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Abstract

B cell receptor (BCR) signaling is a central pathway promoting the survival and proliferation of 

normal and malignant B cells. Chronic lymphocytic leukemia (CLL) arises from mature B cells, 

expressing functional BCRs, mainly of IgM and IgD isotypes. Importantly, 30% of CLL patients 

express quasi-identical BCRs, so-called “stereotyped” receptors, indicating the existence of 

common antigenic determinants, which may drive disease initiation and favor its progression. 

Although the antigenic specificity of IgM and IgD receptors is identical, there are distinct isotype-

specific responses after IgM and IgD triggering. Here, we discuss the most important steps of 

normal B cell development, and highlight the importance of BCR signaling for CLL pathogenesis, 

with a focus on differences between IgM and IgD isotype signaling. We also highlight the main 

characteristics of CLL patient subsets, based on BCR stereotypy, and describe subset-specific 

BCR function and antigen binding characteristics. Finally, we outline the key biologic and clinical 

responses to kinase inhibitor therapy, targeting the BCR-associated Bruton tyrosine kinase (BTK), 

phosphoinositide-3-kinase (PI3K), and spleen tyrosine kinase (SYK) in patients with CLL.

The B cell receptor (BCR) during B cell development

B lymphocytes develop from hematopoietic stem cells through a continuum of 

developmental stages that originate within the primary lymphoid tissues (i.e. fetal liver and 

fetal/adult marrow), with later stages of maturation occurring in secondary lymphoid organs, 

including the lymph nodes and the spleen (Figure 1).1 One of the first essential steps towards 

maturation of a normal B cell is the successful rearrangement of immunoglobulin (Ig) heavy 

chain (IGH) gene segments (V, D and J segments), during a process named VDJ 

recombination (Figure 2), which occurs in progenitor (pro)-B cells, and leads to precursor 

(pre)-B-cell development.2 During this process, a highly diverse repertoire of antigen-
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binding HCDR3 regions3 is generated, a key determinant for the antigen specificity of the 

developing BCR. Pre-B cells express an immature BCR, termed pre-B cell receptor (pre-

BCR), which is composed of fully rearranged heavy chains and “surrogate” light chains. 

During this stage of differentiation, the rearrangement of the immunoglobulin light (IGL) 

chain V and J gene segments takes place, allowing for the expression of a complete BCR on 

the surface of immature B cells, expressing heavy chains of the M isotype (i.e. IgM). The 

complete BCR molecule includes two heavy chains and two light chains, which associate 

with two Igα/Igβ subunits (i.e. CD79a and CD79b), which are necessary for signal 

transduction and indispensable for B cell survival.4 VDJ recombination is an error-prone 

process, which generates a high number of BCRs (up to 3*1011), including some with 

reactivity towards self-antigens. These autoreactive B cells normally are negatively selected 

and undergo apoptosis, while cells expressing non self-reactive BCRs may proceed further 

in development, and acquire expression of surface IgDs (i.e. immunoglobulins carrying 

heavy chains of the D isotype), with the same specificity as IgM, resulting in mature B cells 

expressing both, IgM and IgD.5 After antigen encounter in the periphery, B-cell activation 

and differentiation in secondary lymphoid tissues (i.e. lymph nodes, spleen) occurs in 

specialized structures, named germinal centers (GC), where B cell clonal expansion and 

somatic hypermutation (SHM) of the variable regions of both heavy and light chain genes 

takes place (Figure 1). While most of the somatic mutations introduced by SHM reduce the 

affinity of the BCR for the stimulating antigen and result in cellular apoptosis, in a minority 

of cases antigen affinity increases, and such B cells are positively selected for further 

differentiation into memory B cells or antibody-secreting plasma cells.5 Affinity selection 

occurs after direct recognition of antigens exposed on the surface of follicular dendritic cells 

(FDC),6 a cellular component of GCs, and positive selection of BCRs with the highest 

affinity for foreign antigens devoids the IgM+ memory B cell pool from autoreactive B cells, 

which would otherwise increase the risk for autoimmunity.7 In addition to the SHM process, 

B cells can diversify their receptors during a process named class switch recombination 

(CSR), which also occurs within the GCs, allowing the generation of BCRs that carry heavy 

chains of different isotypes than IgM and IgD. The immunoglobulin heavy chains constant 

regions μ (IgM) and δ (IgD), are substituted by either γ, ε, or α heavy chains, generating 

IgG, IgE and IgA isotypes, which are characteristically involved in responses to viruses and 

bacteria (IgG), parasites (IgE), and mucosal microbes (IgA) (for a more complete review of 

IgG, IgE and IgA isotype functions please refer to 8).

