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Abstract

In 1972, Robert May showed that diversity is detrimental to an ecosystem since, as the num-

ber of species increases, the ecosystem is less stable. This is the so-called diversity-stability

paradox, which has been derived by considering a mathematical model with linear interac-

tions between the species. Despite being in contradiction with empirical evidence, the diver-

sity-stability paradox has survived the test of time for over 40+ years. In this paper we first

show that this paradox is a conclusion driven solely by the linearity of the model employed in

its derivation which allows for the neglection of the fixed point solution in the stability analy-

sis. The linear model leads to an ill-posed solution and along with it, its paradoxical stability

predictions. We then consider a model ecosystem with nonlinear interactions between spe-

cies, which leads to a stable ecosystem when the number of species is increased. The satu-

rating non linear term in the species interaction is analogous to a Hill function appearing in

systems like gene regulation, neurons, diffusion of information and ecosystems The exact

fixed point solution of this model is based on k-core percolation and shows that the paradox

disappears. This theoretical result, which is exact and non-perturbative, shows that diversity

is beneficial to the ecosystem in agreement with analyzed experimental evidence.

Introduction

The relationship between species diversity and stability in ecosystems has been extensively

studied in the literature [1–16]. The pioneering study led by Sir Robert May [1] predicted that

the more diverse an ecosystem is, the more unstable it is. May’s claim resonated powerfully

among ecologists as it contradicted the biological principle that great variety of species (and

genes) promote ecosystem stability in the face of external stress, and this foundation turned

May’s claim into a paradox, referred to as the diversity-stability paradox. For almost 40 years

this paradox was not able to be refuted, despite evidence showing that ecosystems in nature

that have a high degree of diversity tend to be more stable [14]. It was only until recently that

the concept of high diversity linked to stability started to emerge; supporting the idea that

increasing species diversity is positively correlated with increasing stability at the ecosystem-

level [13, 15, 17, 18] and negatively correlated with species-level stability due to declining pop-

ulation sizes of individual species [14]. However, so far there has not been a theoretical proof
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that demonstrates mathematically the reason why this occurs. In this article, we show that,

using a nonlinear interactions model, the system becomes more stable when there is more spe-

cies diversity, a statement that differs from the results of the linear model derived from May.

In section II we first derive the diversity-stability paradox explicitly by solving the linear

model studied by [9–13], which follows the same reasoning as [1]. We show that the solution

of the linear model diverges for certain values of the interaction species and thus, it’s ill posed.

In Section III we propose a nonlinear solution based on a model proposed by [19–22] and

developed in [16] by analyzing the solution of this model, we illustrate that when the interac-

tion strength between mutualistic species is positive and strong, more species in the ecosystem

survive. Both the solutions of the linear and nonlinear model are applied to real world ecosys-

tems with positive mutualistic interaction terms between species, so to give a practical example

of the two different conditions for stability. In Section IV we present a discussion of the results.

We will see that the experimental evidence will support the use of the nonlinear model as a

more accurate description of the ecosystems’ stability.

Solution of the linear model for arbitrary adjacency matrix

We will first show the solution of the linear model diverges for given values of the interaction

species.

In general the evolution of species abundances xi(t) in a ecosystem can be described by

dynamical equations of the form:

_xiðtÞ ¼ fiðxiÞ þ giðx1; x2; :::::; xnÞ: ð1Þ

The linear model for ecological networks is described by an adjacency matrix Aij (with Aij =

1 if i and j are connected by a network link, and Aij = 0 otherwise), and linear interactions

between species given by:

giðx1; ::::; xnÞ ¼
Xn

j¼1

gijAijxixj: ð2Þ

The dynamics of species densities xi is then described by the following dynamical system of

equations:

_xiðtÞ ¼ bixi � sx2
i þ

XN

j¼1

gijAijxixj ; i 2 f1; . . . ;Ng: ð3Þ

where bi> 0 is the growth rate of species i, s is the self limitation term representing the self-

interaction of species, that we set equal for all species, γij is the strength of the interaction

between species i and j, and N is the total number of interacting species. The fixed point equa-

tions
dxiðtÞ
dt ¼ 0 admit a trivial solution x� = 0, which represent the extinction of all species, and

a non-trivial solution x� 6¼ 0 which, in implicit form, is given by the following linear system:

