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Abstract

A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called
“anomalous.” Species trees that can generate such anomalous gene trees are said to be in the “anomaly zone.” Here,
probabilities of “unranked” and “ranked” gene tree topologies under the multispecies coalescent are considered. A
ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the
sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a
constant-rate birth–death process can affect the probability that the species tree lies in the anomaly zone. We find that
with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The
probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also
increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow
much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most
probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software
PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.
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Introduction
In phylogenetic studies, gene trees are often used to recon-
struct a species tree that describes evolutionary relationships
among species. Gene trees that are contained within the
branches of the species phylogeny represent the evolutionary
histories of the sampled genes. The species tree is treated as a
parameter, and gene trees are considered as random variables
whose distributions depend on the species tree.

Probabilities of gene tree topologies in species trees have
been studied for more than three decades (Nei 1987; Pamilo
and Nei 1988; Takahata 1989; Rosenberg 2002; Degnan and
Salter 2005; Meng and Kubatko 2009; Wu 2012; Yu et al.
2012), with an emphasis on unranked gene trees, gene trees
in which the sequence of coalescences is not taken into ac-
count. For example, for the unranked gene tree
ððA; BÞ; ðC;DÞÞ, the most recent ancestral gene of the A
and B lineages could be either more or less recent than the
most recent ancestral gene of the C and D lineages. The
probability of this unranked gene tree is calculated by sum-
ming both possibilities. However, the probability distribution
of the ranked gene tree topologies has also been derived,
taking into account the temporal order of coalescence events
(Degnan et al. 2012b; Stadler and Degnan 2012). In this case,
we count as distinct the two gene trees ððA; BÞ2; ðC;DÞ3Þ1
and ððA; BÞ3; ðC;DÞ2Þ1, where the subscript indicates the
ranking of the nodes. In the first of these two ranked gene

trees, the (C, D) coalescence, indicated by the largest sub-
script, is the most recent.

In 2006, Degnan and Rosenberg defined the concept of an
“anomaly zone”: a subset of branch-length space for the spe-
cies tree in which the most likely unranked gene tree has a
topology differing from the species tree topology. A non-
matching gene tree topology that is more probable than
the matching one was termed an “anomalous gene tree”
(AGT) (Degnan and Rosenberg 2006). An intuitive explana-
tion for the existence of AGTs is that when rankings of coa-
lescences are not taken into account, gene trees that are more
symmetric can have more rankings than gene trees that are
less symmetric (Degnan and Rosenberg 2006; Rosenberg
2013; Xu and Yang 2016). As an extreme case, a gene tree
with only one two-taxon clade, called a “caterpillar,” has only
one possible ranking and can never be an AGT (Degnan and
Rhodes 2015).

This explanation leads to a similar question for ranked
trees: Does the most probable ranked gene tree match the
species tree? In the case of four taxa, this turns out to be the
case: Although caterpillar species trees can have unranked
AGTs, they cannot have “anomalous ranked gene trees”
(ARGTs), ranked gene trees that are more probable than
the ranked gene tree with the same ranked topology as the
species tree. However, for five or more taxa, ARGTs do exist
(Degnan et al. 2012a, 2012b; Disanto and Rosenberg 2014).
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The concept of anomalous gene trees has been further ex-
tended to consider anomalous unrooted gene trees (Degnan
2013), in which unrooted gene trees that do not match the
unrooted version of the species tree topology can be more
probable than the matching unrooted gene tree. The concept
of the anomaly zone can even be extended to phylogenetic
networks (Zhu et al. 2016). In particular, a gene tree is anom-
alous if it is more probable than any gene tree displayed by
the network. Zhu et al. (2016) showed that three-taxon phy-
logenetic networks do not produce anomalies, but that sym-
metric phylogenetic networks with four leaves can produce
anomalies.

Several properties of anomalous gene trees in different
settings are known. In particular, every species tree topology
with five or more taxa produces AGTs (Degnan and
Rosenberg 2006; Rosenberg 2013). The analogous result for
unrooted gene trees is that every species tree topology with
seven or more taxa produces anomalous unrooted gene trees
(Degnan 2013). Rosenberg and Tao (2008) considered all sets
of branch lengths that give rise to five-taxon AGTs. They
found that the largest value possible for the smallest branch
length in the species tree is greater in the five-taxon case
(0.1934 coalescent time units) than in the previously studied
case of four taxa (0.1568). This finding raises the question of
whether species trees with more taxa are more likely to have
AGTs. Studies for ARGTs (Degnan et al. 2012a) showed that
neither caterpillar nor pseudocaterpillar species trees have
ARGTs, where a “pseudocaterpillar” can be obtained from
a caterpillar ð. . . ðððA1;A2Þ;A3Þ;A4Þ; . . . AnÞ by replacing
ðððA1;A2Þ;A3Þ;A4Þ with ððA1;A2Þ; ðA3;A4ÞÞ (Rosenberg
2007). Strangely enough, although caterpillar gene trees can-
not be AGTs, they can be ARGTs. In addition, Disanto and
Rosenberg (2014) showed that as the number of species
n!1, almost all ranked species trees give rise to ARGTs.

Evolutionary biologists have sometimes wondered how
often anomalous gene trees arise in practice (Castillo-
Ram�ırez and Gonz�alez 2008; Zhaxybayeva et al. 2009;
Linkem et al. 2016), because the existence of anomalous
gene trees makes the method that chooses the most com-
mon gene tree as the estimate of the species tree statistically
inconsistent in the anomaly zone. A recent empirical identi-
fication of the anomaly zone is for gibbons (Shi and Yang
2018). In spite of the many analytic results known about the
various types of anomalous gene trees, less is known about
how often they arise in practice. This question is difficult to
answer because it requires some knowledge of the empirical
distribution of branch lengths in the species trees.

To study the probability that the species tree lies in an
anomaly zone, we examine random species trees gener-
ated from a constant-rate birth–death process. The ap-
proach we use is to simulate the species tree while
computing gene tree probabilities analytically for each
simulated species tree. This simulation can help to under-
stand how often AGTs and ARGTs arise in practice, to the
extent that birth–death processes are reasonable models
for species trees and that we can understand typical birth–
death process parameters. We additionally examine cross-
sections of anomaly zones to see how much overlap exists

for different types of anomaly zones. This analysis shows
that for larger trees, a species tree can simultaneously be in
unranked and ranked anomaly zones.

We consider two types of gene trees: unranked and ranked
gene trees. In general, we can compute the probability of an
unranked tree topology from the probabilities of ranked gene
tree topologies. The probability of an unranked gene tree
topology can be obtained by summing the probabilities of
all ranked gene tree topologies that share that unranked to-
pology. We can therefore view unranked and ranked gene
trees as preserving increasing amounts of information about
the underlying rooted trees with full branch length
information.

This study also introduces a computer program, PRANC,
for Probability of RANked gene tree topologies under the
Coalescent model (https://github.com/anastasiiakim/
PRANC). The software computes probabilities of ranked
gene trees given a species tree under the coalescent process.
It is implemented in Cþþ based on the approach proposed
in earlier studies (Degnan et al. 2012b; Stadler and Degnan
2012).

We compute the probabilities of ranked and unranked
gene tree topologies for all species trees with five to eight
taxa to find a subset of speciation interval length space in
which the species tree generates anomalous unranked and
ranked gene trees. Studying the properties of anomalous gene
trees, as well as examining connections between ranked and
unranked anomaly zones, will help to find strategies for solv-
ing the problem posed during phylogenetic inference by the
existence of anomalous gene trees.