IgM and IgD isotypes: structural and functional diversity in normal B cells

Mature B cells express 20,000–150,000 IgM molecules and 250,000–300,000 IgD 

molecules.9 Early studies in IgM10 or IgD11, 12 knockout mice demonstrated highly 

interchangeable functions of the two receptors in B cell development, affinity maturation 

and CSR. Several later studies, however, supported the existence of structural and functional 

diversity in IgM and IgD isotypes in normal B cells. The main structural difference between 

IgD and IgM is the IgD-specific “hinge” region, an extended peptide sequence located 

between the Fab (i.e. antigen-binding region) and Fc portion (i.e. tail region of the BCR that 

interacts with the cell membrane). This hinge region, present in IgD and absent in IgM, 

favors flexibility of the Fab region of IgD, permitting binding to polyvalent antigens.13 In 
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line with this finding, IgD but not IgM receptors have been associated with prolonged 

signaling activation in normal B cells.14 The distinct properties of IgM and IgD receptors 

may also be related to their spatial organization on the plasma membrane and distinct 

interactions with positive and negative signaling regulators. IgMs are indeed largely 

monomeric, whereas IgD can frequently be found in large clusters (also named “protein 

islands”),15, 16 which may at least in part explain the differential threshold for activation of 

the two isotypes. IgD, but not IgM, was also recently described to be located in close 

proximity to the chemokine receptor CXCR4, facilitating transduction of CXCR4 activation 

signals to downstream effectors.17 This nanoscale organization of BCRs is determined by 

the actin cytoskeleton,9 which regulates the size and lifetime of receptor aggregations18 (for 

a more complete review on cytoskeletal regulation of BCR aggregation please refer to 19).

In the context of self-antigen stimulation, IgM, but not IgD, can be down-regulated 

following prolonged antigenic stimulation,20 demonstrating that IgM is the principal isotype 

that can become “anergic”, a state in which B cells become unresponsive to antigen. More 

recent work demonstrated that IgD is less sensitive than IgM to endogenous antigens, 

possibly maintaining the quiescence of B cells in the context of autoantibody stimulation, 

and limiting autoreactivity of cells carrying anergized IgMs.21,22 BCR-desensitization 

associated to anergy is frequently associated to constitutive increase in basal intracellular 

Ca2+ levels, together with an overall reduced responsiveness in terms of phospho-protein 

activation following BCR stimulation.23,24 A summary of the structural and functional 

differences of IgM and IgD isotype receptors is provided in Table 1.

BCR signaling in Chronic Lymphocytic Leukemia (CLL)

Several lines of evidence support the hypothesis that CLL is a BCR-dependent malignancy. 

First, the mutational status of IGHV genes shows significant variability among patients with 

CLL, which in turn correlates with the clinical outcome. Specifically, unmutated CLL (U-

CLL), defined as cases in which the CLL BCRs have 98% or more identity with the 

germline IGHV sequence, is typically associated with a more aggressive clinically behavior,
25–27 whereas mutated CLL (M-CLL) cases carrying BCRs with less than 98% IGHV 

identity, characteristically present with more indolent disease (Figure 3). Second, around 

30% of CLL patients express a largely skewed immunoglobulin repertoire, with virtually 

identical BCRs, the so-called “stereotyped” receptors.28–33 Third, the BCR signaling 

pathway is the central pathway activated in the lymph node microenvironment of CLL 

patients, the primary site of CLL cell proliferation in so-called proliferation centers or 

pseudofollicles.34 While most CLL cells express BCRs of both, IgM and IgD isotypes 

(Table 1), a smaller proportion of cases, around 5–10%, express isotype-switched IgGs.35, 36 

The cell of origin for U and M-CLL is also distinct,37 with U-CLL deriving from pre-

germinal center CD5+ naïve B cells, while M-CLL originating from post-germinal center 

CD5+CD27+ memory B cells (Figure 1), further distinguishing these subgroups of patients.