ðŝI � ĜÞx� ¼ b ; ð4Þ

where Γij = γij Aij. If s=2SpecðĜÞ, then the matrix (sI − Γ) is invertible and we can write the solu-

tion x� as:

x� ¼
XN

a¼1

La � b
s � ma

Ra ; ð5Þ

where μa are the eigenvalues of Ĝ and La, Ra the corresponding left and right eigenvectors.
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Eq (5) shows that the fixed point solution of the linear model has a singularity whenever

there is an eigenvalue of Γμa = s, for some a 2 {1, . . ., N}. In particular, we can think of a situa-

tion where the ecosystem is going through a period where the strength of the interactions γij is

increasing. In this case the linear model becomes ill-defined when the largest eigenvalue of the

matrix Ĝ equals s, μmax = s, because the species densities diverge, x�i !1 (see Fig 1).

Through the analysis of the solution of the fixed point we can also find that the condition of

stability; Eq (5) is feasible if and only if the densities x�i are all positive. This is certainly true

when μmax is smaller than s. But when it is close to it (i.e. 0< s − μmax ⪡ 1), the sum on the r.h.

s of Eq (5) is dominated by the term containing μmax, thus giving

x� �
LðmaxÞ � b
s � mmax

RðmaxÞ for mmax ! s : ð6Þ

Fig 1. The solution of the linear model of Refs. [9, 10] shows the dependence of the average density of species hx�i as a function of the ratio s/γ, as given by Eq

(5). For small values of the interaction strength γ, the system is in the feasible and stable fixed point hx�i> 0 (lower branch of the full line in the top right

quadrant). Increasing γ, at fixed s, the species density hx�i increases following the full red line, and eventually diverges at the critical point γc predicted by the linear

model to be γc = s/μmax. For s/γ< μmax, the nontrivial fixed point is negative, hx�i< 0, and unstable (dashed line), so that the only stable fixed point is the collapsed

state hx�i = 0 (red dot). Thus, the linear model of mutualism predicts the collapse of the ecosystem as the instantaneous extinction of an infinite number of

mutualists at the diverging point s/γc.

https://doi.org/10.1371/journal.pone.0228692.g001
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Since Ĝ is an irreducible matrix with non-negative entries, then, by the Perron-Fronebius

theorem, the right and left eigenvectors R(max) and L(max) have all positive components, so the

vector x� does have strictly positive components, too. On the contrary, when μmax becomes

larger than s, all densities turn negative, x�i < 0, and the solution x� becomes unfeasible hence

the stability condition is given by s − μ> 0. Next we will show that this condition for stability

can also be found via a local stability analysis of the dynamical system.

Local stability of the fixed point solution

The criterion for ecosystem stability is given by the sign of the largest eigenvalue of the stability

matrix calculated at the fixed point x� for the dynamical system of Eq (3), which is expressed

by the Jacobian Jijðx�Þ ¼
@ _xi
@xj
jx� . Negative eigenvalues indicate that the system is stable. That is,

if one of the eigenvalues of the Jacobian is positive, the average may be positive, or zero, and in

that case, the system is not stable.

The Jacobian is expressed by:

Jijðx�Þ ¼
@ _xi

@xj
jx� ¼ � x

�

i ðsdij � GijÞ : ð7Þ

The eigenvalues of Jij(x�) are not simply related to those of Γij, due to the multiplicative term

x�i in Eq (7). However, when Ĝ is symmetric, we can use the following strategy to infer the

crucial properties of the eigenvalues of Ĵ . First, we define the matrix Xij ¼ x�i dij, and we set

Mij = −s(δij − Γij), so that Ĵ ¼ X̂M̂ . Next, we observe that Ĵ is similar to the symmetric matrix

~̂J ¼ X̂1=2M̂X̂1=2, so Ĵ and ~̂J have the same eigenvalues. The crucial point is that ~̂J and M̂ are

congruent matrices, and therefore, by Sylvester’s law of inertia, they have the same number

of positive, negative, and zero eigenvalues. Therefore, if M̂ has all negative eigenvalues, ~̂J also

has all negative eigenvalues, hence, by similarity, also J has all negative eigenvalues. On the

other hand, when μmax = s, we know M̂ has a zero eigenvalue, but then also the Jacobian Ĵ
must have a zero eigenvalue, which means that the solution x� is not stable anymore, as we

anticipated in the previous section. It is interesting to observe for which cases of the ratio s
g

the system is not stable. Fig 2 shows a plot of the sign of the maximum eigenvalue as a func-

tion of the interaction term taken for the real networks numbered 1 to 9 in Table 1.