Definitions and Notation
A species tree T is a binary tree with leaves that represent
current species. We consider a rooted labeled ultrametric
species tree with branch lengths given in coalescent units.
For the rest of this article, branch lengths in the species
tree are in coalescent units unless otherwise stated. Here,
1.0 coalescent unit represents N generations, where N is the
effective number of gene copies. The same set of labels is used
for both species and genes. In this article, all gene trees have
one gene sampled per species.

For a species tree with n labeled leaves, we assign ranks to
the nodes according to their speciation order. Denote the
time of the interior node of rank i (ith speciation) by si,
i ¼ 1; 2; . . . ; n� 1. Time is zero for the leaves and increases
going backward in time: s1 > s2 > . . . > sn�1, where s1 is
the time of the root (fig. 1). For i ¼ 2; 3; . . . ; n� 1, denote
the interval between the ði� 1Þth and ith speciation events
by si and its length by ti ¼ si�1 � si.

We write a ranked tree topology as a modified unranked
tree topology using the Newick format, in which each clade is
represented by a pair of parentheses, and we add a number
after each clade to indicate its ranking. For example, the spe-
cies tree in figure 1A can be written ðððA; BÞ3; CÞ2; ðD; EÞ4Þ.
In the Newick format, we suppress the labeling of the root
node, which has rank 1.

Let G be a ranked gene tree topology with the same labels
for the leaves as species tree T . Given a gene tree that evolves
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on a species tree T , a “ranked history” can be defined as a
nondecreasing sequence x ¼ ðx1; x2; . . . ; xn�1Þ, where for
i ¼ 1; 2; . . . ; n� 1, xi ¼ j if the ith coalescence occurs in
species tree interval sj (Degnan et al. 2012b). For example,
in figure 1B, the ranked history of the gene tree is
ð1; 2; 3; 3; 3Þ. One coalescence occurs in the species tree in-
terval s1, one in s2, and three in s3. We denote the probability
under the coalescent model of a ranked gene tree topology
with the particular ranked history x by PðG; xjT Þ.

If a gene tree and species tree have the same unranked
topology, then we describe the unranked topologies as iden-
tical and refer to the unranked gene tree as “matching” the
unranked species tree; otherwise, the gene tree topology is
“nonmatching.” Similarly, we say the ranked gene tree
matches the ranked species tree if, and only if, they have
the same ranked topology. At times we will also be interested
in cases where a ranked gene tree has the same unranked
topology as the species tree, meaning that if the ranks are
ignored, the two trees are matching. Because the methods in
this article involve only topologies of gene trees, the term
“gene tree” will be used to refer to the topology of the
gene tree (without branch lengths) unless otherwise noted.
Rooted labeled unranked or ranked gene tree topologies that
are more probable than the labeled unranked or ranked gene
tree topology matching the species tree are called anomalous
gene trees and are termed AGTs and ARGTs, respectively.
Species trees that have unranked or ranked anomalous
gene trees are said to be in the unranked or ranked anomaly
zone, respectively.

Results
We computed probabilities of ranked and unranked gene
trees for species trees with five to eight taxa to find a subset
of speciation interval length space in which a species tree has
both anomalous unranked (AGTs) and ranked (ARGTs) gene
trees. For plots comparing unrooted and unranked anomaly
zones, see Degnan (2013).

Five Taxa
Figure 2A depicts a five-taxon species tree with interval
lengths t2, t3, and t4. The ranked topology shown is the only
five-taxon species tree topology that possesses ARGTs. For
fixed values of t4 ¼ 0:05; 0:075; 0:1, we computed the prob-
abilities of all 105 unranked and all 180 ranked gene tree
topologies on a grid with t2 2 ½0:01; 3� and t3 2 ½0:01; 1�.
The anomaly zones were identified by finding the set of values
of t2, t3, and t4 for which at least one nonmatching unranked
or ranked gene tree topology has probability exceeding the
probability of the corresponding matching gene tree
topology.

Figure 2B depicts cross-sections of unranked and ranked
anomaly zones for the five-taxon species tree in figure 2A. For
values of t2, t3, and t4 considered, we observe that the
unranked and ranked anomaly zones do not overlap for
five-taxon species trees. As t4 becomes smaller, the ranked
anomaly zone increases in size, whereas the size of the
unranked anomaly zone decreases. Although for the values
of ti considered, we do not observe an overlap in unranked
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FIG. 1. Gene trees evolving on five-taxon and six-taxon species trees. (A) Five taxa. (B–D) Six taxa. The gene trees in (B)–(D) have the same unranked
topology ((A,(B,(C, D))),(E, F)). Only the ranked gene tree topology in (D) does not match the ranked species tree topology. For each i ¼ 1; 2;
. . . ; n� 1; si � 0 denotes the time of the ith speciation, si represents the interval between the ði� 1Þth and ith speciation events, and ui

represents the ith coalescence (node with rank i) in the gene tree. Interval s1 has infinite length.
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and ranked anomaly zones in the five-taxon case, these zones
start to intersect for larger trees.

Six Taxa
We next considered six-taxon trees. There exist six unlabeled
tree shapes with six taxa. Excluding the caterpillar and pseu-
docaterpillar shapes, four of these, depicted in figure 3, give
rise to both AGTs and ARGTs. Figure 4 shows 2D cross-
sections of unranked and ranked anomaly zones for the six-
taxon species tree topologies in figure 3. For ease of visuali-
zation, we consider only two different values, denoted by S
and L, for the lengths of speciation intervals ti. For each com-
bination of S 2 ½0:005; 1� and L 2 ½0:01; 2�, we computed
the distributions of unranked and ranked gene tree topolo-
gies, and the presence of AGTs and ARGTs was then identi-
fied by comparing the analytical probabilities of the matching
gene tree topology and the most probable nonmatching gene
tree topology.

In the cases we examined, the two anomaly zones start to
overlap only when lengths of the speciation intervals are short
and not too distinct from each other. In particular, the inter-
section of anomaly zones is small for each topology, with the
smallest overlap for the more balanced species tree topologies
in figure 3C and D.

Seven and Eight Taxa
We next sought to examine scenarios with seven and eight
taxa (fig. 5) to determine whether the interval-length cases
giving rise to AGTs and ARGTs were similar to those seen in
the case of six taxa.

The seven- and eight-taxon species trees were chosen so
that they produce both AGTs and ARGTs. To find such to-
pologies, we used a “caterpillarization” technique of finding a
short–short–long (SSL) pattern in three consecutive internal
branches on a path from a tip to the root of the species tree,
and setting all other branches to be long. In Degnan (2013),
this technique was used to collapse taxa descended from long
branches to be effectively a single taxon, making even a to-
pologically balanced tree resemble a caterpillar when branch

lengths are taken into account. More generally, the technique
of setting some specific branches to be short and others to be
long has been used frequently in identifying AGTs and ARGTs
(Degnan and Rosenberg 2006; Degnan et al. 2009, 2012a,
2012b; Rosenberg 2013).

