genotype

frequency classes (pure1, pure2, F1, F2, BC1, and BC2), with an initial burn-in of 500 replicates

and 1,000 MCMC sweeps afterward (following the same settings as Wringe et al, [16]). To

assess the execution time obtained by parallelization in EasyParallel, we computed the “speed

up” values using the equation of Sp = T1/Tp, where Sp is the speed-up obtained by distributing

one analysis on p threads, T1 is the execution time on a single thread (sequential run), and Tp

is the execution time of the task on p threads [13]. We also compared the parallel performance

Fig 2. Speed gain obtained by parallelization in EasyParallel and its comparison with Structure_threader and Parallelnewhybrid. The

speed increase was calculated by dividing the execution time on a single thread (sequential run) by the execution time obtained from

different number of threads. i7 4700MQ – Lenovo Y510, Windows 10, 2.4 GHz Intel Core i7- 4700MQ with 8 GB RAM and 4 physical cores

(8 logical threads); i7 6700HQ – Lenovo Y700, Windows 10, 2.6 GHz Intel Core i7-6700HQ with 8 GB RAM and 4 physical cores (8 logical

threads); MacPro i5 – MacBook Pro, OS 10.14, 2.7 GHz Intel Core i5 with 16 GB RAM and 2 physical cores; MacPro i7 – MacBook Pro, OS

10.14, 2.6 GHz Intel Core i7 with 16 GB RAM and 6 physical cores.

https://doi.org/10.1371/journal.pone.0232110.g002
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between EasyParallel and two existing software, Structure_threader and Parallelnewhybrid, by

using the same parameter settings and datasets for parallel analyses. Structure_threader was

previously proven to be more efficient and faster than similar multiple-thread methods for

performing multiple STRUCTURE runs (StrAuto and ParallelStructure), and therefore was

considered an optimal target for performance comparison [13–15]. Parallelnewhybrid was the

only known R package designed to execute multiple NEWHYBRIDS runs in parallel [16].

3. Results and discussion

For all STRUCTURE and NEWHYBRIDS analyses, the parallel computational time in Easy-

Parallel was faster than a sequential run using a single thread in general (Fig 2, Table 1). How-

ever, we note that the speed gain of parallelization was not linear with the increased number of

threads. This phenomenon has been previously reported in other parallel programs [13,15,16].

One potential explanation for this nonlinearity is that the operating system and processor

must deal with computation resources utilized by intensive tasks (i.e. STRUCTURE and NEW-

HYBRIDS parallel runs) and underlying system processes, therefore affecting the performance

of parallelization [16]. On the other hand, the occurrence of “Cache trashing” may impact the

speed of parallelization when working with larger data sets and when both logical threads (in

Table 1. Computational time (s) required to complete STRUCTURE and NEWHYBRIDS analyses in series compared to in parallel using EasyParallel, Structure_

threader, and Parallelnewhybrid. The speed gain (in parentheses) was calculated by dividing the execution time on a single thread (sequential run) by the execution time

obtained from different number of threads. The analyses were repeated using different operating system and CPU architectures: i7 4700MQ – Lenovo Y510, Windows 10,

2.4 GHz Intel Core i7- 4700MQ with 8 GB RAM and 4 physical cores (8 logical threads); i7 6700HQ – Lenovo Y700, Windows 10, 2.6 GHz Intel Core i7-6700HQ with 8

GB RAM and 4 physical cores (8 logical threads); MacPro i5 – MacBook Pro, OS 10.14, 2.7 GHz Intel Core i5 with 16 GB RAM and 2 physical cores; MacPro i7 – MacBook

Pro, OS 10.14, 2.6 GHz Intel Core i7 with 16 GB RAM and 6 physical cores.

Threads i7 6700HQ i7 4700MQ MacPro i5 MacPro i7

EasyParallel (STRUCTURE)

1 14711 14943 8226 5307

2 7772 (1.89) 7929 (1.88) 4143 (1.99) 2785 (1.91)

4 4052 (3.63) 5212 (2.87) – 1561 (3.40)

6 3617 (4.07) 5106 (2.93) – 1300 (4.08)

8 3049 (4.82) 4733 (3.16) – –

Structure_threader

1 14688 14980 8193 5328

2 7762 (1.89) 7808 (1.92) 4145 (1.98) 2811 (1.90)

4 4040 (3.64) 5255 (2.85) – 1551 (3.44)

6 3597 (4.08) 5099 (2.94) – 1282 (4.16)

8 2999 (4.90) 4708 (3.18) – –

EasyParallel (NEWHYBRIDS)

1 1574 1594 793 683

2 810 (1.94) 820 (1.94) 418 (1.90) 375 (1.82)

4 489 (3.22) 606 (2.63) – 206 (3.32)

6 480 (3.28) 551 (2.89) – 205 (3.33)

8 330 (4.77) 407 (3.92) – –

Parallelnewhybrid

1 1500 1617 828 710

2 800 (1.87) 837 (1.91) 445 (1.86) 377 (1.88)

4 477 (3.08) 562 (2.81) – 208 (3.39)

6 478 (3.19) 553 (2.86) – 206 (3.36)

8 323 (4.69) 403 (3.92) – –

https://doi.org/10.1371/journal.pone.0232110.t001
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one physical core) share L2 and L3 caches [15]. However, despite the nonlinearity issue, we

observed that the performance of EasyParallel was not limited by the availability of random

access memory (RAM), as the usage of RAM was always low during parallelization.

The runtime and speed gain obtained by EasyParallel, Structure_threader, and Parallelne-

whybrid were very similar (Fig 2, Table 1), regardless of the number of threads, operating sys-

tems, or CPU processors used for the analysis. The same implementation of “multiprocessing”

and “subprocess” modules in both EasyParallel and Structure_threader would explain the min-

imal difference in performance for repeated STRUCTURE running. On the other hand,

although EasyParallel and Parallelnewhybrid performed equally well in analyzing multiple

simulated data sets, EasyParallel was more efficient in processing the input data, as each thread

shared the same executable input file. Parallelnewhybrid, however, needs to duplicate the

input data for each thread execution and produce temporary files during parallel computing.

Beyond that, the key feature of EasyParallel is its graphical user interface, which facilitates data

processing and makes it accessible to users who have limited knowledge in any programming

language.

4. Conclusion

In summary, we have developed a Python-based software that assists users working with itera-

tion processes in STRUCTURE and NEWHYBRIDS analyses. EasyParallel is a user-friendly

and free platform that combines a point-and-click interface and multi-core parallelization for

multiple independent runs of the dataset, assisting the user in assessing the most biologically

likely K and estimating hybrid class assignment accuracy. EasyParallel is also a stand-alone

software executable for both MacOS and Windows operating systems, with all modules and

the source code packaged for the direct run without installation.
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