To explicitly re-derive the validity of the solution of the fixed point equation we analyzed

the spectrum of the matrix M̂ instead of the spectrum of the Jacobian directly in order to avoid

incurring into computation problems at the singularity of x�. The condition to be verified is

the sign of the real part of the maximum eigenvalue of Ĵ . If this sign is negative the system is

stable. If zero or positive, the system is unstable. In Fig 2 we fix the cooperation value to the

average of all interactions of the system γij = γ and plot the sign of the maximum eigenvalue of

matrix M̂ (l
M
max) for 9 different ecosystems shown in Table 1 as a function of s

g
: The figure

shows that l
M
max can be positive, negative or zero when γ is varied, which in this case is a scalar,

hence, according to what we previously noted, Ĵ will also have a zero maximum eigenvalue

which occurs at the critical condition when μmax = s and changes sign for varying γ. According

to Eq 7, the maximum eigenvalue of Ĵ (l
J
max) will have the same sign of l

M
max, hence the condi-

tion for stability is given by l
J
max <

s
g
. Note that l

J
max 6¼ mmax where μmax is the maximum eigen-

value of Γ but the two conditions of stability are equivalent since the point in which the sign of

the eigenvalues of Ĵ and Ĝ change are equivalent, as shown in Fig 2.
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Fig 2. Plot of the sign of the maximum eigenvalue l
M
max of M̂ as a function of the interaction for real networks and constant value of the self limitation term s.

The inset of the figure indicates the number of the real network (1-9) shown in Table 1. The sign of the maximum eigenvalue l
M
max of M̂ changes as a function of s

g

where γ is the coupling term and this change of sign occurs at μmax = s where μmax is the maximum eigenvalue of the matrix Γ of the corresponding network. This

is represented by the dotted line in this figure, therefore the value of γ for which ReðlM
maxÞ ¼ 0 coincides with the condition of the singularity obtained with the

solution to the fixed point equation discussed in Section, i.e. γ for which Re(μmax) = 0 where G ¼ gÂ, for Â being the adjacency matrix. The networks analyzed are

labeled according to the references in Table 1. (Notice that networks 4 and 8 are overlapping).

https://doi.org/10.1371/journal.pone.0228692.g002

Table 1. Details of the 9 mutualistic networks used in the phase diagram of Figs 3 and 4.

Net # Network type Plants Animals Latitude Location Ref.

1 Plant-Seed Disperser 31 9 Tropical Papua New Guinea [23]

2 Plant-Pollinator 91 679 Temperate Japan [24]

3 Plant-Pollinator 42 91 Temperate Australia [25]

4 Plant-Pollinator 23 118 Artic Sweden [26]

5 Plant-Pollinator 11 18 Artic Canada [27]

6 Plant-Pollinator 14 13 Temperate Mauritius Island [28]

7 Plant-Pollinator 7 32 Temperate USA [29]

8 Plant-Pollinator 29 86 Artic Canada [30]

9 Plant-Seed Disperser 12 14 Temperate Britain [31]

The data have been downloaded from the Interaction Web Database at https://www.nceas.ucsb.edu/interactionweb/; a cooperative database of published data on species

interaction networks hosted by the National Center for Ecological Analysis and Synthesis, at the University of California, Santa Barbara, US.

https://doi.org/10.1371/journal.pone.0228692.t001
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It is worth mentioning that, as shown in Fig 2, that l
J
max changes sign as a function of the

interaction term γ. The point at which the real part of the eigenvalue l
J
max becomes negative

indicates the position of the transition from the stable phase (x> 0), to the unstable phase

(x< 0) (as shown in Fig 1). In particular, we note that the condition for stability inferred from

the analysis of the jacobian coincides exactly with the critical point obtained directly from the

analysis of the required positivity of the density of the fixed point x� brought out in the previ-

ous section.