Here we use caterpillarization to make seven- and eight-
taxon trees resemble the five-taxon ranked tree
ðððA; BÞ3; CÞ2; ðD; EÞ4Þ, the only five-taxon ranked species
tree that produces ARGTs. In particular, we consider cases
in which a five-taxon species tree topology in figure 2A is
contained inside the larger trees. This five-taxon tree appears
with bold font in larger tree topologies (figs. 3 and 5). Because
the five-taxon tree in figure 2A produces both AGTs and
ARGTs, there exists a subset of branch lengths that makes
larger trees also have AGTs and ARGTs simultaneously.

We observe a similar pattern in anomaly zones (fig. 6) for
species tree topologies displayed in figures 3A, 5A, and 5C.
Each of these topologies was obtained from the five-taxon
topology in figure 2A by sequentially attaching an additional
branch to the root. Under the restriction that speciation
intervals have one of two lengths, S and L, anomaly zones
behave somewhat similarly in the cases of n ¼ 6; 7; and 8. In
particular, the species tree usually needs to have large values
of L and small values of S to be in the ranked anomaly zone.
However, the pattern is reversed for AGTs: To produce AGTs,
L usually needs to be small whereas S may be relatively large.

Simulation Results
Next, to explore the probability that random species trees
have AGTs and ARGTs, we performed simulations under a
birth–death model. In particular, we simulated 5,000 species
trees with n ¼ 5; 6; 7; and 8-taxa under a constant-rate
birth–death model using the TreeSim package in R (Stadler
2011). In this model, each species at each point in time has
the same constant speciation (birth) rate k and extinction
(death) rate l.

Figure 7 shows probabilities of the species tree being in the
unranked and ranked anomaly zones in relation to the num-
ber of taxa n, speciation rate k, and extinction rate l. For both
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FIG. 2. Five-taxon anomaly zones. (A) The only ranked five-taxon species tree topology that produces ARGTs. The same species tree, with a gene tree
evolving inside, is shown in figure 1A. (B) Slices of the unranked (on the left side) and ranked (on the right side) anomaly zones for the topology in (A).
For fixed values of t4, each shaded region represents pairs of speciation interval lengths (t2, t3) for which the most probable unranked (ranked) gene tree
topology does not match the unranked (ranked) species tree topology. Each slice was generated by computing the probability distribution of gene tree
topologies on a grid with t2 2 ½0:01; 3� and t3 2 ½0:01; 1�, with increments of 0.01 for both variables. In the ranked case, the shaded region for a smaller
t4 contains the shaded region for a larger t4. In the unranked case, the shaded region for a larger t4 contains the shaded region for a smaller t4.
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types of trees, the probability of a species tree being in an
anomaly zone increases with the number of taxa and with k.
For unranked trees, both results are intuitive: For increasing

numbers of taxa, there are more possible ways to have con-
secutive short branches or intervals in a tree, a pattern typical
of the unranked anomaly zone (Rosenberg 2013). Increasing k

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

S

A

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0

B

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
L

S

C

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
L

D

Anomaly zone: ranked   unranked   both  

FIG. 4. 2D cross-sections of unranked and ranked anomaly zones, each associated with a six-taxon species tree topology in the corresponding panel
of figure 3. (A) Species tree in figure 3A. (B) Species tree in figure 3B. (C) Species tree in figure 3C. (D) Species tree in figure 3D. For each species tree
topology, 200 values of L 2 ½0:01; 2� and 200 values of S 2 ½0:005; 1� were used to identify the existence of anomalous gene trees.
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lines indicate a displayed five-taxon tree topology given in figure 2A. We set some lengths of the speciation intervals to be equal to aid in
visualization and computation. Two values L and S, measured in coalescent units, are used as interval lengths. All values of L are equal to each other
and all values of S are equal to each other. The figures are not drawn to scale.
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reduces the average branch length, making consecutive short
branches more likely.

We observed a different effect of the turnover rate l=k on
the probability of producing unranked and ranked

anomalous gene trees. The probability has a decreasing trend
for the unranked anomaly zones and an increasing trend for
the ranked anomaly zone as turnover rate increases. On av-
erage, branch lengths are longer as l increases. In particular, a
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FIG. 6. 2D cross-sections of unranked and ranked anomaly zones for associated seven- and eight-taxon species tree topologies in figure 5. (A)
Species tree in figure 5A. (B) Species tree in figure 5B. (C) Species tree in figure 5C. (D) Species tree in figure 5D. For each species tree topology, 200
values of L 2 ½0:01; 2� and 200 values of S 2 ½0:005; 1� were used to identify the existence of anomalous gene trees.
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branch length near the root becomes longer, decreasing the
probabilities of AGTs but increasing the probabilities of
ARGTs.

We calculated the probabilities of ranked and unranked
anomaly zones for specific five- and six-taxon tree topologies
(k ¼ 0:1; 0:5; 1, l¼ 0, 5,000 replicates) to investigate the
frequency with which the different tree shapes give rise to
AGTs and ARGTs. Under the Yule process, the probabilities
of a caterpillar shape, pseudocaterpillar shape, and the
unranked version of the tree shape depicted in figure 2A
for the five-taxon case are 1/3, 1/6, and 1/2, respectively.
The conditional probabilities of a species tree being in the
unranked anomaly zone given the shape are 7.42%, 0.87%,
and 2.15% for the three shapes, respectively. Because neither
caterpillar nor pseudocaterpillar species trees can produce
ARGTs, the conditional probabilities of a species tree being in
the ranked anomaly zone given the shape are 0%, 0%, and
0.77% for the three shapes, respectively.

Figure 8 shows conditional probabilities of ranked and
unranked anomaly zones for all possible six-taxon topologies
when k ¼ 0:5 and l¼ 0. Under the Yule process, the
unranked tree shapes have probabilities 2/15, 1/5, 4/15, 1/5,
1/15, and 2/15 from left to right. AGTs arise more often for
the caterpillar shape, whereas ARGTs arise more often for the
second and third shapes (from left to right). The full proba-
bility of anomalous gene trees can be calculated using the law
of total probability.

We also noticed that the probabilities of being in the
unranked anomaly zone grow faster than those of the ranked
anomaly zone as the speciation rate increases (fig. 9). For
example, the probabilities that a species tree belongs to
unranked and ranked anomaly zones are equal to 0.399

and 0.194, respectively, for n¼ 8, k ¼ 1, and l ¼ 0. For
an eight-taxon species tree, with k ¼ 10 and l ¼ 0, these
probabilities are equal to 0.909 and 0.267, respectively.

Discussion
The existence of anomalous gene trees poses challenges for
inferring species trees from gene trees. We have studied AGTs
and ARGTs for small trees, identifying cases in which a species
tree possesses both types of anomalies (figs. 4 and 6). We
studied how the parameters of the species tree (n, k, l) sim-
ulated under a constant-rate birth–death process can affect
the probability that a species tree is in the anomaly zone. We
have shown that often a species tree has lower probability to
be in the ranked anomaly zone than in the unranked anomaly
zone (figs. 7 and 9).

We also ran our simulations with larger values of k, ob-
serving that the probabilities of unranked anomaly zones
grow faster than those of ranked anomaly zones as the
speciation rate increases (fig. 9). The probability of a species
tree being in the ranked anomaly zone for n¼ 8 reaches a
peak near 27.4% and begins to decrease for approximately
k > 5. Probabilities of a species tree being in the unranked
anomaly zone appear to increase with k, but they are not
approaching 1.

