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E N G I N E E R I N G

Designing complex architectured materials 
with generative adversarial networks
Yunwei Mao1*, Qi He1*, Xuanhe Zhao1,2†

Architectured materials on length scales from nanometers to meters are desirable for diverse applications. 
Recent advances in additive manufacturing have made mass production of complex architectured materials 
technologically and economically feasible. Existing architecture design approaches such as bioinspiration, 
Edisonian, and optimization, however, generally rely on experienced designers’ prior knowledge, limiting 
broad applications of architectured materials. Particularly challenging is designing architectured materials 
with extreme properties, such as the Hashin-Shtrikman upper bounds on isotropic elasticity in an experience-
free manner without prior knowledge. Here, we present an experience-free and systematic approach for the 
design of complex architectured materials with generative adversarial networks. The networks are trained using 
simulation data from millions of randomly generated architectures categorized based on different crystallographic 
symmetries. We demonstrate modeling and experimental results of more than 400 two-dimensional architectures 
that approach the Hashin-Shtrikman upper bounds on isotropic elastic stiffness with porosities from 0.05 to 0.75.

INTRODUCTION
Consisting of periodic arrays of truss, plate, and/or shell elements, 
architectured materials are ubiquitous in biological systems (1), 
structural engineering (2), and materials science (3) (Fig. 1). Archi-
tectured materials have also found broad and important applications, 
such as light-weight structures (4, 5), thermal insulation (5), battery 
electrodes (6), optic and acoustic metamaterials (7, 8), and energy 
damping (9, 10). In addition, recent advances in additive manufacturing 
technologies such as three-dimensional (3D) printing have further 
made mass production of architectured materials with very complex 
structures feasible both technologically and economically.

Despite the important applications and great potential of archi-
tectured materials, designing them is challenging. Existing designs 
of architectured materials generally follow approaches such as 
bioinspiration, Edisonian, theoretical analysis, and topology opti-
mization. In the bioinspired approach, various naturally occurring 
biological structures such as honeycomb, trabecular bone, plant 
parenchyma, and sponge have been used as templates and inspirations 
for designing architectured materials for applications such as light-
weight structural components (11), energy absorption (12), heat 
exchange (13), catalyst supports (14), filtration (15), and biomaterials 
(16). However, bioinspired designs usually do not guarantee optimal 
performances. In addition, many desired properties and functions 
of architectured materials cannot find counterparts in the biological 
system either. In the Edisonian approach, trial and errors in both 
experiments and simulations have been used to design Auxetic 
materials (17, 18), acoustic materials (19), phase-transformation 
materials (20), and kirigami shells for soft robots (21). The trial-
and-error nature makes this approach not very efficient, and the 
resultant designs usually do not guarantee optimal performances 
either. Topology optimization uses gradient-based methods to reach 
architecture designs that give locally minimized/maximized properties. 

This strategy has been widely used in designing architectured mate-
rials with negative/zero thermal expansion (22, 23), multiscale 
porosity–induced high rigidity (24), and negative Poisson ratio (25). 
Despite its success and promise, topology optimization may suffer 
from the limitation of initial-guess dependence. The initial guess of 
the material topology can have an influence on the final design; 
different initial guesses may lead to different structures and properties 
(24, 26). Several theoretical analyses (27) of composites have helped 
understand the designs from the abovementioned approaches (28).

Furthermore, these traditional approaches usually require sub-
stantial prior knowledge of experienced designers and provide limited 
numbers of designs. The challenge in designing architectured materials 
becomes particularly daunting when targeting at extreme properties 
such as designing configurations that reach the Hashin-Shtrikman 
(HS) upper bounds of isotropic elasticity and strain energy storage. 
For instance, so far, only a few classes of configurations that reach 
the HS upper bounds on isotropic elasticity in 2D via the topology 
optimization, such as coated spheres assemblages, rank-n laminates, 
Vigdergauz structures, and Sigmund structures (Fig. 2) (29).