Responsiveness of CLL cells to IgM stimulation differs substantially among samples from 

different patients; CLL cells from U-CLL patients typically have higher responsiveness to 

IgM, which promotes CLL cell survival and proliferation, and a more clinical aggressive 

phenotype than M-CLL cases.25–27, 38, 39 M-CLL show characteristic features of anergized 
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B cells resulting from prolonged antigen engagement, including reduced surface IgM levels, 

baseline activation of Ca2+ signaling, and constitutive ERK phosphorylation. 39–41 These 

features result in diminished IgM responsiveness, which can be restored by IgD ligation, or 

can spontaneously recover in vitro in the absence of stimulatory ligands.39, 41 In contrast, U-

CLL cells express higher sIgM levels,27, 39 and also tend to express higher levels of the 

ZAP70 signaling adaptor42, 43 which may further facilitate increased signaling 

responsiveness. IgM stimulation results in marked down-regulation of the chemokine 

receptor CXCR4;44 vice versa, IgM signaling is modulated by TLR45 and IL-4 receptor 

activation,46, 47 demonstrating cross-talk between the BCR and other signaling pathways in 

CLL cells. The functional importance of the IgD isotype in CLL remains less defined. IgD 

signaling can be induced in all CLL samples, without significant differences between U-

CLL and M-CLL, 27, 38, 39 and, in contrast to normal B cells,14 IgD responses appear to be 

more short-lived,48 and unable to induce c-MYC protein expression or cell-cycle entry,49 

most likely because of rapid and more pronounced IgD internalization following stimulation.
48 IgM and IgD isotype features in CLL cells are summarized in Table 1. The antigen-driven 

pathogenicity of the CLL-BCRs has been suggested by a number of studies characterizing 

several self-antigens for the CLL-BCRs, in particular for U-CLL, including proteins exposed 

on the cell surface during apoptosis (e.g. myosin heavy chain IIA),50–52 lipoproteins,53 

cytoskeletal proteins (e.g. vimentin),36 and microbial proteins (e.g. LPS).53 Largely 

autoreactive BCRs derived from pairing of virus-specific heavy-chains with a restricted 

number of light chains have also been recently described as pathogenic in the Eμ-TCL1 

mouse model of CLL,54 confirming the importance of autoantigenic interactions in leukemia 

development also in vivo in mice. M-CLL derived BCR are less poly-reactive than U-CLL, 

and possess higher specificity and affinity for antigens, such as fungal antigens, with some 

cases carrying BCRs displaying rheumatoid factor activity.55, 56,57

At a functional level, CLL-BCR engagement activates a complex cascade of intracellular 

signaling molecules, including upstream kinases LYN, SYK, BTK and PI3K, which 

transduce signals to calcium signaling modulators (e.g. PLCγ2), cytoskeletal activators (e.g. 

HS1 protein),58 and to downstream effectors, including AKT and ERK kinases, the NF-κB 

pathway, nuclear transcription factors, but also anti-apoptotic proteins of the BCL2 family, 

such as MCL1 59, 60. Nuclear transcription results in numerous outcomes, including 

production and secretion of CCL3 and CCL4 chemokines,61, 62 two important 

chemoattractants for lymphocytes and monocytes/macrophages (Figure 4). IgM stimulation 

induces more prolonged signaling resulting in secretion of higher levels of CCL3 and CCL4; 

such effect cannot be appreciated following IgD signaling, which is largely restricted to 

early cytoskeletal activation (e.g. HS1 phosphorylation).48 BCR signaling duration and 

intensity is tightly regulated by several mechanisms including receptor endocytosis, positive 

(e.g. CD19) and negative (e.g. CD5, CD22) co-receptor signaling, and activation of 

phosphatases, which fine-tune the functional outcome of the response.63 CLL-BCRs can 

also signal in the absence of external antigen, in an autonomous fashion, by interactions 

between individual BCRs through recognition of conserved epitopes within specific regions 

of the immunoglobulin heavy and light chains.64, 65 The autonomous signaling activity of 

the CLL-BCRs has also been defined indispensable for leukemia development and 
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progression in the Eμ-TCL1 mouse model of CLL,66 increasing the complexity of BCR 

activation mechanisms involved in disease pathogenesis.

