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Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap
complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall
diagnostic rate considerably. However, the upper limit of this method remains ill-defined,
hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding
variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76
predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and
introduced analyses for copy number variation and repeat expansion in a representative subset. For
new cases (/7= 184), our resulting clinically relevant detection rate remained stable at 47% with
24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly
improved the pathogenic rate by 7%. For the combined cohort (n7 = 260), the total observed
clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar
neurological phenotypes report comparable rates. This consistency across multiple cohorts
suggests that, despite continued technical and analytical advancements, an approximately 50%
diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive
genome-wide assessment is needed to identify the missing causative genetic etiologies for
cerebellar ataxia and related neurodegenerative diseases.
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1| INTRODUCTION

Hereditary spinocerebellar ataxia (dominant SCA and recessive SCAR) and spastic
paraplegia (HSP) are neurodegenerative disorders affecting the cerebellum, its pathways,
and the corticospinal tracts that can result from mutations in one of the hundreds of genes
(Online Mendelian Inheritance in Man [OMIM], https://www.omim.org/; OMIM, 2019).
Both disorders manifest high degrees of phenotypic heterogeneity even with common
specific causal mutations, necessitating genomic testing strategies to identify the relatively
rare causal mutations that are pervasive in both disorders and heterogeneous in presentation
(Anheim, Tranchant, & Koenig, 2012; Benini, Ben Amor, & Shevell, 2012; Brusse, Maat-
Kievit, & van Swieten, 2007; Fogel & Perlman, 2006, 2007, 2011; Fogel, Satya-Murti, &
Cohen, 2016; Klockgether, 2010; Manto & Marmolino, 2009). Both disorders include
seemingly sporadic confirmed genetic causes at relatively high rates (~25%) in otherwise
undiagnosed cases, commonly due to recessive inheritance, de novo mutations, or
anticipation (Fogel et al., 2014; Nibbeling et al., 2017; Ohba et al., 2013; Pyle et al., 2015;
Sawyer et al., 2013). In the last 5 years, whole-exome sequencing (WES) has come to the
forefront of testing cases with suspected genetic causes of spinocerebellar ataxia or spastic
paraplegia once the more common repeat expansion mutations have been ruled out (Fogel et
al., 2014). WES offers cost-effective broad-coverage testing of almost all known coding
variants due to single-nucleotide changes, small insertions/deletions, or proximal splice site
variants (Fogel et al., 2016; Rexach, Lee, Martinez-Agosto, Nemeth, & Fogel, 2019). It also
offers opportunities for the simultaneous analysis of comparator DNA (i.e., from parents or
siblings) to facilitate identification of de novo or compound heterozygous mutations and rule
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out rare familial benign polymorphisms based on segregation with disease status. Our initial
studies identified pathogenic/likely pathogenic variants in 21% (16/76) of properly selected
ataxia/spasticity patients with an additional 40% (30/76) with variants of uncertain
significance (VUS) requiring clinical follow-up (Fogel et al., 2014; Richards et al., 2015).
Other more recent studies examining similar cohorts have increased this overall detection
rate in hereditary ataxias to approximately 40-50% (Farwell et al., 2015; Nibbeling et al.,
2017; Sawyer et al., 2013; Sun et al., 2018). Diagnostic rates are frequently higher in
patients with positive family histories, when the probability for identifying a monogenic
disorder is highest, and when multiple family members are available for testing, where
interpretation of variants is improved by segregation relationships (Farwell et al., 2015;
Fogel et al., 2014; Sawyer et al., 2013). Here we present a more extensive follow-up study
with a larger cohort consisting primarily of adult-onset sporadic ataxia and spastic
paraplegia cases with suspicion for a possible genetic etiology. Our study was intended to
maximize diagnostic potential using genomic technologies including an assessment of copy
number variation (CNV) and repeat expansion in a representative subset of the cohort.
Additionally, we reanalyzed our previously reported cases to assess the effect of interval
advances in variant annotation and gene discovery. Finally, we compare our results with
other published studies to assess the overall diagnostic capability of current next-generation
sequencing and WES pipelines and discuss approaches to further improvement of patient
diagnosis.