Here, we present an experience-free and systematic approach for 
the design of complex architectured materials by harnessing machine-
learning algorithms to analyze massive simulation data of randomly 
generated architectures categorized into different crystallographic 
symmetries. We first generate a set of data, composed of millions of 
configurations and their calculated properties, to represent the 
design space (Fig. 1A). We further categorize the dataset according 
to the crystallographic symmetries of the configurations. The data 
from selected crystallographic symmetries are then used to train the 
generative adversarial networks (GANs; Fig. 1B). In the GAN-based 
design, the discriminative network will map out the relationship 
between configurations and properties through learning the provided 
dataset. Meanwhile, armed with this knowledge on the relationship, 
the GANs are capable of promptly generating new configurations that 
approximately achieve the extreme properties (Fig. 1C). We demon-
strate the capability of the proposed experience-free design with 
modeling and experimental results of more than 400 2D architectures 
that approach the HS upper bounds with porosities ranging from 
0.05 to 0.75. This new design approach will not only facilitate the 
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design of architectured materials (and structures in general) to 
achieve other extreme (or desired) properties but also shed light on 
a systematic method for various inverse designs. While neural 
networks have been used for structural optimization (30–32) and 
machine learning for the design of previously unknown composites 
(33, 34) and materials (35–37), the current work presents the design 
of complex architectured materials with GANs.

RESULTS
Definitions
As illustrated in Fig. 3A, architectured materials consist of periodic 
arrays of units. A unit is composed of several identical elements, 
which undergo possible operations including reflect, rotate, and/or 
glide by following a specific crystallographic symmetry. Each element 
is discretized into a number of pixels that give a certain resolution 
of the element. A pixel can be in either solid or void phase, which is 
corresponding to the solid or void part in the architectured material, 
respectively. The porosity of an element (and the corresponding 
architectured material) is defined as the number of void pixels 
divided by the total number of pixels in the element. For example, 
Fig. 3A illustrates a 2D architectured material with p4 symmetry and 
the corresponding units, elements, and pixels.

There are 17 and 230 crystallographic symmetry groups in 2D 
and 3D spaces, respectively. For simplicity of conveying the key 
ideas of our method, we will focus on designs in 2D space in the 
current study. In Fig. 3B, we illustrate examples of units that follow 
the 17 symmetry groups in 2D. These symmetry groups have been 
characterized by mirror lines, fixed points, and/or glide lines to 
represent the reflect, rotate, and/or glide operations, respectively.

Topology generation
To generate the topology of an architectured material, we first 
generate the topology of its constituent element (e.g., gray part in 
Fig. 3B), map the element to a unit following a symmetry group, 
and then periodically translate the unit to form the architectured 
material. For a systematic design approach, the topology of the ele-
ment needs to satisfy the following criteria: (i) the topology should 
be randomly generated to represent the whole design space; (ii) the 
number of the void pixels in an element should follow the assigned 
porosity; and (iii) the solid phase in the unit needs to be path-
connected (38). Here, we develop an algorithm to generate the 
required configurations of elements. Briefly, we begin with an 

element composed of all solid pixels and then randomly disperse 
voids with random size and shape to the element. Meanwhile, we 
guarantee that the remaining solid pixels are path-connected and 
that the total area of the voids follows the assigned porosity for the 
element. The details of our algorithm of random topology genera-
tion are given in section S1.