CLL- BCR stereotyped subsets

Dissecting the functional and molecular features of subsets of CLL patients with unique 

“stereotyped” BCR has provided valuable insight into the role of BCR signaling in CLL. 
28–33 BCR “stereotypy” refers to highly restricted and sometimes identical variable heavy 

complementarity determining region 3 (VH-CDR3) sequences among different CLL 

patients, a characteristic that can be detected in approximately 30–35% of CLL cases, almost 

two thirds being U-CLL. 28–33 In the most recent analysis of a series of 21,123 IGHV 

sequences from CLL patients, 67 23 “ “major” (i.e. most populated) subsets were identified 

and represented 12% of all CLLs. {Agathangelidis, 2012 #20844;Agathangelidis, 2016 

#20975}HCDR3 stereotypy between geographically distant and unrelated patients implies 

that CLL ontogeny is not stochastic, but rather related to common antigenic determinants. 

Stereotypy extends to shared somatic mutations, similar genetic and epigenetic profile of the 

leukemic clones, similar antigen-binding properties and functional responses through the 

BCR and other immune receptors, and also to similar clinical outcomes (Table 2).

Two paradigmatic stereotyped subsets associated with poor clinical outcome are subset #1 

and #2. Subset #1 exhibits an aberrant and distinctive gene-expression profile signature with 

several differentially expressed transcripts involved in the regulation of apoptosis, cell 

proliferation, oxidative processes and BCR signaling.68 Additionally, subset #1 is enriched 

for NOTCH169, 70 and NFKBIE (i.e. gene encoding for IκBε, a negative NF-κB regulator) 

aberrations.71 In CLL cells from subset #1, BCR cross-linking by anti-IgM results in 

significantly higher rates of cell proliferation when compared to non-subset #1 cases using 

the same IGHV genes but heterogeneous HCDR3s.68 However, Bergh et al showed that 

triggering subset #1 leukemic cells with one of their putative antigens, namely oxidized low-

density lipoprotein (oxLDL),53 induced BCR clustering and internalization but did not result 

in intracellular signal transduction. 72 In a proportion of these cases, TLR9 stimulation could 

bypass BCR silencing, inducing cell cycle entry, and suggesting that interaction with oxLDL 

alone is not sufficient to drive cellular proliferation of subset #1 cells.72 Stereotyped subset 
#2 cases express either mutated (60%) or unmutated (40%) BCRs encoded by the IGHV3–

21/IGVL3–21 gene pair, but is uniformly aggressive independently of SHM status.
28, 29, 73–75 Similarities among subset #2 cases include a distinctive pattern of SHM for M-

CLL cases, and a remarkable high frequency of SF3B1 mutations.33, 69, 70, 76 Importantly, 

IGHV3–21 expressing CLL cells show the highest levels of signaling responsiveness when 

compared to non-IGHV3–21 CLL of both U-CLL and M-CLL.27 Interestingly, IGLV3–21 

was recently shown to have independent poor prognostic significance, irrespective of its 

association with stereotyped subset #2,77 and to be associated with high levels of MYC 

target gene expression and low CXCR4 surface expression, implying an ongoing, and 

possibly cell-autonomous signaling activity, in line with the intramolecular recognition 

properties of IGLV3–21 described by Minici et al, 65 as discussed in more detail at the end 

of this section.
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Other exemplary subsets for their internal biological and clinical homogeneity are 

stereotyped subsets #4 and subset #8, both expressing γ-switched BCRs (i.e. IgG isotypes). 

On the one side, subset #4 is defined by the expression of mutated IGHV4–34/IGKV2–30 

BCRs, with long and positively charged VH CDR3s,28, 29 reminiscent of pathogenic anti-

DNA antibodies,78 and SHM patterns suggestive of edited autoreactive antibodies.33, 79 The 

ongoing SHM results in intraclonal diversification of the BCR and implies ongoing 

interaction with antigen(s).80, 81 Subset #4 patients are relatively young at diagnosis and 

experience an indolent clinical course.30 Subset #4 CLL cells show biochemical and 

functional features of anergy, including constitutive ERK1/2 activation and lack of 

responsiveness after BCR cross-linking in terms of MAPK signaling activation and 

intracellular Ca2+ release.82 Interestingly, anergy could be reversed in this subset by ligation 

of TLR1/2 and subsequent activation of the miR-17∼92 cluster, a regulator of MAPK 

expression. Stimulation through TLR1/2 resulted in a distinct gene and miRNA expression 

profiles that were clearly distinct from those of CLL cells from non–subset #4 CLL cases, 

suggesting a subset-specific regulation of the anergic state.82 The indolent behavior of other 

stereotyped subsets, such as subset #148 (stereotyped BCRs carrying mutated IGHV2–5) 

suggests that anergy and reduced BCR signaling responsiveness may also characterize these 

subsets,30 albeit biochemical characterization of anergic features is yet to be performed.

