Skip to main content
. 2020 Apr 21;9:e52525. doi: 10.7554/eLife.52525

Table 1. Estimates of the main geometric and elastic properties of different non-enveloped empty viral capsids.

The Young’s modulus E has been evaluated from AFM nanoindentation experiments (Mateu, 2012; Michel et al., 2006; Ivanovska et al., 2007; Sae-Ueng et al., 2014) and, for SV40, from the experimental spring constant (van Rosmalen et al., 2018) using the standard thin shell formula k=2.25Eh2/R (Ivanovska et al., 2004). The 2D Young’s Modulus was calculated as Y=Eh; the effective diameter of the capsomers as (Santolaria, 2011) σ=R/53π(T+13cot(π5)-1), where T is the triangulation number; the line tension as (Luque et al., 2012) λ=2ϵ03σ considering a typical binding energy ϵ010kBT; and the FvK number as γ=12(1νp2)(R/h)2, with νp=0.3 (Buenemann and Lenz, 2008).

Virus T-number Diameter (nm) Thickness h (nm) E (Gpa) Y (N/m) σ (nm) Scaled line tension λ Föppl-von Karman γ
CCMV 3 28 3.8 0.14 0.53 5.9 0.00107 148
λ Procapsid 7 50 4.0 0.16 0.64 6.8 0.000436 427
λ Capsid 7 63 1.8 1.0 1.8 8.6 0.0000976 3344
SV40 7 45 6.0 0.033 0.2 6.1 0.00174 152