Elastic constant calculation
Once the topology of an architectured material is generated (e.g., 
Fig. 3B), the finite element simulation is implemented to calculate 
the corresponding properties. For units with rectangular shape, the 
simulation domains are the units by themselves with periodic boundary 
conditions. For units with triangular and hexagonal shape, we map 
them into equivalent rectangular domains for simulation (39). In 
the calculation, we apply trial strain fields on the rectangular domain 
to obtain the reaction forces and the storage elastic energy. From 
the obtained reaction forces and the storage elastic energy, the 
equivalent constitutive behaviors of periodically patterned structures 
can be derived. Within the scope of linear elasticity, the equivalent 
constitutive behaviors of periodically patterned structures can be 
calculated using the homogenization method (40). By considering 
the first-order terms in the asymptotic expansion of the displacement 
field, it can be shown that the effective elastic tensor of the architec-
tured materials ​​​ ~ C ​​ ijkl​​ ​can be expressed in the following form with the 
Einstein index summation notation (23, 24, 41)

​​​​   C ​​ ijkl​​  = ​  1 ─ S ​ ​∫ 
S
​ ​​ ​C​ pqrs​​​(​​ ​ϵ​pq​ 0(ij)​ − ​ϵ​pq​ *(ij)​​)​​​(​​ ​ϵ​rs​ 

0(kl)​ − ​ϵ​rs​ 
*(kl)​​)​​dS​​

where Cpqrs is the elastic tensor of the solid phase, ​​ϵ​pq​ 0(ij)​​ is the ap-
plied unit test strain, ​​ϵ​pq​ *(ij)​​ is the fluctuation strain corresponding to 
the unit test strain, and S is the area of the rectangular domain. 
Physically, the fluctuation strain is used to satisfy the periodic 
boundary condition for the rectangular domain, which is the periodic 
solution of

​​∫ 
S
​ ​​ ​C​ ijpq​​ ​ϵ​pq​ *(kl)​ ​ ∂ ​v​ i​​ ─ ∂ ​y​ j​​

 ​ dS  = ​ ∫ 
S
​ ​​ ​C​ ijpq​​ ​ϵ​pq​ 0(kl)​ ​ ∂ ​v​ i​​ ─ ∂ ​y​ j​​

 ​ dS​

where v is a periodic admissible displacement field (23). After ​​​ ~ C ​​ ijkl​​​ is 
obtained, we can calculate the effective elastic properties (such as 

Fig. 1. Schematics of procedures to design complex architectured materials. (A) Data generators to generate datasets of configurations and properties of architec-
tured materials. (B) GANs trained by the datasets. (C) New designs of architectured materials with the targeted properties proposed by the GANs.
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Young’s modulus, shear modulus, and Poisson’s ratio) of the ar-
chitectured material along any direction. This method (41) has been 
broadly adopted in literature.

Isotropy calculation
In many applications, it is desirable to achieve designs with isotropic 
properties. To guarantee the isotropy, the elastic constants, such as 
Young’s modulus​ ​ ~ E ​​, should be independent of the orientations of 
the architectured materials. However, in reality, the perfect isotropy 
is difficult to achieve in architectured materials. To measure the 
isotropy of architectured materials, we follow the method given 
in (42, 43). We denote the maximum and minimum Young’s 
modulus in all possible directions of an architectured material 
with ​​​ ~ E ​​ max​​​ and ​​​ ~ E ​​ min​​​, respectively (see Fig. 4A for an example). 
The degree of isotropy can be defined as ​ =  ​ ~ E ​ / ​​ ~ E ​​ mean​​​, where  
​​ ~ E ​ = ​ ​​ 

~ E ​​ max​​ − ​​ ~ E ​​ min​​ _ 2 ​  ​and ​​​ ~ E ​​ mean​​ = ​ ​​ 
~ E ​​ max​​ + ​​ ~ E ​​ min​​ _ 2 ​​ . We call the architectured ma-

terial nearly isotropic if  ≤ 5%. This isotropic criterion is com-
parable with or stricter than those used in the literature (42, 43).

Database generation
After topology generation and properties calculation, we can con-
struct 17 datasets corresponding to the 17 symmetry groups in 2D 
(note that 230 datasets can be generated corresponding to the 230 
symmetry groups in 3D in the future). In each dataset, a data point 
is a combination of three items: pixel matrix for the element of an 
architectured material (fig. S3 and table S1), effective mean Young’s 
modulus ​​​ ~ E ​​ 

mean
​​​ of the architectured material, and isotropy  of the 

architectured material. The size of the dataset for each symmetry 
group is around one million configurations.