An intuitive reason that probabilities do not approach 1
for fixed n is that as k increases, the probability increases that
all coalescences occur more anciently than the root of the
tree. This scenario does not always result in anomaly zones.
For ranked trees, if the species tree is either a caterpillar or
pseudocaterpillar, then there cannot be an ARGT, putting a
limit on the probability that the species tree lies in the ranked
anomaly zone when n is fixed. In the five-taxon case, ARGTs
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FIG. 7. The impact of the speciation rate parameter k and the turnover rate l=k on the existence of unranked and ranked anomaly zones. For each
value of n ¼ 5; 6; 7; and 8 taxa, 5,000 species trees were simulated using a constant-rate birth–death process with rates k ¼ 0:1; 0:5; 1 and
l=k ¼ 0; 0:5. For each combination of ðn; k; lÞ, the probability of the species tree being in the anomaly zone was computed from the 5,000 trials.
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are more likely when interval s2, in which there are two
populations (fig. 1A), is relatively large compared with other
intervals. Increasing k makes this condition less likely. For
unranked species trees, if all coalescences occur above the

root, then the species tree has AGTs if, and only if, the species
tree does not have a maximally probable shape, where a
maximally probable shape is one for which labeled topologies
have the maximum number of possible rankings (Degnan
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FIG. 9. The impact of the speciation rate parameter k 2 ½0:1; 50� and the turnover rate l=k ¼ 0 and 0.5 on the existence of unranked and ranked
anomaly zones. For each combination of ðn; k;lÞ, the probability of the species tree being in the anomaly zone was computed from 5,000 species
trees. Probabilities of the unranked anomaly zone appear to increase with k, whereas probabilities of the ranked anomaly zone increase up to a
certain value k � 5 and then begin to decrease.

FIG. 8. Conditional probabilities of ranked and unranked anomaly zones given species tree shape for all possible six-taxon unlabeled, unranked
species tree topologies. The exact probabilities of tree shapes under the Yule birth process are displayed on the x-axis. The results are based on 5,000
species trees simulated under the birth process with n¼ 6, k ¼ 0:5, and l¼ 0. Among the shapes with both AGTs and ARGTs, the third tree shape,
with four taxa descended from one side of the root and two from the other, produces the largest combined frequency of AGTs and ARGTs. It is also
the most probable shape under the birth process. Similar patterns occur for k ¼ 0:1 and k¼ 1 (not shown).
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and Rosenberg 2006). For example, for five taxa, the tree
ðððA; BÞ; CÞ; ðD; EÞÞ has three rankings. Thus, if the species
tree has this topology and all internal branches have length 0,
then no other gene tree shape can be anomalous for it. In this
case, as k!1, an unranked labeled gene tree topology
approaches probability r=180, where r is the number of rank-
ings for the gene tree.

For six taxa, the unlabeled tree shape whose labeled topol-
ogies have the maximum number of rankings has four taxa
descended from one side of the root and two from the other
side, as shown in figure 3C, where the rooted subtrees on each
side of the root themselves maximize the number of possible
rankings. This scenario results in an unlabeled tree with eight
rankings and 45 labelings. Because there are 2,700 ranked
labeled topologies for n¼ 6 taxa, we therefore expect that
as k!1, the probability of the species tree being in an
unranked anomaly zone is at least
1� ð45 � 8Þ=2; 700 ¼ 13=15. This value occurs because la-
beled unranked trees with this maximally probable shape are
tied in probability for being the most probable when all
coalescences occur more anciently than the root; as
k!1, the probability approaches 13/15 that the species
tree does not have the maximally probable shape, and there-
fore is in an unranked anomaly zone.

More generally, let Tn be an unlabeled species tree shape
with the maximum number of rankings. For large k, the
probability of the species tree with n leaves being in an
unranked anomaly zone has a lower bound of

1� 2n�1�rðTnÞ
Yn�1

i¼1

½ciðTnÞ � 1��1; (1)

where rðTnÞ is the number of balanced internal vertices of Tn

and ciðTnÞ is the number of descendant leaves of interior
vertex i, including the root as an interior vertex. The lower
bound given in equation (1) can be calculated as 1 minus the
probability that the species tree under the Yule process has
the shape that produces the largest number of rankings for a
fixed labeling. For example, the lower bound for six-taxon
species trees can be calculated as 1� 2=15 ¼ 13=15. This
lower bound in equation (1) underestimates the probability
of being in an anomaly zone for large k because even labeled
species trees with the maximally probable shape can have
AGTs for some sets of branch lengths. It can be shown that
this lower bound approaches 1 as n!1 (see Appendix for
details).

In general, probabilities of both AGTs and ARGTs increase
with the number of taxa. For example, going from five to eight
taxa, the probability of an AGT approximately doubles, for
both k ¼ 0:5 and k ¼ 1 at both levels of turnover (fig. 7).
The probability of an ARGT increases by a factor of 10 to 15
going from five to eight taxa at k ¼ 0:5 and k ¼ 1 at both
levels of turnover (fig. 7).

An open question from Degnan et al. (2012b) was
whether the most probable ARGT could have a different
“unranked” topology from that of the species tree. In that
study, examples of ARGTs had different rankings from the
species tree but the same unranked topology. Here, in our

simulation with different combinations of values (n, k, l),
we have not found any cases where the most probable
ranked gene tree and the species tree have different
unranked topologies. However, we found a few cases
where a gene tree within one step by nearest-neighbor
interchange—which has a different unranked topology
from the species tree—has exactly the same ranked his-
tories and probability as the ranked gene tree topology
that matches the unranked species tree topology. For
example, for a species tree given in figure 10, the two
ranked gene trees in the figure have the same probabili-
ties, because they have exactly the same values of ki;j;z and
thus, the same values of ki;j (see eq. 5 for details). The
same result that at least one of the most probable ranked
gene tree topologies must have the same unranked to-
pology as the species tree was proved mathematically by
Disanto et al. (2019). This result suggests that the
“democratic vote” method used for ranked gene trees
might be less misleading than in the unranked setting: If
one takes the ranked gene tree (or gene trees, allowing for
ties) that occurs most frequently in a large enough sam-
ple, then its unranked version is predicted to match the
species tree, except possibly when another ranked gene
tree is tied for being most probable.

Materials and Methods

Calculating the Probability of a Ranked Gene Tree
Topology
General Formula
The probability of the ranked gene tree PðGjT Þ can be com-
puted as a sum over all ranked histories. Denote the proba-
bility in interval si for a particular ranked history x by
PðGsi

; xjTÞ. The probability of a ranked gene tree topology
G with ranked history set Y given a species tree T can be
written

PðGjT Þ ¼
X
x2Y

H‘1
ðxÞ
Yn�1

i¼2

PðGsi
; xjT Þ; (2)

where H‘1
ðxÞ is the probability that the coalescences above

the root appear in the order that follows the ranked gene tree
(Stadler and Degnan 2012). If the number of lineages above
the root is ‘1, then (Rosenberg 2006)

H‘1
ðxÞ ¼ 2‘1�1

‘1!ð‘1 � 1Þ! : (3)

Denote the number of lineages available for coalescence in
population z just after (going forward in time) the jth coales-
cence in interval si by ki;j;z. The probability that ‘ lineages fail

to coalesce in a time interval of length ti is e
� ‘

2

� �
ti

. Hence,
the waiting time until the next coalescent event (going back-

ward in time) has rate ki;j ¼
Pi

z¼1

ki;j;z

2

� �
. The density for the

coalescent events in the interval si is (Degnan et al. 2012b)
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fiðv0; v1; . . . ; vmi
Þ ¼ exp ð�

Xmi

j¼0

ki;jvjÞ; (4)

where vj is the time between the jth and ðjþ 1Þst coalescent
events, with v0 being the time between si�1 and the least
recent coalescent event in si and with vmi

being the time
between si and coalescent event mi.