Subset #8 (IGHV4–39/IGKV1(D)-39) patients, at the opposite side of the clinical spectrum, 

are characterized by a high risk for developing Richter’s transformation, and by presence of 

distinct genetic aberrations (i.e. high frequency of trisomy 12 and NOTCH1 mutations).
28, 30, 69, 70, 76, 83, 84 CLL cells from subset #8 patients display robust BCR pathway 

activation upon antigen binding, even when compared to cells from stereotyped subsets #1 

and #2, along with an extremely promiscuous binding to both microbial and auto-antigens 

(e.g. Sm, dsDNA, CpG, LPS).36 Chu and colleagues demonstrated that several CLL BCRs 

mostly of the U-CLL subtype, including subset #8 and subset #6 (unmutated IGHV1–69/

IGKV3–20 stereotyped BCRs), bind to apoptotic cells with exposed non-muscle myosin 

heavy chain IIA (MYHIIA)51 and such binding significantly correlates with poor patient 

survival.50 U-CLL-like stereotyped Ig sequences, mostly utilizing the IGHV1–69 gene have 

also been identified in naïve B cells from healthy donors85, 86, demonstrating that an early 

selection of restricted BCR Igs with properties that resemble natural antibodies generated to 

fight common pathogens or to clear apoptotic debris,87, 88 may occur even in normal 

individuals. The identification of such Ig sequences in the normal B cell repertoire suggests 

that certain B cell subsets carrying discrete BCR Igs escape immune tolerance possibly due 

to low autoreactivity. Auto-antigenic stimulation may also take place in the lymph node 

microenvironment, where calreticulin can be found on the surface of macrophages (i.e. 

nurselike cells)89, 90, which in turn may trigger BCR signaling, especially in CLL cells from 

subsets #1 and #8.90 Despite these subset-specific characteristics and binding activities, 

several studies using mimetic epitopes have revealed a largely shared epitopic reactivity of 

CLL-BCRs, demonstrating that common antigenic structures can be recognized even 

amongst unrelated CLL clonotypes.91–94 BCR-BCR interactions driving autonomous 

signaling have instead been recently shown to have subset-specific epitopes, binding kinetics 

and affinity.65 Stronger affinities and longer binding half-lives associate with indolent cases 

(e.g. subset #4) and weaker, short-lived contacts with progressive ones (e.g. subset #2), again 
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linking the quality of the BCR signal to the distinct clinical outcomes.65 Of note, BCR 

homotypic interactions are not an intrinsic property of the germline clonotypic BCR-Ig, but 

are acquired through specific Ig affinity maturation. In particular, a subset #2 unifying SHM 

of the residue corresponding to the splice site between the variable and the constant Ig 

lambda domain, leads to subset #2 BCR self-recognition. In subset #4, CSR to IgG 

introduces the binding epitope, thus providing also a structural explanation for the exclusive 

usage of IgG isotypes by the cases assigned to this stereotyped subset.29, 33, 65, 95,96 Of note, 

light-chain mediated binding to the bacterial protein L and to the actin-binding protein 

cofilin was described for subset #2 recombinant Igs, independent of the subset #2 heavy 

chain, suggesting that binding to these antigens cannot account for the non-stochastic pairing 

of subset #2 heavy and lambda light chain.97 In the structural analysis by Minici et al. the 

subset #2 BCR homotypic interactions are also largely mediated through the subset #2 IgL. 

Importantly, however, the subset #2 heavy chain with the characteristically short VH-

CDR3{Agathangelidis, 2012 #13724;Agathangelidis, 2012 #13724}28, 29 facilitates the 

spatial proximity between the two BCRs, while establishing one direct hydrogen bond with 

the epitope on the light chain,65 implying that BCR homotypic interactions may indeed 

account for the biased pairing of subset #2 heavy and lambda light Ig chain. Regarding 

subset #4 antigen binding activity, recent BCR specificity studies using a variety of antigenic 

targets revealed the importance of the autoantigen-mediated selection. In particular, unlike 

most CLL Igs that bind apoptotic cells, subset #4 BCR Igs recognize elements on viable 

human memory B cells and this binding necessitates the distinctive immunogenetic 

characteristics of subset #4, such as the specific SHM and the CSR to IgG. 52, 98, 99 All these 

evidences demonstrate that both antigenic and BCR-autonomous interactions influence the 

non-stochastic pairing of the heavy and light chains of stereotyped BCRs, suggesting a fine 

regulation of subset-specific Ig features.