Machine learning algorithms
The datasets generated in previous sections will be used to train the 
GANs. GAN is a recently developed machine learning framework 
proposed to creatively generate complex outputs, such as fake faces, 
speeches, and videos (44). The adversarial structure can be composed 
of two competing deep neuron networks, a generative network and 
a discriminative network. In the GAN-based strategy, we use the 

discriminative network to map out the relationship between the 
pixel matrices of elements and their corresponding probability to be 
the high elastic modulus configurations from zero to a hundred 
percent. Meanwhile, armed with this knowledge on the relationship, 
the generative network is capable to fast generate thousands of new 
configurations to achieve desired properties such as the HS upper 
bound for isotropic Young’s modulus. We train a GAN for each 
symmetry group separately. The machine learning calculations are 
performed using TensorFlow (45), a system for large-scale machine 
learning. For our cases, stochastic training is implemented to train 
our machine learning models. We split 80% of all data points in 
each symmetry group (~0.8 million) as the training set and keep the 
remaining 20% data (~0.2 million) as the testing set. All training 
details are discussed in section S2.

Achieving HS upper bounds
Next, we demonstrate the capability of the proposed approach to 
design architectured materials that approximately achieve the HS 
upper bounds of isotropic Young’s moduli. We first focus on 
designing architectures to achieve the HS upper bound at porosity 
 = 0.5. Figure 4B shows the ranges of normalized mean Young’s 
moduli ​​​ ~ E ​​ mean​​ / ​E​ HS​​​ of nearly isotropic materials [ ≤ 5% (42, 43)] 
generated in 17 crystallographic symmetries, where EHS = E(1 − )/
(1 + 2) is the theoretical HS upper Young’s modulus in 2D (46). It 
is noticeable that certain symmetries, i.e., p4, p4g, p3, p6, p3m1, p31m, 
and p6m, tend to give higher Young’s moduli in the training data-
sets; and thus, these symmetries have higher potential to achieve 
the HS upper bound. For simplicity, we call these symmetries, i.e., 
p4, p4g, p3, p6, p3m1, p31m, and p6m, as high-potential symmetries. 
Next, we use the datasets of the high-potential symmetries to train 
our GAN models. In Fig. 4D, we display 18 GAN-generated config-
urations with  = 0.5 and  ≤ 5%, whose ​​​ ~ E ​​ mean​​​ achieve more than 
94% of EHS. Evidently, the maximum ​​​ ~ E ​​ mean​​​ of architectures gener-
ated by the GAN in each symmetry group is higher than the range of 
the corresponding training dataset (Fig. 4B). This is consistent with 
the distributions of ​​​ ~ E ​​ mean​​ / ​E​ HS​​​ for the training dataset and for the 
GAN outputs (Fig. 4C and fig. S16). This comparison shows that 
GANs can effectively extrapolate from the training data to provide 
multiple better designs than the randomly generated ones in each 
symmetry group. Notably, this design approach does not require 
any prior knowledge, bioinspiration, or trial-and-error iteration on 
the possible geometry of the architectured materials.

This experience-free design approach is widely applicable to other 
porosities. In Fig. 5A, we present a selected set of nearly isotropic 
configurations [ ≤ 5% (42, 43)], whose ​​​ ~ E ​​ mean​​ ​achieve more than 
94% of EHS with porosities from 0.05 to 0.75. In figs. S5 to S15, we 
further provide more than 360 additional nearly isotropic configu-
rations that achieve more than 90% of EHS for a wide range of 
porosities. The proximity of these configurations’ Young’s moduli 
to the HS upper bounds is comparable with or superior to that of 
previous designs in the literature (42, 43). While previous designs 
only gave a few configurations, the new capability of generating 
many desired configurations (e.g., more than 400) are impactful, 
due to two reasons. First, the proposed approach addresses a 
challenging inverse problem with multiple solutions in a systematic 
and experience-free manner. The proposed approach may also 
be useful for other inverse-design problems, such as designing 
architectured materials achieving the Suquet bound in plasticity 
(42). Second, if more constraints such as manufacturability were 

Fig. 2. Four example classes of 2D structures designed with the topology op-
timization that reach the HS upper bounds of isotropic elasticity and strain en-
ergy storage. Adopted from (29).
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imposed in practical applications, the multiple designs generated 
with the proposed approach would provide designers more choices 
for further selection.