For example, consider the second speciation interval s2 for
the species tree in figure 1A. Here, v0 is the time between s1

and the least recent coalescent event u2 in interval s2.
Similarly, v1 is the time between u2 and u3, v2 is the time
between u3 and u4, and vmi

¼ v3 is the time between u4

and s2. Using the fact that the sum of exponential random
variables with different rates ki has a hypoexponential distri-
bution, equation (4) can be written as follows (Stadler and
Degnan 2012):

PðGsi
; xjT Þ ¼

ð
v

fiðv0; . . . ; vmi
Þdv¼

Xmi

j¼0

e�ki;jðsi�1�siÞ

Qmi

k¼0;k 6¼j

ðki;k � ki;jÞ
:

(5)

Examples
Consider a species treeT and gene tree with matching ranked
topology ððA; ðB; ðC;DÞ4Þ3Þ2; ðE; FÞ5Þ (fig. 1C). We now cal-
culate the probability of the ranked history ð1; 2; 2; 2; 2Þ
in interval s2. Because four coalescences occur in interval
s2, m2 ¼ 4 and k2;j;z is defined for j ¼ 0; 1; 2; 3; 4 and
z¼ 1, 2. We have k2;j;1 ¼ ð1; 2; 3; 4; 4Þ for j ¼ 0; 1; . . . ; 4
and k2;j;2 ¼ ð1; 1; 1; 1; 2Þ for j ¼ 0; 1; . . . ; 4: Using

k2;j ¼
P2
z¼1

k2;j;z
2

� �
, we have k2;j ¼ ð0; 1; 3; 6; 7Þ; for j ¼ 0;

1; . . . ; 4: Thus, equation (5) evaluates to

P
�
Gs2
; ð1; 2; 2; 2; 2ÞjT

�

¼
X4

j¼0

e�k2;jt2

Q4
k¼0;k 6¼j

ðk2;k � k2;jÞ

¼ 1

126
� e�t2

60
þ e�3t2

72
� e�6t2

90
þ e�7t2

168
;

where t2 ¼ s1 � s2 is the length of interval s2.
Similarly, we can compute the probabilities in intervals s3,

s4, s5. Given that the probability for the coalescence of ‘1 ¼ 2
lineages above the root appearing in the right order is H2 ¼ 1
(eq. 3), the probability of the ranked history ð1; 2; 2; 2; 2Þ is
equal to

P
�
G; ð1; 2; 2; 2; 2ÞjT

�
¼ H2ðxÞ �

Y5

i¼2

P
�
Gsi
; ð1; 2; 2; 2; 2ÞjT

�

¼ 1

126
� e�t2

60
þ e�3t2

72
� e�6t2

90
þ e�7t2

168

� �
� e�4t3�2t4�t5 ;

(6)

where ti ¼ si�1 � si:
Now consider a species tree T and gene tree with non-

matching ranked topology ððA; ðB; ðC;DÞ5Þ4Þ2; ðE; FÞ3Þ
(fig. 1D). The values of ki;j;z in interval s2 are

k2;j;1 ¼ ð1; 2; 2; 3; 4Þ; j ¼ 0; 1; . . . ; 4;

k2;j;2 ¼ ð1; 1; 2; 2; 2Þ; j ¼ 0; 1; . . . ; 4:

Thus, k2;j ¼ ð0; 1; 2; 4; 7Þ for j ¼ 0; 1; . . . ; 4, and the
probability of the nonmatching ranked gene tree for the
ranked history ð1; 2; 2; 2; 2Þ is
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FIG. 10. Gene trees evolving on an eight-taxon species tree. (A) Ranked gene tree ððððA; BÞ6; CÞ4; ðD; EÞ7Þ2; ððG;HÞ5; FÞ3Þ that shares the same
unranked topology with that of the species tree. (B) Gene tree ððððA; BÞ6; CÞ4; ðD; EÞ7Þ2; ððF;GÞ5;HÞ3Þ that has a different unranked topology from
the species tree. Note that the ranked gene tree ððððA; BÞ6; CÞ4; ðD; EÞ7Þ2; ððF;HÞ5;GÞ3Þ (not shown) has exactly the same probability as gene trees
in (A) and (B) for the species tree depicted. For each i ¼ 1; 2; . . . ; 7; si � 0 denotes the time of the ith speciation, si represents the interval
between the ði� 1Þth and ith speciation events, ti (ti ¼ si�1 � si; 2 � i � 7) represents the length of interval si, and ui represents the ith
coalescence (node with rank i) in the gene tree. The species tree has ranked topology ððððA; BÞ4; CÞ3; ðD; EÞ6Þ2; ððG;HÞ7; FÞ5Þ. For the species tree
values ti ¼ ð0:29; 0:006; 0:041; 0:001; 0:022; 0:001Þ; i ¼ 2; 3; . . . ; 7, the ranked gene trees in (A) and (B) are the most probable ranked gene trees,
with probability 1:72404� 10�5.
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P
�
G; ð1; 2; 2; 2; 2ÞjT

�
¼ H2ðxÞ �

Y5

i¼2

P
�
Gsi
; ð1; 2; 2; 2; 2ÞjT

�

¼ 1

56
� e�t2

18
þ e�2t2

20
� e�4t2

72
þ e�7t2

630

� �
� e�4t3�2t4�t5 :

(7)

Following equations (6) and (7), the limiting probabilities
for the matching and nonmatching ranked gene tree topol-
ogies for the ranked history ð1; 2; 2; 2; 2Þ when t2 !1 and
t3; t4; t5 ! 0 are 1

126 and 1
56, respectively. Thus, the ranked

history ð1; 2; 2; 2; 2Þ is more probable for the nonmatching
ranked gene tree topology than for the matching ranked
history when t2 !1 and t3; t4; t5 ! 0. For sufficiently
large t2 and sufficiently small t3; t4; t5, most of the proba-
bility of the ranked gene tree topology is concentrated on
this ranked history, making the probabilities of the other
ranked histories close to 0. Thus, the most probable
ranked gene tree topology becomes discordant from the
ranked species tree topology, forcing the species tree into
the ranked anomaly zone.

PRANC Software
We implemented the program PRANC, which can analyt-
ically compute the probabilities of ranked gene trees given
a species tree in Newick format, following equation (2).
The program has an option to compute the probability of
an unranked gene tree by summing the probabilities of all
ranked gene trees that share the corresponding unranked
topology. We improved the numerical results by adding
the probabilities of the ranked histories in ascending order,
enabling the smallest-magnitude values to accumulate be-
fore interacting with larger-magnitude values. In addition,
PRANC has an option to output symbolic probabilities
followed by ranked histories (https://github.com/anasta-
siiakim/PRANC):

pranc �rprob <species�tree�file�name>
<ranked�gene�tree�file�name>

pranc �uprob <species�tree�file�name>
<unranked�gene�tree�file�name>

pranc �sym <species�tree�file�name>
<ranked�gene�tree�file�name>

PRANC also can output the “democratic vote” ranked or
unranked tree topology. Using the following code, the pro-
gram outputs two files: one with ranked or unranked topol-
ogies for each tree, and another with unique topologies and
their frequencies,

pranc�rtopo <input�file�name>
pranc�utopo <input�file�name>

Simulations
We simulated species phylogenies under a constant-rate
birth–death model. In this model, each species is equally
likely to be the next to speciate. Each tree branch gives
birth to a new branch at rate k. Lineages can also go
extinct at rate l.