METHODS

Patient enrollment and clinical assessment

This study comprises 184 index patients with a phenotypic range of either pure cerebellar
ataxia, spasticity, or complex neurologic disorders linked to either condition. All patients
had an extensive clinical evaluation to rule out the acquired causes of ataxia (Fogel et al.,
2014). To qualify for this study, patients were required to have negative test results for the
most common repeat expansion disorders (SCAL, SCA2, SCA3, SCA6, SCA7, and
Friedreich ataxia) causing hereditary cerebellar ataxia (Fogel & Perlman, 2006, 2011; Fogel,
Vickrey, Walton-Wetzel, Lieber, & Browner, 2013; Shakkottai & Fogel, 2013). Genetic
counseling was provided for all patients both before and following the completion of the
study. All patients enrolled in this study provided written informed consent. All methods in
this study were approved by the Institutional Review Board of the University of California at
Los Angeles.

Exome sequencing and data analysis

DNA samples were collected from the index patient and their family members based on
family history and individual availability for exome sequencing. Exome capture was
performed with commercially-available kits and sequencing was performed on the Illumina
HiSeq platform with paired-end reads (Table S1). WES data analysis was conducted based
on the Broad Institute’s Genome Analysis Toolkit (GATK3) version 3 best practices
guidelines (DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013).
Sequencing reads were mapped to the human genome (hs37d5) using the Burrows—Wheeler
Aligner (Li & Durbin, 2009) and postprocessed with SAMtools (Li et al., 2009). Picard
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Tools (https://broadinstitute.github.io/picard/) was used to compute sequence alignment
metrics and mark duplicate reads. The Qualimap tool was used to evaluate sequence
alignment quality (Garcia-Alcalde et al., 2012; Okonechnikov, Conesa, & Garcia-Alcalde,
2015). The mean coverage of the protein-coding RefSeq genes was 94.3x with standard
deviation 22.3x (range 50.3x to 204.5x). GATK was used for indel realignment, base quality
score recalibration, joint genotyping, variant quality score recalibration, variant evaluation,
and variant selection. Variant evaluation and selection were based off NCBI Reference
Sequence Database RefSeq (https://www.nchi.nlm.nih.gov/refseq; O’Leary et al., 2016)
exon intervals. Variants were annotated with either the SNP & Variation Suite v8 or VarSeq
v1 (both from Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com). The Exome
Aggregation Consortium (EXAC; http://exac.broadinstitute.org/) and the Genome
Aggregation Database (gnomAD; http://gnomad.broadinstitute.org/) public databases were
used to filter for variants with a minor allele frequency <2% (Lek et al., 2016). Variants that
were found to be disproportionately common among internal controls (e.g., batch effects)
were excluded from the analysis. Phenotypic keywords provided by clinicians were used to
generate gene lists from the OMIM (https://www.omim.org/; OMIM, 2019) and Human
Gene Mutation Database Professional Version (HGMD; https://
www.giagenbioinformatics.com/products/human-gene-mutation-database/; Stenson et al.,
2014) databases. Variants found within exons and splice regions of genes from these gene
lists were first assessed for their clinical significance as previously described (Fogel et al.,
2014; Richards et al., 2015). Variants were designated as pathogenic or likely pathogenic
based on information from clinical databases such as HGMD, ClinVar (https://
www.nchi.nlm.nih.gov/clinvar/), or reports from published studies. Novel variants have been
submitted to ClinVar as clinically appropriate. Comparator WES data were incorporated into
the analysis when available (Table S2). If available, variants within linkage peaks (see
below) were also prioritized for initial analysis. Subsequently, variants outside of the gene
lists and linkage peaks were then analyzed. Variant classification and interpretation were
based on the American College of Medical Genetics and Genomics guidelines (Richards et
al., 2015). Sanger sequencing was used to confirm variant segregation with disease status if
family members were available. Identified variants that had <Q500 were confirmed by
Sanger sequencing (Strom et al., 2014). Statistical analysis of comparative diagnostic
efficacy was performed using data from multiple previously published studies (Table S3).