Condition of stability through Wigner’s law

May’s approach, which is usually adopted also from more recent studies of linear model [9, 10]

is the application of the analog of Wigner’s semicircle law for asymmetric matrices, the circular
law [1]. This law states that for self regulating systems where the diagonal elements are such

that Jii = s< 0, and the off-diagonal elements Jij are independent and identically distributed

random variables, with zero mean and variance σ2, the eigenvalues of Ĵ lie in a disk of radius

rJ ¼ s
ffiffiffiffi
N
p

for N!1 centered in −s.
Ecological systems are usually only sparsely connected. Hence, both May [1] and [9, 10]

introduce the connectance C in their calculations; C measures the probability that species

interact, consequently the probability of no interaction is given by 1 − C. In this case the circu-

lar law states that rJ ¼ s
ffiffiffiffiffiffiffi
NC
p

. Applying the condition for stability that ReðlJ
max < 0Þ gives:

ReðlJ
maxÞ �

ffiffiffiffiffiffiffi
NC
p

s � s < 0

ffiffiffiffiffiffiffi
NC
p

<
s
s
:

ð8Þ

For N!1, the radius of the disk and hence the maximum eigenvalue is l
J
max �

ffiffiffiffiffiffiffi
NC
p

and

σ can be seen as the average interaction strength γ hence l
J
max < s=g is the condition for the

local stability of the feasible equilibria x� 6¼ 0. In other words, when l
J
max > s=g, the nontrivial

fixed point x� 6¼ 0 is unstable (and unfeasible since the average species density hx�i would be

negative: hx�i< 0). This stability of the average hx�i< 0 is shown in Fig 1. These results lead to

the paradox, since when N increases the system becomes more unstable.

Thus, in the stable feasible region of the linear model Eq (3), the condition:

l
J
max < s=g ðcondition of stability in the linear modelÞ; ð9Þ

holds true.

We have then shown that all three methods of study of stability for the linear model pro-

duce the same stability condition: the so called diversity-stability paradox.

We test the stability condition by analyzing 9 real mutualistic networks (with positive inter-

actions) compiled from available online resources and detailed in Table 1.

We are able to test the stability phase diagram since for these networks the parameters of

the model are provided, in particular the strength of interactions which is the parameter that

control the stability of the linear ecosystem via Eq (9). Fig 3 shows the phase diagram for stabil-

ity predicted by Eq (9) in terms of the values of ðs=g; lA
maxÞ for each of the 9 analyzed mutualis-

tic ecosystems.

We find that the stability condition of the linear model, Eq (9), is not satisfied by these real

ecosystems. That is, all real mutualistic networks are located in the unstable region l
A
max > s=g,

as seen in Fig 3, and thus, according to the linear model (3), all systems should collapse. Below

we will explain in more detail the nonlinear dynamical model, which predicts opposite results
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for the condition of stability with respect to the linear model and explains the existence of the

9 real mutualistic networks, suggesting the nonlinear model as a more adequate study of eco-

logical systems.

Stability for the nonlinear functional response

Most of the studies on stability for ecosystems have been done using the linear model

explained in Section, mainly because one can find an analytical solution to the fixed point

Fig 3. Phase diagram of the linear model equation which plots the largest eigenvalue of the adjacency matrix μmax versus the ratio s/γ for the 9 empirical

mutualistic networks explained in Table 1. All the networks lie in the unstable region μmax> s/γ, and hence they do not satisfy the condition of the linear model

μmax< s/γ, which is necessary to have a feasible (i.e. hx�i> 0) and stable solution. Hence the linear model of Eq (3) predicts that these 9 existing ecosystems should

indeed collapse (i.e. hx�i = 0 for all of them) in contradiction to the fact that they are real feasible ecosystems present in nature.

https://doi.org/10.1371/journal.pone.0228692.g003
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equation and the stability condition is directly related to the eigenvalues of the adjacency or

jacobian matrix. On the other hand, our group has previously analyzed mutualistic ecosystems

using network theory and found an exact solution of the nonlinear Type II functional

responses ([16]), where the ratio of species consumed as a function of the species’ population

is expressed by a term that saturates featuring a more realistic situation when, even if the size

of the species is increased, the number of species depleted remains constant at saturation. This

behavior is common for the description of gene regulation, neurons, diffusion of information

and ecosystems as presented in their article. The dynamics of species densities, xi(t), interact-

ing via the network Aij, is described by the following set of nonlinear differential equations

[19–22, 32]:

_xiðtÞ ¼ � xid � sx2
i þ g

XN

j¼1

Aij

xixj
aþ

PN
j¼1

Aijxj
;

i 2 f1; . . . ;Ng;

ð10Þ

where d> 0 is the death rate of the species, s> 0 is a self limitation parameter directed to the

limitation of species’ growth when xi exceeds a certain value, α is the half saturation constant,

and γ> 0 is the average interaction strength of the nonlinear interaction term. All these

dynamical parameters (γ, d, s, α) are discussed in depth in previous works [19–22, 32].