Because the length of a randomly selected interior branch
in a Yule (rate k) tree on n leaves is exponentially distributed
with rate 2k (Stadler and Steel 2012), for k ¼ 0:1 and k¼ 1, a
species tree has a mean branch length of 1=ð2 � 0:1Þ ¼ 5 and
1=ð2 � 1Þ ¼ 0:5, respectively. We note that if all branch
lengths were 0.5 coalescent units, then the species trees in
the simulations would be outside of the unranked anomaly
zone. A value of 0.5 coalescent units for an internal branch
means that two lineages have a probability of 1� expð�0:5Þ
� 39% of coalescing within that branch, whereas for 5 coa-
lescent units, the probability of coalescence exceeds 99%.
Values of k near 0.5 are chosen to be reasonably plausible
for hominid evolution (Stadler et al. 2016). The range of k
¼ 0:1 to k¼ 1 thus gives a range of low to moderate levels of
incomplete lineage sorting that are plausibly consistent with
empirical studies.

We let the speciation rate k take the values of 0:1; 0:5; and
1 and choose the extinction rate l to depend on k such that
the turnover rate l=k is 0 or 0.5. Values of ðn; k; lÞ were
chosen to examine the effect of the species tree parameters on
the existence of anomalous gene trees. For each combination
ðn; k; lÞ, the distributions of unranked and ranked gene tree
topologies were computed analytically for each simulated
species tree. The probabilities of all possible unranked and
ranked topologies were computed using “hybrid-coal” (Zhu
and Degnan 2017) and PRANC, respectively, conditional on a
species tree generated under a constant-rate birth–death
model with parameters ðn; k; lÞ. The presence of anomalous
gene trees was then identified by comparing the analytical
probabilities of the matching gene tree topology and the
most probable nonmatching gene tree topology.
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Appendix
Here we prove the lower bound in equation (1) of the prob-
ability of the species tree with n leaves being in an unranked
anomaly zone for large k, and we show that this lower
bound approaches 1 as n!1 and k!1.

Let Tn be a labeled species tree whose unlabeled shape
maximizes the number of rankings of its associated labeled
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topologies. For large k, the probability of the species tree
with n leaves being in an unranked anomaly zone has a
lower bound of

1� NR � R
NT

; (8)

where NR is the number of ways to label the unranked
unlabeled tree with the maximum number of rankings, R
is the number of rankings, and NT is the number of ranked
topologies for an n-taxon labeled tree.

A given unlabeled tree topology has R ¼ ðn� 1Þ!=Qn�1
i¼1 ðci � 1Þ rankings, where ci is the number of descen-

dant leaves of interior vertex i, including the root as an
interior vertex (Steel 2016, p. 46). There are NR ¼ n!2�r

ways to label the tree with the maximum number of rank-
ings, where r is the number of balanced internal vertices
(Steel 2016). Because the number of ranked topologies for

an n-taxon tree is NT ¼
Qn
i¼2

i
2

� �
¼ n!ðn� 1Þ!=2n�1

(Brown 1994; Steel 2016), equation (8) leads to the follow-
ing expression:

1�
n!2�rðTnÞ � ðn� 1Þ!

Qn�1

i¼1

½ciðTnÞ � 1��1

n!ðn� 1Þ!=2n�1

¼ 1� 2n�1�rðTnÞ

ðn� 1Þ
Qn�1

i¼2

½ciðTnÞ � 1�
; (9)

equivalent to the expression (1).
An n-taxon labeled species tree Tn with the maximum

number of rankings has 21þb log 2½ðn�1Þ=3�c taxa descended

from one side of the root and n� 21þb log 2½ðn�1Þ=3�c from
the other side (Harding 1971, 1974; Hammersley and
Grimmett 1974) (table 1). For an n-taxon tree, n must be

between two powers of 2. Let k � 0 be an integer with
2kþ1 < n � 2kþ2. For a tree with the maximum number
of rankings, one of the subtrees descended from Tn has at
most 2kþ1 leaves and has the number of leaves a power of 2.

In particular, Tn with 2kþ1 < n � 2kþ2 leaves has 2k �
21þb log 2½ðn�1Þ=3�c � 2kþ1 taxa descended from one side of

the root and 2k < n� 21þb log 2½ðn�1Þ=3�c � 2kþ1 from the
other side (table 1 and fig. 11). The tree rooted on each side
of the root of Tn itself maximizes the number of possible
rankings for all labeled trees with the same number of
leaves.

To prove that the lower bound approaches 1 as n!1,

we need to show that in equation (9),
Qn�1

i¼2 ½ciðTnÞ � 1��1

! 0 and 2n�1�rðTnÞðn� 1Þ�1 � 1 as n!1. We con-
sider three cases: 1) n ¼ 2kþ2, 2) n odd, and 3) n even and
n 6¼ 2kþ2.

Consider a case with n ¼ 2kþ2; k ¼ 0; 1; . . .. A
completely balanced symmetric shape is the shape with
the maximum number of rankings, with rðTnÞ ¼ n� 1.
Thus, for n ¼ 2kþ2, equation (9) can be written as follows:

1�
Ykþ1

i¼1

ð2k�iþ3 � 1Þ�2i�1

: (10)

The product in equation (10) is the inverse product of the
numbers of descendant leaves of all interior vertices, in-
cluding the root as an interior vertex. That the lower
bound for n ¼ 2kþ2 approaches 1 as k!1 is proven
by Lemma 1.

Lemma 1. Let ciðTnÞ be the number of descendant leaves of

interior vertex i of a tree Tn, excluding the root. Then
Qn�1

i¼2

½ciðTnÞ � 1��1 ! 0 as n!1.

Proof. Define c	i as

Table 1. The n-Taxon Species Trees with the Maximum Number of Rankings for a Labeled Topology.

n ð‘; rÞ n ð‘; rÞ n ð‘; rÞ n ð‘; rÞ

2 (1, 1) 18 (10, 8) 34 (18, 16) 50 (32, 18)
3 (2, 1) 19 (11, 8) 35 (19, 16) 51 (32, 19)
4 (2, 2) 20 (12, 8) 36 (20, 16) 52 (32, 20)
5 (3, 2) 21 (13, 8) 37 (21, 16) 53 (32, 21)
6 (4, 2) 22 (14, 8) 38 (22, 16) 54 (32, 22)
7 (4, 3) 23 (15, 8) 39 (23, 16) 55 (32, 23)
8 (4, 4) 24 (16, 8) 40 (24, 16) 56 (32, 24)
9 (5, 4) 25 (16, 9) 41 (25, 16) 57 (32, 25)
10 (6, 4) 26 (16, 10) 42 (26, 16) 58 (32, 26)
11 (7, 4) 27 (16, 11) 43 (27, 16) 59 (32, 27)
12 (8, 4) 28 (16, 12) 44 (28, 16) 60 (32, 28)
13 (8, 5) 29 (16, 13) 45 (29, 16) 61 (32, 29)
14 (8, 6) 30 (16, 14) 46 (30, 16) 62 (32, 30)
15 (8, 7) 31 (16, 15) 47 (31, 16) 63 (32, 31)
16 (8, 8) 32 (16, 16) 48 (32, 16) 64 (32, 32)
17 (9, 8) 33 (17, 16) 49 (32, 17) 65 (33, 32)