Array genotyping and pedigree verification

Data from Ilumina Infinium Human Exome v1-2 array and Human CytoSNP-12v1-0 D
BeadChips (both Illumina, San Diego, CA) were generated for linkage analysis for selected
index patients and their family members. The quality assessment included confirmation of
sample identity and purity using the Error Rate In Sequencing (ERIS) pipeline. An “e-
GenoTyping” approach was used to screen all sequence reads for exact matches to probe
sequences defined by the variant and position of interest. Samples that passed quality control
metrics of ERIS single nucleotide polymorphism (SNP) array concordance (>90%) and
ERIS average contamination rate (<5%) were carried forward into quality filtering, pedigree
validation, and linkage analysis. Insertions/deletions and nonautosomal polymorphisms and
variants without an rs identifier were all removed. SNPs that had high missingness or
mapped to identical locations (duplicates) were also removed. The prePRIMUS QC pipeline
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was used to estimate pairwise kinship and PRIMUS (Staples et al., 2014; Staples et al.,
2016) was used to reconstruct and validate pedigrees. In the absence of array data, pedigree
verification was approximated off WES variant calls by calculating the unadjusted Ajk
statistic (Yang et al., 2010) with the relatedness algorithm from VCFtools (Danecek et al.,
2011). Patient-reported sex was verified by exome data coverage of the sex chromosomes.
Two sample swaps were confirmed and the corresponding pedigrees were updated for
analysis.

Linkage analysis

Multifamily parametric linkage analysis was conducted with ALLEGRO (Gudbjartsson,
Jonasson, Frigge, & Kong, 2000) using either a fully penetrant dominant model with no
phenocopies (fy, f1, f2 = 0,1,1) or a recessive model (fy, f1, f2 = 0,0,1) corresponding to
patterns of affection in the pedigree to identify overlapping haplotypes shared identically by
descent (IBD). Identified candidate regions where IBD sharing was consistent with the
model of inheritance for the disease were then used to prioritize variants for subsequent
WES analyses. Because of power, the logarithm of the odds scores generated from these
analyses did not meet genome-wide significance thresholds and thus was not considered.

CNV analysis

CNV analysis was conducted off WES data with read depth approaches using both Copy
Number Inference From Exome Reads (CoNIFER; Krumm et al., 2012; O’Roak et al., 2012)
and HMZDelFinder (Gambin et al., 2016) as well as exome hidden Markov Model (XHMM;
Fromer & Purcell, 2014; Fromer et al., 2012; Poultney et al., 2013). A total of 53 families
from the expanded cohort that had WES on one the following captured kits: Nextera Rapid
Capture Exome, NimbleGen Seqcap EZ GSC VCRome, or Agilent SureSelect Human All
Exon V4 Capture (Table S1) were selected for CNV analysis. In addition, 15 families from
the original cohort (Fogel et al., 2014) that had WES on either Nextera Rapid Capture
Exome or NimbleGen Seqcap EZ GSC VCRome capture Kits were also included for CNV
analysis. Cases were grouped by their capture Kit platform for analysis. CNV calls in low
complexity regions were removed. Intersecting CNV calls between CoNIFER and XHMM
as well as CNV calls from HMZDelFinder were analyzed. All CNV calls were compared to
the following CNV databases: EXAC CNV (Ruderfer et al., 2016), Database of Genomic
Variant (DGV; MacDonald, Ziman, Yuen, Feuk, & Scherer, 2014) and DECIPHER (Firth et
al., 2009). CNV calls that were present in multiple studies in DGV were classified as likely
benign. CNV calls that were found in EXAC CNV were evaluated based on population and
frequency information. If appropriate, biallelic inheritance was considered. CNV calls that
were found in DECIPHER were evaluated based on reported phenotypes, overlapping gene
annotation, and pathogenicity/contribution.

Short tandem repeat (STR) expansion detection analysis

STR expansion screening was conducted with STRetch (Dashnow et al., 2018) on the same
families as the CNV analysis described above. BAM files were grouped by corresponding
capture kit platforms and processed through the STRetch_exome_bam_pipeline.groovy
pipeline. The EXOME_TARGET parameter was configured to the corresponding capture kit
target coordinates for each run. A bed file with all STRs defined in the human genome was
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provided for the input_regions parameter. STRetch calls that had locus coverage lower than
3 and p_adj value >.05 were filtered. Only calls within genic regions were analyzed. Calls in
known STR disease-causing genes were further evaluated for pathogenicity based on
segregation of disease status (if applicable) and phenotype.