We further demonstrate our design approach with experiments by 
fabricating GAN-generated architectured materials and measur-
ing their Young’s moduli. Considering the requirement of isotropy 
of the solid phase, we choose to use laser-cut samples instead of 
3D-printed ones. We measure the Young’s moduli of a number of 
proposed configurations with porosity from 0.05 to 0.75. For each 
porosity, three nearly isotropic architectures ( ≤ 5%) with the 
highest ​​​ ~ E ​​ mean​​​ generated by GANs have been selected to fabricate 
into testing samples. For the convenience of fabrication, the bound-
aries between void phase and solid phase in the units are mapped 
to smooth curves with spline interpolation. Each unit is repeated 
three times in each direction to represent the periodic architec-
tured material. Before performing experiments, finite element 
simulations are adopted to validate that the 3 × 3 units are suffi-
cient to represent the periodic architectured materials and give the 

effective Young’s moduli (see section S4 for details). Also, note 
that the 2D HS upper bound is defined under plane strain condi-
tion. To mimic the plane strain condition, we adopt the con-
strained uniaxial tension tests in the measurements (see section S4 
for details). In Fig. 5B, we compare the Young’s moduli of a sample 
measured along various directions with the mean value of the 
measured Young’s moduli. The very mild deviations of the Young’s 
moduli from the mean value validate the near isotropy of the archi-
tectured material.

In Fig. 5C, we summarize the experimentally measured effective 
mean Young’s moduli of various samples with porosities from 0.05 
to 0.75. For each porosity, the samples are based on three nearly 
isotropic architectures ( ≤ 5%) generated by GANs with the high-
est ​​​ ~ E ​​ mean​​​. We further compare the experimental results with the 
theoretical HS upper bounds at various porosities. The measured 
effective mean Young’s moduli of GAN-generated nearly isotropic 
( ≤ 5%) configurations can achieve more than 94% of the theoretical 
HS bound with porosities from 0.05 to 0.75.

Fig. 3. Illustrations of the pixel-wise architectured materials. (A) Definition of units, elements, and pixels in an architectured material. (B) Topology generation in 2D 
space by harnessing 17 groups of crystallographic symmetries. The porosity of architectures in (A) and (B) is set to be 0.5.
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DISCUSSION
Here, we have proposed an experience-free and systematic approach 
for the design of complex architectured materials with GANs. The 
networks are trained using simulation data of millions of randomly 

generated architectured materials categorized into different crystal-
lographic symmetries. We demonstrate the capability of the proposed 
approach with modeling and experimental results of more than 400 2D 
architectures that approximately achieve the HS upper bounds of 

Fig. 4. Architectured materials ( = 0.5) that approximate the HS bounds. (A) An example architecture and its Young’s Moduli in different directions. (B) Ranges of 
normalized Young’s Moduli ​​​ ~ E ​​ mean​​ / ​E​ HS​​​ ( ≤ 5%) of randomly generated architectures in 17 crystallographic symmetries. (C) The distributions of ​​​ ~ E ​​ mean​​ / ​E​ HS​​​ for the training 
dataset and for the GAN outputs (p6m,  ≤ 5%) (D) Examples of GAN-generated architectured materials with ​​​ ~ E ​​ mean​​ (  ≤  5 % ) ​achieving more than 94% of EHS. The nor-
malized Young’s moduli of three highest ​​​ ~ E ​​ mean​​​ ( ≤ 5%) generated by GANs in high-potential symmetries are marked as “×” in (B).
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stiffness with porosities ranging from 0.05 to 0.75. While the pro-
posed approach may take longer time to calculate the training datasets 
than the topology optimization, it represents an experience-free 
and systematic method that requires no prior knowledge and can be 
readily adopted in broad applications. In addition, the architectures 
generated in the current method can also serve as initial guess for 