BCR signaling inhibitors for CLL treatment

The management of patients has fundamentally changed since the introduction of small 

molecule inhibitors targeting BCR signaling-related kinases SYK,100 BTK,101 and PI3K 
102(Figure 4). Durable responses, even in heavily pretreated patients, and/or patients 

carrying unfavorable cytogenetic risk features [i.e. del(17p), del(11q)], are common and led 

to the FDA and EMA approval of the BTK inhibitor ibrutinib101, 103 and the PI3Kδ inhibitor 

idelalisib102, 104, the latter typically used in combination with the anti-CD20 monoclonal 

antibody rituximab. A common mechanism of action of these drugs involves the rapid 

redistribution of CLL cells from the lymphatic tissues into the peripheral blood, which 

correlates with rapid resolution of lymphadenopathy within the first weeks of treatment,105 

together with abrogated leukemia proliferation and accelerated CLL cell death.106 BTK and 

PI3K kinases participate not only in CLL survival- and proliferation-related BCR signaling, 

but also in signaling of receptors related to cell migration, adhesion and tissue homing, 

including chemokine receptor and adhesion molecule signaling. Accordingly, preclinical 

studies using BTK and PI3Kδ inhibitors demonstrated inhibition of integrin and chemokine 

receptor signaling,104, 107–111 along with BCR signaling blockade.

Ibrutinib disrupts pro-survival signals from nurselike cells (NLC),107 CD40 ligation, TLR9, 

BAFF, fibronectin, IL-6, IL-4, TNFα,110 chemotaxis towards CXCL12 and CXCL13,107, 108 
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integrin-mediated adhesion,108 and CCL3 and CCL4 chemokine production, in vitro and in 

CLL patients receiving ibrutinib therapy.107 CLL cells carrying unmutated IGHV genes 

generally show higher dependence on BTK and BCR signaling for survival, which 

presumably explains the higher sensitivity of CLL cells with unmutated IGHV to ibrutinib 

treatment in vitro112 and in vivo in patients receiving ibrutinib therapy.101, 113 Ibrutinib as 

single agent,101, 114, 115 or in combination with rituximab,116, 117 fludarabine, 

cyclophosphamide and rituximab (FCR),116 or bendamustine and rituximab (BR),118 

induces durable remissions in previously treated 101, 119–121 or untreated patients.103,119, 122 

Ibrutinib was also shown to promote graft-versus-leukemia (GvL) effects in CLL patients 

following hematopoietic cell transplantation (HCT),123 and improve expansion of CD19-

directed CAR T cells. 124 This outcome may be related to the effects of ibrutinib on T cells, 

including increased T cell receptor (TCR) repertoire diversity,125 promotion of Th1 instead 

of Th2 CD4+ T cell responses,126 and downregulation of the immunosuppressive molecules 

PD-1 and CTLA-4.127 Five-year follow up of phase II studies of single-agent ibrutinib 

therapy recently reported high rates of progression free survival (92%128 to not reached113) 

in treatment naïve patients and 44%128 to 64.8% in R/R CLL,113 reemphasizing the 

remarkable efficacy of this agent. Despite this efficacy and tolerability, resistance to ibrutinib 

has been described, and is commonly associated with point mutations at the ibrutinib-

binding site within BTK (C481S), or with activating mutations of the BCR signaling 

molecule PLCγ2,129, 130 but also with clonal evolution 131, 132 and emergence of mutations 

in BCR-independent proteins, such as EP300 and MLL2, which are implicated in chromatin 

and histone regulation.131 In vitro, NFKBIE mutations have also been associated with 

reduced responses to ibrutinib treatment.71 An interesting mode to circumvent BTK (C481S) 

mutations has been proposed, and involves miRNA-mediated targeting of BTK total protein, 

which can be achieved through HDAC inhibition.133 Inhibitors of non-BCR related 

pathways, including nuclear export 134 and the para-caspase MALT1135 together with novel 

small molecule inhibitors with comparable blocking activities against wild-type and C418S-

mutant BTK, namely ARQ531136 and REDX08608,137 are also currently tested in 

preclinical settings, with encouraging results. In addition to ibrutinib, novel small molecule 

BTK kinase inhibitors with higher selectivity towards BTK kinase, and less cross-reactivity 

with other Tec kinase family members, are currently under clinical development, including 

acalabrutinib,138,139 GS-4059,140 and BGB-3111.141 Whether these agents will provide 

greater responses and/or less side effects than ibrutinib remains to be evaluated.