To study the stability of the solution, one has to first find the nontrivial fixed point x� 6¼ 0,

which has been obtained in [16]. Using a simple logic approximation on the saturating term

the solution of the dynamical equations for constant interaction term γ is given by:

y�i ¼
XN

j¼1

AijYðy
�

j � KgÞ ;

Kg ¼
asðgþ dÞ
ðg � dÞ2

;

ð11Þ

where y�i represents the reduced density, the Heaviside function Θ(y) = 1 if y> 0 and zero oth-

erwise, and Kγ is the threshold on the mutualistic benefit, where the subscript emphasizes its

main dependence on γ, the interaction term. The interaction term can be rewritten as a Hill

function of degree n = 1. For degree n!1, the Hill function can be replaced by a Heaviside

function. Even if one approximates the interaction term to the Heaviside function, it is possible

to compare the solution given by exact numerical simulations to the solution of the approxi-

mated method of Eq (11) and show consistency within a 12.5% error.

We have said that Kγ in Eq (11) represents the threshold of the Θ-function; species i interact

with species j just if the reduced density y�j is above Kγ.
When γ is small, which means that the interaction is weak, Kγ is large and a smaller number

of species j survive (e.g a small number of species have densities such that x�j > Kg for weak γ).

For γ = γc, Kgc
is too large so that no mutualistic benefit between species can be exchanged; at

this point the system collapses to the fixed point solution x� = 0. At this stage the Kgc
is given

by

Kgc
¼
asðgc þ dÞ
ðgc � dÞ2

: ð12Þ

In contrast, when the interaction is strong the threshold for the mutualistic benefit Kγ is

low and a large number of interacting species j survive. After a trimming process of the species
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in the network, the solution of Eq (11) is shown to be:

y�i ¼ number of links of species i

to species in the Kg � core � N iðKgÞ
ð13Þ

where Kγ-core of a network is the subset of nodes in a network that have degree of at least Kγ
(integer number), therefore its the most connected subgroup of the graph. According to Eq

(13), the tipping point of a mutualistic ecosystem, whose motion is described by Eq (10), is

given by the extinction of the species that belong to the Kgc
-core of a network, expressed in Eq

(12) which allows a relation between the dynamical properties of the mutualistic network and

a topological invariant of the system, the k-core. The density y�i is positive and therefore

N iðKgÞ is also positive. This condition can only be satisfied if Kg < kmax
core, where kmax

core is the maxi-

mum k-core of the network. Consequently, if this condition is not satisfied the system collapses

to the fixed point solution x�i ¼ 0, and the tipping point, described in Eq (12), occurs when

Kgc
¼ kmax

core; ð14Þ

which relates the dynamical parameters of (10) to the structural properties of the networks. As

a consequence, the stability condition is given by:

kmax
core > Kg / s=g ðcondition of stability in the nonlinear modelÞ; ð15Þ

According to the solution of the nonlinear model, the larger the k-core number kmax
core (i.e.,

the more k-shells in the network) the larger the resilience of the system against external global

shocks that reduce the interaction strength γ. With the solution Eqs (11) and (13) of the fixed

point equations, we can now study the local stability of the type II dynamic equations by ana-

lyzing the Jacobian of the stability matrix

Jijðx�Þ ¼
@ _xi

@xj
jx¼x� : ð16Þ

To guarantee the stability of the fixed point one has to verify that the real part of the eigen-

values of (7) are all negative. The eigenvalues l
J
i of J are:

l
J
i ¼ � g

N iðKgÞ

Kg þN iðKgÞ
; i ¼ 1; . . . ;N ; ð17Þ

and we can easily see that all eigenvalues are negative. The maximum eigenvalue, which is

obtained when the nodes (i.e species) of the network have fewest number of edges with the Kγ-
core, is given by l

J
max ¼ � gðKg þ 1Þ

� 1
, is evidently always negative; therefore when the solu-

tion is feasible, according to Eq (15), it is always stable.