RESULTS

Overall, 49% of the cohort was female (90/184) with an average age of 50 years (standard
deviation 20 years, range 2—88 years) and primarily of European (73%) descent (Tables S4—
7). The majority of the cases were sporadic (124/184, 67%) and adult-onset (127/184, 69%;
Table 1). Pathogenic or likely pathogenic variants were identified in 24% (44/184, Tables 1
and 2; Table S5) and VUS were identified in 23% (43/184, Tables 1 and 3; Table S6).
Because VUS require clinical follow-up (e.g., additional confirmatory diagnostic testing, if
available, or subsequent bioinformatic revaluation) we combined these categories to obtain
an overall rate of 47% for identification of clinically relevant variation (87/184, Tables 1-3;
Tables S5-7). There was no notable difference in overall observation of clinically relevant
variants between familial (43%, 26/60) or sporadic cases (49%, 61/124) or in early-onset
(58%, 33/57) versus adult-onset (43%, 54/127) cases (Tables 1-3; Tables S5 and S6).
Generally, as expected, more pathogenic/likely pathogenic variants were found in familial
(30%, 18/60) and early-onset cases (35%, 20/57) relative to sporadic and adult-onset cases
(21%, 26/124 and 19%, 24/127, respectively; Tables 1-3; Tables S5 and S6). Pathogenic/
likely pathogenic mutations were predominantly identified in genes associated with
recessive disorders with compound heterozygous variants being the most common (41%),
followed by heterozygous variants in genes associated with dominant disorders (25%) and
homozygous recessive variants (23%, Table 1). De novo variation made up 7% of the
pathogenic/likely pathogenic variants (Table 1). The most frequently encountered genes
identified with pathogenic/likely pathogenic variants were SPG7(20%, 9/44), CACNA1G
(Ngo et al., 2018), and SYNEI (7%, 3/44 each), and /TPRI, KCNAZ and SPG11 (5%, 2/44
each, Table 2) similar to the original cohort (Fogel et al., 2014).

Following exome analysis, CNV and repeat expansion analysis was performed on a
representative subset of the overall cohort (26%, 68/260) consisting of 53 undiagnosed
families from the expanded cohort (29%, 53/184) and 15 undiagnosed families from the
initial cohort (20%, 15/76) where WES data were available from multiple members to
confirm disease segregation. A pathogenic CNV deletion was identified in two families
(2.9%, Tables 1, 2, and 4; Table S5). In one family with six members affected by progressive
adult-onset ataxia across two generations, a CNV deletion (exons 3-33) in the /7PR1 gene
was identified. Similar deletions have previously been reported to cause SCA15/16 (van de
Leemput et al., 2007). The CNV deletion was detected by CONIFER and XHMM in both the
patient and affected son’s WES data. Actual breakpoints were clinically confirmed through
NGS and quantitative PCR. In the other family, a pathogenic deletion in the FARS2 gene
was identified during the reanalysis of the original cohort, described in detail below. A
pathogenic repeat expansion was also identified in one family (1.5%) by STRetch (Tables 1
and 2; Table S5). This expansion is associated with Spinocerebellar ataxia type 8
(Mundwiler & Shakkottai, 2018; Paulson, 2018) and was subsequently confirmed by clinical
testing in the proband.
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Reanalysis of variants from the original cohort at 5 years resulted in an unchanged
diagnostic interpretation in 58 of 76 cases (76%), and reclassification in the remaining 18
cases (24%, Table 4). In six subjects, variants previously classified as VUS were reclassified
as benign based on either being too common in the human genome using updated EXAC/
gnomAD frequency data or because they did not segregate with the disease when additional
family members were tested. Conversely, six nondiagnostic cases were reclassified as having
a reportable VUS based on interval evidence supporting disease. Two nondiagnostic cases
and two with a previously reported VUS were reclassified as now having pathogenic/likely
pathogenic variants based on interval updates. One patient had an originally reported VUS in
the PNPLAG gene reclassified as benign and a previously unreported VUS reported in the
TBK1 gene due to a more consistent phenotype. Last, one patient had originally reported
VUS in the ZFYVEZ6 gene reclassified as benign and a previously unreported pathogenic
variant reported in the FARSZ gene (Sahai et al., 2018) due to a more consistent phenotype
along with the identification of the second pathogenic variant through our CNV analysis
(Table 4). As described above, the CNV analysis of 15 families from this original cohort
(20%, 15/76) identified one (7%, 1/15) pathogenic/likely pathogenic variant. Together, these
reclassifications resulted in a modest increase in pathogenic/likely pathogenic variant calls
(28%, 21/76 vs. 21%, 16/76) and overall clinically relevant variants (63%, 48/76 vs. 61%,
46/76, Table 4). Combining these data with our expanded cohort, our collective observation
of pathogenic/likely pathogenic variation is 25% (65/260) and clinically relevant variants
were seen in 52% (135/260, Tables 1-4; Tables S5 and S6). For the combined cohort the
most commonly identified genes with pathogenic/likely pathogenic variants were SPG7
(17%, 11/65), SYNE1 (9%, 6/65), CACNAIG, ITPR1, and SPG11 (5%, 3/65 each), and
GBE1, KCNAZ, SPAST, and WFS1 (3%, 2/65 each, Tables 2 and 4; Table S5; Fogel et al.,
2014).