NOTE.—The tree with the maximum number of rankings splits into (left, right) subtrees with ð‘; rÞ leaves. The n-taxon species tree with the maximum number of rankings Tn has
21þb log 2 ½ðn�1Þ=3�c taxa descended from one side of the root and n� 21þb log 2 ½ðn�1Þ=3�c from the other side.
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c	i ¼
�

2; if i is a cherry;

3; otherwise:

The maximum number of cherries of an n-taxon tree is at
most n=2. Hence,

Yn�1

i¼2

½ciðTnÞ � 1��1 �
Yn�1

i¼2

½c	i ðTnÞ � 1��1 � 2�ðn�2�n=2Þ

¼ 2�n=2þ2;

where n� 2� n=2 is the number of internal nodes
excluding the root minus the maximum number of cherries.
This quantity approaches 0 as n!1, completing the
proof. h

For the other two cases, we use a series of lemmas. Table 2
depicts the results of Lemmas 2 and 3.

Lemma 2: Let rðTnÞ be the number of balanced internal
vertices in Tn, the tree with the maximal number of rank-
ings. Then, rðTnÞ ¼ n� k� 1 when n is odd and
2k < n < 2kþ1; k � 1.

Proof. Let C(k) be the statement that for odd n and
2k < n < 2kþ1; rðTnÞ ¼ n� k� 1. C(k) is true for k¼ 1
as 3-taxon trees have one balanced internal vertex. Now we
show that if C(k) is true, then Cðkþ 1Þ is true for any k � 1.

We need to show that for odd n, 2kþ1 < n < 2kþ2, the
number of balanced internal vertices is rðTnÞ¼n� ðkþ 1Þ
�1 ¼ n� k� 2.

Among trees with 2kþ1 < n < 2kþ2 leaves, let Tn be
a tree with the maximal number of rankings. Let ‘ðTLÞ and
‘ðTRÞ be the numbers of leaves in the trees rooted at the left
and right immediate descendants of the root, respectively.

Without loss of generality, let ‘ðTLÞ ¼ 21þb log 2½ðn�1Þ=3�c and

‘ðTRÞ ¼ n� 21þb log 2½ðn�1Þ=3�c.

TL is a completely balanced symmetric tree,
rðTLÞ ¼ 21þb log 2½ðn�1Þ=3�c � 1. Because n is odd, TR has an
odd number of leaves with 2k < n� 21þb log 2½ðn�1Þ=3�c <
2kþ1 for 2kþ1 < n < 2kþ2 (fig. 11).

Now, using an induction assumption that C(k) is
true, rðTnÞ ¼ rðTLÞ þ rðTRÞ ¼ 21þb log 2½ðn�1Þ=3�c � 1 þ
ðn� 21þb log 2½ðn�1Þ=3�c �k� 1Þ ¼ n� k� 2. h

Lemma 3. Let rðTnÞ be the number of balanced internal
vertices in Tn, the tree with the maximal number of rank-
ings. Then rðTnÞ � n� k� 1 when n is even and
2k < n � 2kþ1; k � 0.

Proof. Let C(k) be the statement that for even n and
2k < n � 2kþ1; rðTnÞ � n� k� 1. Obviously, C(k) is
true for k¼ 0 as 2-taxon trees have one balanced internal
vertex (rðT2Þ � 1). Now we show that if C(k) is true, then
Cðkþ 1Þ is true for any k � 0.
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FIG. 11. The values of n� 21þb log 2½ðn�1Þ=3�c; 2k, and 2kþ1 for a tree
with 2kþ1 < n � 2kþ2 taxa. The tree with the maximum number of
rankings has 2k � 21þb log 2 ½ðn�1Þ=3�c � 2kþ1 taxa descended from
one side of the root and 2k < n� 21þb log 2½ðn�1Þ=3�c � 2kþ1 from
the other side.

Table 2. The Number of Balanced Internal Vertices rðTnÞ in n-Taxon
Species Trees with the Maximum Number of Rankings for a Labeled
Topology.

n Even n Odd
n rðTnÞ n� 1� rðTnÞ n rðTnÞ n� 1� rðTnÞ

2 1 0 3 1 1
4 3 0 5 2 2
6 4 1 7 4 2
8 7 0 9 5 3
10 7 2 11 7 3
12 10 1 13 9 3
14 11 2 15 11 3
16 15 0 17 12 4
18 14 3 19 14 4
20 17 2 21 16 4
22 18 3 23 18 4
24 22 1 25 20 4
26 22 3 27 22 4
28 25 2 29 24 4
30 26 3 31 26 4
32 31 0 33 27 5
34 29 4 35 29 5
36 32 3 37 31 5
38 33 4 39 33 5
40 37 2 41 35 5
42 37 4 43 37 5
44 40 3 45 39 5
46 41 4 47 41 5
48 46 1 49 43 5
50 45 4 51 45 5
52 48 3 53 47 5
54 49 4 55 49 5
56 53 2 57 51 5
58 53 4 59 53 5
60 56 3 61 55 5
62 57 4 63 57 5
64 63 0 65 58 6

NOTE.—For even n, rðTnÞ � n� k� 1 (Lemma 3). For completely balanced and
symmetric n ¼ 2kþ2-taxon trees, rðTnÞ ¼ n� 1. For n ¼ 3 � 2b log 2ðnÞ�1c-taxon
trees, rðTnÞ ¼ n� 2. For odd n, the number of balanced internal vertices is rðTnÞ
¼ n� 1� b log 2nc (Lemma 2).
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We need to show that for even n, 2kþ1 < n � 2kþ2, the
number of balanced internal vertices is
rðTnÞ � n� ðkþ 1Þ � 1 ¼ n� k� 2.

Among trees with 2kþ1 < n � 2kþ2 leaves, let Tn be a
tree with the maximal number of rankings. Let ‘ðTLÞ and
‘ðTRÞ be the numbers of leaves in the trees
rooted at the left and right immediate descendants
of the root, respectively. Without loss of
generality, let ‘ðTLÞ ¼ 21þb log 2½ðn�1Þ=3�c and
‘ðTRÞ ¼ n� 21þb log 2½ðn�1Þ=3�c.

TL is a completely balanced symmetric tree,
rðTLÞ ¼ 21þb log 2½ðn�1Þ=3�c � 1. Because n is even, TR has
an even number of leaves with 2k < n� 21þb log 2½ðn�1Þ=3�c

� 2kþ1 for 2kþ1 < n � 2kþ2 (fig. 11).
Now, using an induction assumption that C(k) is

true, rðTnÞ¼rðTLÞþrðTRÞ � 21þblog 2½ðn�1Þ=3�c � 1þ ðn�
21þb log 2½ðn�1Þ=3�c � k� 1Þ ¼ n� k� 2. h

Lemma 4. 2n�1�rðTnÞðn� 1Þ�1 � 1 as n!1.