Fig 4 plots the phase diagram of ecosystem stability in the space ðKg; kmax
coreÞ predicted by the

nonlinear model and features the ‘tipping line’, which separates the feasible stable phase of the

nonlinear model (15) from the collapsed phase kmax
core < Kg. Here we plot the values of ðKg; kmax

coreÞ

obtained from the 9 real mutualistic networks illustrated in Table 1, for which these two

parameters have been measured in the literature [9, 21]. All mutualistic networks lie in the sta-

ble feasible region situated below the tipping line, in agreement with the dynamical theory of

the nonlinear model, and in contrast to the result of the linear model. We have then shown

that by taking into account the actual fixed point solution in the stability analysis, along with

the saturation effect of the interaction term, this resolves the diversity-stability paradox.
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Discussion

We have presented two different approaches for the study of the stability condition in ecosys-

tems and have seen that in the case of a fully connected network, the linear approach [1, 9, 10,

Fig 4. Plot of the phase diagram of the solutions of the nonlinear model. The stability diagram as a function of Kγ is computed using the exact solution (11) of

the nonlinear dynamical system for the same 9 empirical mutualistic networks used in Fig 3. The tipping line is plotted according to the nonlinear model which

predicts that the tipping point is given for kmax
core ¼ Kg. All the networks lie in the region kmax

core > Kg and thus they are stable, as they should.

https://doi.org/10.1371/journal.pone.0228692.g004
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33] leads to counterintuitive predictions which are in contrast with the exact solution of the

full nonlinear model (Eq (10)).

The linear model of Eq (3) contains the diversity-stability paradox [1], for which, a more

diverse ecosystem is closer to the point of turning unstable [1]. According to the linear model,

increasing the diversity has, in general, a destabilizing effect on the mutualistic ecosystem,

since it requires the interacting term γ to be smaller. We can then state that the linear stability

analysis of the ecosystem features two main features: first, it cannot detect the tipping point of

the system collapse Eq (11) and second, the stability analysis [1, 9, 10, 33] is in contrast with

the exact solution of the full nonlinear model (Eq (10)) described by a saturating function. The

evidence for such controversy is provided in Fig 3, which plots the maximum eigenvalues of 9

real networks which are known to be stable as lying in the unstable regime. According to the

linear model then, all real mutualistic networks of Table 1 would be collapsed, and, for the 9

networks studied, this is not the case.

On the other hand, the effect of considering a saturation Hill function in the interaction

term, (Eq 10) leads to the opposite stability condition: in a fully connected mutualistic net-

work, Eq (15) read N> s/γ. In this case, by increasing the species diversity N, the condition N
> s/γ is easier to satisfy. Similarly, by increasing the mutualistic interaction γ, the stability con-

dition N> s/γ is also easier to satisfy. In conclusion, the nonlinear model predicts both diver-

sity and mutualism to have a stabilizing effect on the whole ecosystem and correctly predicts

that the analyzed ecosystems should be feasible as shown in Fig 4.

Thus, the effect of the nonlinear model is then crucial to predict the stability and feasibility

of the ecosystem.

Furthermore, the linear approximation predicts that more diverse systems (i.e. systems

with larger λmax due to either larger connectivity k or larger number of species), are closer to

collapse. Analytically, the origin of May’s paradox can be traced back to a mathematical singu-

larity in the linear model at the tipping point (Fig 1): the density x�i diverges at s/γc = μmax, and

then collapses instantaneously to the state x�i ¼ 0. This singularity is absent in the nonlinear

model due to the saturation effect of the nonlinear interaction term, thus resolving the paradox

of the linear model for two main reasons. First, because Eq (15) predicts that the larger the

mutualistic strength γ, the more stable the system is. Second, increasing diversity by the num-

ber of connections or the number of species, increases the maximum k-core, (or at least leaves

it unchanged), thus increasing the robustness of the system. Therefore, stronger mutualistic

interactions and augmented diversity stabilize the system, as confirmed by real ecosystems in

Fig 3. Thus, all these reasonings indicate the importance of considering the full set of nonlinear

interactions when reaching conclusions on the stability of ecosystems. For instance, recent

studies [10] have used the linear model to analyze the stability of the microbiota, and have con-

cluded that mutualism in bacteria species is detrimental to the ecosystem. Such a conclusion

would be reversed if one were to use the nonlinear model to analyze the data.
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