An important diagnostic question concerns how effective exome detection truly is for all
known genetic ataxias. To estimate this, we examined the diagnostic rates for families with
multiple affected members (either parents or siblings) where a Mendelian genetic etiology
can most strongly be presumed. Next we combined our data with the clinically relevant
exome diagnostic rates from five recent independent WES studies (Montaut et al., 2018;
Nibbeling et al., 2017; Ohba et al., 2013; Pyle et al., 2015; Sawyer et al., 2013) of similar
undiagnosed families with ataxia obtaining a mean diagnostic rate of 42% from 139 total
families (58/139, Table 1 and Table S3). To assess the efficiency of exome sequencing as a
diagnostic test we assumed all these families had a Mendelian genetic cause detectable by
exome sequencing, thus setting the maximum diagnostic rate at 100% (adjusted to 96% for
average exome coverage). Using a one proportion test, the observed diagnostic rate of 42%
differs significantly from the maximum expected rate of 96% (zscore = 32.5; p<.0001;
95% confidence interval = 34-51%). These data are sufficiently powered at this level of
significance to show a significant discrepancy between the observed diagnostic rate and an
expected rate as low as 51%. Therefore, even in a population with the strongest likelihood of
having a Mendelian genetic cause identifiable by WES, half of the patients remain
undiagnosed. Incorporating our data with that from a total of six additional studies that
examined ataxia patients using NGS panel testing (Coutelier et al., 2018; Farwell et al.,
2015; Marelli et al., 2016; Nemeth et al., 2013; Sun et al., 2018; van de Warrenburg et al.,
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2016) did not improve the maximum observed diagnostic confidence interval above 51%
(Table 1 and Table S3). Incorporating sporadic cases from the above studies further weakens
the maximum potential diagnostic rate (Table S3).

DISCUSSION

In this report, we performed exome sequencing on 184 patients with undiagnosed familial
and sporadic ataxia and/or spastic paraplegia with suspicion for a genetic cause based on
either familial inheritance patterns or negative screening for alternative acquired causes of
ataxia (Fogel et al., 2014). CNV and repeat expansion analysis were also performed in a
representative subset of the cohort, representing approximately one-third of undiagnosed
cases. We identified pathogenic/likely pathogenic variants in 24% (44/184), and VUS in
23% (43/184) of cases for an overall clinically relevant detection rate of 47% (87/184). This
included identification of a pathogenic CNV in one family and a pathogenic repeat
expansion in another. Of note, 11 cases classified as nondiagnostic in this study were
ultimately clinically diagnosed with multiple system atrophy, cerebellar type, and another
case was identified with a VUS associated with increased risk for this condition (Gilman et
al., 2008; Zhao et al., 2016). We also reclassified variants from our previously reported 76
cases (Fogel et al., 2014) based on current annotation, which has been shown to improve
diagnosis over time (Alfares et al., 2018; Ewans et al., 2018; Fogel, 2018b; Fogel, Lee,
Strom, Deignan, & Nelson, 2016; Fogel et al., 2016; Nambot et al., 2018; Rexach et al.,
2019; Wright et al., 2018). This resulted in four cases previously classified as nondiagnostic
or having a reportable VUS being reclassified with a pathogenic/likely pathogenic genetic
variant. Six previous nondiagnostic cases were reclassified as having a reportable VUS, and
six cases with variants previously designated as VUS or likely pathogenic reclassified as
benign. Two cases had a previous VUS reclassified as benign but also had either a new VUS
or pathogenic variant reported in a different gene. Despite these adjustments, our overall rate
of detecting clinically relevant variants remained similar to our previous study (63%, 48/76
vs. 61%, 46/76) although pathogenic/likely pathogenic numbers improved (28%, 21/76 vs.
21%, 16/76). Combining these datasets, the overall detection of clinically relevant variants
was 52% (135/260) with 25% (65/260) classified as pathogenic or likely pathogenic.