the further topology optimization if needed. This work not only 
provides a new method that harnesses simulation data and machine 
learning to potentially design future acoustic metamaterials (7, 8), 
auxetic materials (17, 18), and soft robotics (21) in an experience-
free and systematic manner but also opens new avenues to addressing 
various inverse design problems in materials and structures.

Fig. 5. Architectured materials ( = 0.05 − 0.75) that approximate the HS bounds. (A) Examples of architectures with multiple porosities with ​​​ ~ E ​​ mean​​ (  ≤  5 % ) ​achiev-
ing more than 94% of EHS. (B) Photo of a laser-cut sample for an architecture and the measured Young’s moduli of the sample along various directions. (C) Comparison 
of ​​​ ~ E ​​ mean​​ ​of experimental samples and the theoretical HS upper bounds. The experimental samples are fabricated on the basis of three architectures generated by GANs 
with the highest ​​​ ~ E ​​ mean​​​ ( ≤ 5%).
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MATERIALS AND METHODS
Structure of database
The database is composed of 17 separated datasets. Each dataset 
corresponds to a particular symmetry and include 0.8 million data 
points for training and 0.2 million data points for testing. Each data 
point contains the normalized Young’s modulus ​​​ ~ E ​​ mean​​ / ​E​ HS​​​, the 
isotropy , and the configuration of the corresponding architectured 
material. The configuration is stored in the form of a vector com-
posed of 0 and 1, corresponding to void and solid pixels, respectively, 
in the element of the architectured material.

Structure of the GAN
The GAN consists of a generator and a discriminator. The generator 
is composed of five layers of neural networks. The first layer is a 
fully connected layer composed of 1024 neurons to receive the data 
from the database. The second layer is also a fully connected layer 
composed of 1600 neurons. The third and fourth layers are convo-
lutional layers composed of 64 and 32 neurons, respectively. The 
last layer is a deconvolutional layer associated with a tanh activa-
tion function to produce configurations with bounded pixel values.

The discriminator is composed of three layers of neural networks. 
The first and second layers are convolutional layers composed of 
64 and 128 neurons, respectively. Their convolutional window size 
is set to be 4 × 4. The first convolutional layer is associated with 
batch normalization operations and leaky rectified linear unit acti-
vations, and the second convolutional layer has a sigmoid activation 
function to produce probabilities between 0 and 1. The second layer 
has been flattened, and the output of the second layer is sent to the 
third layer, which is a fully connected layer composed of 1024 neurons.

The total loss is composed of the adversarial loss and the style 
transfer loss. The adversarial loss is for the minimum-maximum 
training process of GAN, and the style transfer loss enables the 
porosity of the generated configuration to approach the target 
porosity. The weight of the style transfer loss is set to be 0.03 to 
prevent the style transfer loss from diminishing to zero or over-
whelming the GAN adversarial loss. The Adam optimizer is applied 
in training by setting the learning rate as 0.0001. The batch size for 
training is set to be 32.

Fabrication of architectured materials
The pixel-wise architectures generated by GANs were first imported 
into the sketch module of SOLIDWORKS to smooth the solid-void 
boundaries by the cubic spline interpolation. Thereafter, each ar-
chitecture was uploaded to the laser cutter (Epilog Mini/Helix; Epilog 
Laser), which cut an acrylic plate multiple times with minimal laser 
energy. The resultant testing sample has overall dimensions of 
50 mm by 50 mm by 2.25 mm. A constrained uniaxial tensile test 
was carried out on the sample to obtain the stress-strain curve.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/17/eaaz4169/DC1
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