Proof. From Lemmas 2 and 3, it follows that rðTnÞ � n� k
�1 for 2k < n � 2kþ1 and log 2ðnÞ � 1 � k < log 2ðnÞ.

Consider two cases: k ¼ log 2ðnÞ � 1 and
log 2ðnÞ � 1 < k < log 2ðnÞ. If k ¼ log 2ðnÞ � 1, then
rðTnÞ � n� log 2ðnÞ and

2n�1�rðTnÞ � 2 log 2ðnÞ�1 ¼ 2 log 2ðnÞ=2 ¼ n=2 � n� 1:

From log 2ðnÞ � 1 < k < log 2ðnÞ and the fact that k
is an integer, k ¼ b log 2ðnÞc and rðTnÞ � n� 1�
b log 2ðnÞc. Then, as n!1

2n�1�rðTnÞ � 2b log 2ðnÞc � 2 log 2ðn�1Þ ¼ n� 1:

It follows that, as n!1,

2n�1�rðTnÞðn� 1Þ�1 � ðn� 1Þ=ðn� 1Þ ¼ 1:

h

Theorem. The lower bound of the probability of the species
tree with n leaves being in an unranked anomaly zone, as
defined in equation (9), approaches 1 as n!1 and
k!1.

Proof. The result immediately follows by Lemmas 1 and 4 in
equation (9). h

References
Brown JKM. 1994. Probabilities of evolutionary trees. Syst Biol.

43(1):78–91.
Castillo-Ram�ırez S, Gonz�alez V. 2008. Factors affecting the concordance

between orthologous gene trees and species tree in bacteria. BMC
Evol Biol. 8(1):300.

Degnan JH. 2013. Anomalous unrooted gene trees. Syst Biol.
62(4):574–590.

Degnan JH, DeGiorgio M, Bryant D, Rosenberg NA. 2009. Properties of
consensus methods for inferring species trees from gene trees. Syst
Biol. 58(1):35–54.

Degnan JH, Rhodes JA. 2015. There are no caterpillars in a wicked forest.
Theor Popul Biol. 105:17–23.

Degnan JH, Rosenberg NA. 2006. Discordance of species trees with their
most likely gene trees. PLoS Genet. 2(5):e68.

Degnan JH, Rosenberg NA, Stadler T. 2012a. A characterization of the set
of species trees that produce anomalous ranked gene trees. IEEE/
ACM Trans Comput Biol Bioinform. 9(6):1558–1568.

Degnan JH, Rosenberg NA, Stadler T. 2012b. The probability distri-
bution of ranked gene trees on a species tree. Math Biosci.
235(1):45–55.

Degnan JH, Salter LA. 2005. Gene tree distributions under the coalescent
process. Evolution 59(1):24–37.

Disanto F, Miglionico P, Narduzzi G. 2019. On the unranked topology of
maximally probable ranked gene tree topologies. J Math Biol.
79(4):1205–1225.

Disanto F, Rosenberg NA. 2014. On the number of ranked species trees
producing anomalous ranked gene trees. IEEE/ACM Trans Comput
Biol Bioinform. 11(6):1229–1238.

Hammersley JM, Grimmett GR. 1974. Maximal solutions of the
generalized subadditive inequality. In: Harding EF, Kendall DG,
editors. Stochastic geometry. New York: John Wiley and Sons.
p. 270–285.

Harding EF. 1971. The probabilities of rooted tree-shapes generated by
random bifurcation. Adv Appl Probab. 3(1):44–77.

Harding EF. 1974. The probabilities of the shapes of randomly bifurcating
trees. In: Harding EF, Kendall DG, editors. Stochastic geometry. New
York: John Wiley and Sons. p. 259–269.

Linkem CW, Minin VN, Leache AD. 2016. Detecting the anomaly
zone in species trees and evidence for a misleading signal in
higher-level skink phylogeny (Squamata: Scincidae). Syst Biol.
65(3):465–477.

Meng C, Kubatko LS. 2009. Detecting hybrid speciation in the presence
of incomplete lineage sorting using gene tree incongruence: a model.
Theor Popul Biol. 75(1):35–45.

Nei M. 1987. Molecular evolutionary genetics. New York: Columbia
University Press.

Pamilo P, Nei M. 1988. Relationships between gene trees and species
trees. Mol Biol Evol. 5(5):568–583.

Rosenberg NA. 2002. The probability of topological concordance of gene
trees and species trees. Theor Popul Biol. 61(2):225–247.

Rosenberg NA. 2006. The mean and variance of the numbers of r-
pronged nodes and r-caterpillars in Yule-generated genealogical
trees. Ann Comb. 10(1):129–146.

Rosenberg NA. 2007. Counting coalescent histories. J Comput Biol.
14(3):360–377.

Rosenberg NA. 2013. Discordance of species trees with their most likely
gene trees: a unifying principle. Mol Biol Evol. 30(12):2709–2713.

Rosenberg NA, Tao R. 2008. Discordance of species trees with
their most likely gene trees: the case of five taxa. Syst Biol.
57(1):131–140.

Shi C-M, Yang Z. 2018. Coalescent-based analyses of genomic sequence
data provide a robust resolution of phylogenetic relationships
among major groups of gibbons. Mol Biol Evol. 35(1):159–179.

Stadler T. 2011. Simulating trees on a fixed number of extant species. Syst
Biol. 60(5):676–684.

Stadler T, Degnan JH. 2012. A polynomial time algorithm for calculating
the probability of a ranked gene tree given a species tree. Algorithms
Mol Biol. 7(1):7.

Stadler T, Degnan JH, Rosenberg NA. 2016. Does gene tree discordance
explain the mismatch between macroevolutionary models and em-
pirical patterns of tree shape and branching times? Syst Biol.
65(4):628–639.

Stadler T, Steel M. 2012. Distribution of branch lengths and phylogenetic
diversity under homogeneous speciation models. J Theor Biol.
297:33–40.

Steel M. 2016. Phylogeny: discrete and random processes in evolution.
Philadelphia (PA): Society for Industrial and Applied Mathematics
(SIAM).

Probabilities of Anomaly Zones . doi:10.1093/molbev/msz305 MBE

1493

Deleted Text: eq.


Takahata N. 1989. Gene genealogy in three related populations: consis-
tency probability between gene and population trees. Genetics
122(4):957–966.

Wu Y. 2012. Coalescent-based species tree inference from gene tree
topologies under incomplete lineage sorting by maximum likeli-
hood. Evolution 66(3):763–775.

Xu B, Yang Z. 2016. Challenges in species tree estimation under the
multispecies coalescent model. Genetics 204(4):1353–1368.

Yu Y, Degnan JH, Nakhleh L. 2012. The probability of a gene tree topol-
ogy within a phylogenetic network with applications to hybridiza-
tion detection. PLoS Genet 8(4):e1002660.

Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP. 2009. Intertwined
evolutionary histories of marine Synechococcus and Prochlorococcus
marinus. Genome Biol Evol. 1:325–339.

Zhu J, Yu Y, Nakhleh L. 2016. In the light of deep coalescence: revisiting
trees within networks. BMC Bioinformatics 17(Suppl 14):415.

Zhu S, Degnan JH. 2017. Displayed trees do not determine distinguish-
ability under the network multispecies coalescent. Syst Biol.
66:283–298.

Kim et al. . doi:10.1093/molbev/msz305 MBE

1494


	app1