Collectively, numerous studies evaluating WES and NGS-based ataxia gene panels have
achieved diagnostic rates of 32% across all patients (278/873) and 47% for familial cases
(43/92), which improves slightly if focused on WES in familial cases (53%, 30/57, Table S3;
Coutelier et al., 2018; Farwell et al., 2015; Keogh et al., 2015; Lee et al., 2014; Marelli et al.,
2016; Montaut et al., 2018; Nemeth et al., 2013; Nibbeling et al., 2017; Ohba et al., 2013;
Pyle et al., 2015; Sawyer et al., 2013; Sun et al., 2018; van de Warrenburg et al., 2016). By
combining our current data with these studies we evaluated the capability of current exome
sequencing and analysis pipelines to achieve a diagnosis of the remaining unsolved ataxia
and spasticity cases. Even when combining the data from these multiple independent studies
(Table S3) and assessing diagnostic rates in familial ataxia, that most likely to have an
identifiable Mendelian cause, the maximum overall rate of detecting clinically significant
findings consistently hovers at approximately 50%, well below even a conservative estimate
of the expected rate.
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While WES efficiently identifies certain types of disease-causing variants including small
indels, single base changes disrupting protein function, and canonical splice acceptor/donor
variants, the fact that approximately 50% of cases still remain unresolved highlights gaps in
sensitivity of detecting of other classes of mutations (Rexach et al., 2019). In particular,
many structural variants and repeat expansions present in the coding sequence are not
detected well or reliably genome-wide by WES. For example, exome sequencing can be
limited in the comprehensive detection of mutations within the mitochondrial genome and is
incapable of detecting the majority of repeat expansions and noncoding genomic variation
which can contribute to the modulation of gene expression (Rexach et al., 2019). With recent
advances in analyses methods, WES can be used to detect CNV affecting multiple exons, as
illustrated here, but continues to be limited for detecting small CNV (i.e., involving single-
exons), which may be better identified with whole-genome sequencing (WGS) methods
(Rexach et al., 2019). We assessed 26% (68/260) of our cohort for CNV and repeat
expansions using the depth of read coverage data from WES, which resulted in the diagnosis
of only three additional cases (4%). This suggests that the addition of detection methods for
CNV and known repeat expansions to current diagnostic pipelines may not contribute much
overall to the missing heredity. However, repeat expansions and single exon heterozygous
deletions are challenging to reliably call from exome data so this may also indicate that
current methods need further refinement. Extension to WGS using short read (to observe
CNV) and long read (to observe CNV and repeat expansion) technologies in the evaluation
of ataxia promises to improve detection of these genetic causes (Rexach et al., 2019).
Noncoding variation, such as point mutations in promoter regions, splice sites, or other
RNA-processing regulatory regions, all potentially detectable by WGS, must also account
for some disease-causing mutations as well, but their categorization has remained difficult
(Rexach et al., 2019).