The PI3Kδ inhibitor idelalisib has been tested as single agent,142 in combination with 

rituximab102, 143 or with rituximab and/or bendamustine.144 Similar to patients receiving 

ibrutinib, idelalisib induces early lymphocytosis followed by lymphocyte count 

normalization. Also similar to ibrutinib, idelalisib effectively antagonizes CLL-survival 

signals coming from the microenvironment, 104, 110 reduces CLL-cell chemotaxis,109 and 

CCL3 and CCL4 release by CLL cells in vitro and in vivo in patients receiving idelalisib 

therapy.109 Additional PI3K inhibitors have been tested in preclinical and early clinical 

studies, including duvelisib, also called IPI-145, a PI3K γ/δ inhibitor,145, 146 the pan-PI3K 

inhibitor pilaralisib, also called SAR245408,147 the PI3K β,δ inhibitor GS-9820, 148 and the 

PI3Kδ inhibitors ACP-319149 and TGR-1202. 150, 151
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SYK kinase inhibition has also been explored, with promising results obtained in relapsed/

refractory CLL patients after treatment with fostamatinib.100, 152 The drug was then further 

developed for the treatment of rheumatoid arthritis, and other novel SYK inhibitors are 

currently tested, including GS-9973153,154 and PRT-2070.

The remarkable clinical effectiveness of BCR signaling inhibitors underscores the 

importance of B cell receptor signaling and of BCR-associated kinases in the proliferation 

and homing of CLL cells, in particular at the level of the lymph node microenvironment, 

making this class of agent the treatment of choice for CLL patients with a wide variety of 

clinical presentations, biological characteristics and response to prior therapies.

Conclusions

A large number of studies has highlighted the importance of BCR signaling in CLL 

pathogenesis. The complexity of BCR signaling in CLL subsets is further increased by the 

existence of isotype-specific functions for IgM and IgD, and of stereotype-specific antigen 

binding and signaling properties. The therapeutic landscape has remarkably changed since 

the introduction of small molecule inhibitors targeting BCR-associated kinases, which 

abrogate CLL cell proliferation and induce durable remissions, even in high-risk and 

refractory CLL patients. Nonetheless, resistances to these novel agents can emerge, 

primarily in high-risk patients, and can be challenging in patients receiving long-term 

therapy with these drugs. It is therefore essential to identify and target additional pathways, 

which contribute to CLL survival and proliferation in the presence of continuous therapy 

with these agents, and especially in cases with resistance mutations in BCR signaling 

molecules. Studies to characterize the mutational landscape driving resistance to BCR 

signaling inhibitors,129, 131, 132 and randomized clinical trials utilizing these drugs in 

combination with newer agents (e.g. the BCL2 inhibitor venetoclax) are underway and will 

allow a better refinement of individualized treatment strategies for CLL patients.
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Figure 1. B cell receptor maturation during B cell development and antigen responses.
B cells undergo a series of maturation steps in the bone marrow, that lead to the generation 

of mature B cells, which express IgM and IgD isotype receptors on their surface. B cells 

then continue their maturation in secondary lymphoid organs, including the lymph nodes 

and the spleen, where, after antigen encounter, the BCRs are further diversified through 

somatic hypermutaion (SHM) and class switch recombination (CSR). CLL arises from 

distinct precursors, with U-CLL deriving from naïve B cells expressing unmutated 

immunoglobulins, while M-CLL deriving from memory B cells which have undergone 

SHM. A smaller, IgG-expressing subset, can arise from memory B cells which have 

undergone CSR.
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Figure 2. The VDJ recombination process.
Recombination of VDJ genetic regions of the heavy chain and VJ regions of the light chain 

at the pro- and pre-B stage allows generation of the variable regions of the heavy and light 

chain of the mature BCR. The high variability of the BCRs is in part due to the large number 

of V, D, and J gene regions of both Ig chains (e.g. the heavy chain includes 51V, 27D, and 6J 

genes). The complete BCR is composed by two variable heavy (VH) and two variable light 