The results of this study further emphasize the need for continued investigation into methods
to complement and extend the diagnostic value of current next-generation sequencing
datasets. It is certainly possible, and likely probable, that additional undiscovered genes
responsible for these phenotypes exist and are causative in a percentage of our population.
Even with the use of linkage analysis and the addition of multiple family members when
available, such genes are challenging to detect if they cause extremely rare or private
disorders. The development of collaborative resources to merge data and analysis from large
cohorts of patients with ataxic phenotypes may aid in the discovery of such genes (Fogel,
2018a), as will a focus on mutation types not typically detected by exome sequencing. For
example, novel disease-causing repeat expansion disorders continue to be described and
subsequently identified in undiagnosed patients (Cortese et al., 2019; Ishikawa et al., 2011;
Kobayashi et al., 2011; Rafehi et al., 2019; Seixas et al., 2017; Valera et al., 2017).
Furthermore, variants whose effect is determined in combination with additional genes
(digenic, polygenic), epigenetic, or environmental factors, or causal mutations in the
noncoding genome that affect gene regulation would be difficult to detect by current DNA-
only methods. The application of “multi-omic” strategies is increasingly being applied to
facilitate variant interpretation by assessing their effects on the transcriptome, including
alteration in messenger RNA splicing (Cummings et al., 2017; Elsaid et al., 2017; Kremer et
al., 2017). Coupling next-generation sequencing methods with transcriptome analysis has
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already shown diagnostic utility in other rare diseases (Lee et al., 2019). In addition to WGS,
new sequencing platforms and analysis strategies are in various stages of development that
could facilitate the identification of rare or novel repeat expansions (Gymrek, Golan, Rosset,
& Erlich, 2012; Rafehi et al., 2019), or smaller or more complex CNV or CNV mediated by
difficult to map repeat elements (SINEs, LINEs, etc.; Turner et al., 2016). Additionally,
pathway or network-based analytic methods have been utilized to identify rare or polygenic
candidate disease genes based on their convergence upon common disease-associated
biological pathways (Nibbeling et al., 2017). Finally, epidemiological and computational
medicine approaches, which are increasingly enabled through large-scale precision health
initiatives and availability of electronic medical records, have the potential to identify gene-
environment interactions that have long eluded detection (Rexach et al., 2019).

Much of the above discussion still represents areas of advancing research investigation but,
given the dynamic nature of the field, can be rapidly translated to clinical practice. For the
clinician evaluating patients with ataxic and related disorders suspected to have a genetic
etiology, standard of care would still include the use of exome sequencing (Fogel, 2018b;
Fogel et al., 2014; Rexach et al., 2019) or a comprehensive next-generation sequencing
panel targeting currently known ataxia genes (Sun et al., 2018) if exome sequencing is
unavailable. However, once performed and if nondiagnostic, for the remaining undiagnosed
familial cases with apparent monogenic inheritance, a key focus should be on repeating
bioinformatic analysis at regular intervals, as well as the implementation of more
comprehensive genomic tools and more complete methods to identify mutation types
currently not observed in WES as they become clinically available.

CONCLUSION

Exome sequencing performed in a predominantly adult- and sporadic-onset cohort of 260
patients with cerebellar ataxia and/or spastic paraplegia observed clinically relevant genetic
variation in 52% and pathogenic or likely pathogenic variants in 25% of cases, emphasizing
the importance of coding variation to these disorders. However, improved annotation
methods and the inclusion of CNV and repeat expansion analysis in a representative subset
of this cohort did not dramatically improve overall diagnostic rates from prior studies, even
among familial cases with the highest evidence for monogenic disorders. The discrepancy
between observed and expected diagnostic rates in familial cases from this and other
published studies supports a current diagnostic ceiling for exome sequencing of
approximately 50%, suggesting that a critical limitation to genetic diagnosis in these patients
rests on the high likelihood that missing pathogenic mutations lie outside the exome and
must be identified by other methods and more comprehensive genome-wide strategies.
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TABLE 1

Distribution of variant types detected by WES for expanded ataxia cohort

A

Total Familial Sporadic EO AO

N % N % N % N % N %
Path/LP 44 24 18 30 26 21 20 35 24 19
VUS 43 23 8 13 35 28 13 23 30 24
NSV 97 53 34 57 63 51 24 42 73 57
Total 184 100 60 33 124 67 57 31 127 69

B.

De novo

Homozygous

Compound heterozygous
Inherited heterozygous®
Copy number variant

Repeat expansion

Pathogenic/likely pathogenic variants

(N =44)

No. of cases %
3 7
10 23
18 41
11 25
1 2
1 2

Page 17

Abbreviations: AO, adult-onset; EO, early-onset (<age 20 years); LP, likely pathogenic; N, number of index patients; NSV, no significant variants

identified; Path, pathogenic; WES, Whole-exome sequencing.

a\/ariants were considered inherited heterozygous unless parents or other family members were available for testing for de novo confirmation or
variant was previously reported as de novo through another clinical test.
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