(VL) chains, responsible for antigen binding, as well as two constant heavy (CH) and two 

constant light (CL) chains, involved in effector functions.
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Figure 3. Characteristics of U-CLL and M-CLL patient subsets.
CLL patients can be categorized into two main subsets (U-CLL, M-CLL), characterized by a 

different degree of somatic hypermutations, BCR responsiveness, antigenic determinants 

and clinical outcome.
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Figure 4. The BCR signaling pathway and its targeted inhibition.
Schematic representation of the main activation events in the BCR signaling pathway. BCR 

signaling activation is initiated by upstream kinases including SYK, BTK and PI3K, which 

can be targeted by novel small molecule kinase inhibitors, including the SYK inhibitors 

fostamatinib, GS-9973, and PRT-2070, the BTK kinase inhibitors ibrutinib, acalabrutinib, 

GS-4059, BGB-3111, ARQ-531 and REDX-08608 and the PI3K inhibitors idelalisib, 

duvelisib, pilaralisib, TGR-1202, GS-9820, and ACP-319.
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Table 1.

IgM and IgD isotype expression and function in normal B cells and CLL cells.

BCR 
isotype

Expression in normal B cells Function in normal B 
cells

Expression in 
CLL cells

Function in CLL cells

IgM Expressed at the immature B-cell 
stage after productive VDJ 
recombination 5; secreted or 
membrane-bound

Lower threshold for B-cell 
activation13; down-
modulated in vivo 
following chronic antigen 
exposure 20

Higher levels on U-
CLL, as compared 
to M-CLL 27, 38, 39

Survival and proliferation49, 59, 60, cell 
cycle entry49, long-lived signaling 
activation 49; cross-talk with 
CXCR444, TLR signaling 45 and IL-4 
46; higher IgM responsiveness in U-
CLL 27, 38, 39

IgD Co-expressed with IgM in 
mature B-cells5; secreted or 
membrane-bound; contains a 
hinge region necessary to 
polyvalent antigen binding 13

Higher threshold for B-cell 
activation13; lower 
association with the CD19 
co-receptor 16

Co-expressed with 
IgM27, 38, 39

Short-lived signaling and cytoskeletal 
activation, rapid internalization 48, 49
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Table 2.

Biological and molecular features of the most common stereotyped subsets

Stereotyped subset Subset #1 Subset #2 Subset #4 Subset #8

Frequency ˜2,4% 28, 67 ˜2.8% 28, 67 ˜1% 28, 67 ˜0.5 % 28

IGHV/IGVL gene 
identity

Clan I IGHV genes/IGHD6–
19 /IGHJ4/IGKV1[D]-39 
28, 29, 32

IGHV3–21/ IGHJ6/ 
IGLV3–21 28, 73

γ-switched 
IGHV4–34/ IGHJ6/
IGKV2–30 28, 29

γ-switched IGHV4–39/ IGHD6–
13/ IGHJ5/ IGKV1[D]-39 
28, 29, 83

IGHV mutational 
status

Unmutated 28, 29 Mutated (60%) 
Unmutated (40%) 
28, 29, 74

Mutated 28, 29, 33 Unmutated 28, 29, 83

BCR signaling 
properties

functional BCR signaling 
36, 68

functional BCR 
signaling 36

anergic BCRs 82 functional BCR signaling 36

Predicted antigens Vimentin;
Calreticulin;
MEACs; healthy Hep-2; 
apoptotic RAMOS; 
apoptotic Jurkat; oxidation 
markers; dsDNA;
Insulin/LPS 36,50, 52, 89, 90

cofilin-1;
stomach chief cells; 
pancreatic exocrine 
glands 53

intact anti-I/i motif;
viable human 
memory B cells 
33, 52,99

MEACs;
healthy Hep-2; apoptotic 
RAMOS;
apoptotic Jurkat oxidation 
markers; extractable nuclear 
antigens; dsDNA
microbial antigens/TLR ligands, 
calreticulin 36,50, 52, 90

Genetic lesions in 
treatment-naïve CLL

deletion of 11q, 17p, 
NOTCH1, NFKBIE 
mutations 68, 70, 71, 76

deletion of 13q, 
SF3B1 mutations 
69, 70,75, 76

deletion of 13q 
69, 70,75

trisomy 12, NOTCH1 mutations 
69,70, 84

Clinical course/ Risk 
of transformation

Aggressive (median TTFT 
of 1.6 yrs)30

Aggressive (median 
TTFT of 1.9 yrs)30

Indolent (median 
TTFT of 11 yrs)30

Aggressive (median TTFT of 1.5 
yrs),30 increased risk of Richter’s 
transformation84
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