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Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap 

complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall 

diagnostic rate considerably. However, the upper limit of this method remains ill-defined, 

hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding 

variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 

predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and 

introduced analyses for copy number variation and repeat expansion in a representative subset. For 

new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 

24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly 

improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed 

clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar 

neurological phenotypes report comparable rates. This consistency across multiple cohorts 

suggests that, despite continued technical and analytical advancements, an approximately 50% 

diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive 

genome-wide assessment is needed to identify the missing causative genetic etiologies for 

cerebellar ataxia and related neurodegenerative diseases.
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1 | INTRODUCTION

Hereditary spinocerebellar ataxia (dominant SCA and recessive SCAR) and spastic 

paraplegia (HSP) are neurodegenerative disorders affecting the cerebellum, its pathways, 

and the corticospinal tracts that can result from mutations in one of the hundreds of genes 

(Online Mendelian Inheritance in Man [OMIM], https://www.omim.org/; OMIM, 2019). 

Both disorders manifest high degrees of phenotypic heterogeneity even with common 

specific causal mutations, necessitating genomic testing strategies to identify the relatively 

rare causal mutations that are pervasive in both disorders and heterogeneous in presentation 

(Anheim, Tranchant, & Koenig, 2012; Benini, Ben Amor, & Shevell, 2012; Brusse, Maat-

Kievit, & van Swieten, 2007; Fogel & Perlman, 2006, 2007, 2011; Fogel, Satya-Murti, & 

Cohen, 2016; Klockgether, 2010; Manto & Marmolino, 2009). Both disorders include 

seemingly sporadic confirmed genetic causes at relatively high rates (~25%) in otherwise 

undiagnosed cases, commonly due to recessive inheritance, de novo mutations, or 

anticipation (Fogel et al., 2014; Nibbeling et al., 2017; Ohba et al., 2013; Pyle et al., 2015; 

Sawyer et al., 2013). In the last 5 years, whole-exome sequencing (WES) has come to the 

forefront of testing cases with suspected genetic causes of spinocerebellar ataxia or spastic 

paraplegia once the more common repeat expansion mutations have been ruled out (Fogel et 

al., 2014). WES offers cost-effective broad-coverage testing of almost all known coding 

variants due to single-nucleotide changes, small insertions/deletions, or proximal splice site 

variants (Fogel et al., 2016; Rexach, Lee, Martinez-Agosto, Nemeth, & Fogel, 2019). It also 

offers opportunities for the simultaneous analysis of comparator DNA (i.e., from parents or 

siblings) to facilitate identification of de novo or compound heterozygous mutations and rule 
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out rare familial benign polymorphisms based on segregation with disease status. Our initial 

studies identified pathogenic/likely pathogenic variants in 21% (16/76) of properly selected 

ataxia/spasticity patients with an additional 40% (30/76) with variants of uncertain 

significance (VUS) requiring clinical follow-up (Fogel et al., 2014; Richards et al., 2015). 

Other more recent studies examining similar cohorts have increased this overall detection 

rate in hereditary ataxias to approximately 40–50% (Farwell et al., 2015; Nibbeling et al., 

2017; Sawyer et al., 2013; Sun et al., 2018). Diagnostic rates are frequently higher in 

patients with positive family histories, when the probability for identifying a monogenic 

disorder is highest, and when multiple family members are available for testing, where 

interpretation of variants is improved by segregation relationships (Farwell et al., 2015; 

Fogel et al., 2014; Sawyer et al., 2013). Here we present a more extensive follow-up study 

with a larger cohort consisting primarily of adult-onset sporadic ataxia and spastic 

paraplegia cases with suspicion for a possible genetic etiology. Our study was intended to 

maximize diagnostic potential using genomic technologies including an assessment of copy 

number variation (CNV) and repeat expansion in a representative subset of the cohort. 

Additionally, we reanalyzed our previously reported cases to assess the effect of interval 

advances in variant annotation and gene discovery. Finally, we compare our results with 

other published studies to assess the overall diagnostic capability of current next-generation 

sequencing and WES pipelines and discuss approaches to further improvement of patient 

diagnosis.

2 | METHODS

2.1 | Patient enrollment and clinical assessment

This study comprises 184 index patients with a phenotypic range of either pure cerebellar 

ataxia, spasticity, or complex neurologic disorders linked to either condition. All patients 

had an extensive clinical evaluation to rule out the acquired causes of ataxia (Fogel et al., 

2014). To qualify for this study, patients were required to have negative test results for the 

most common repeat expansion disorders (SCA1, SCA2, SCA3, SCA6, SCA7, and 

Friedreich ataxia) causing hereditary cerebellar ataxia (Fogel & Perlman, 2006, 2011; Fogel, 

Vickrey, Walton-Wetzel, Lieber, & Browner, 2013; Shakkottai & Fogel, 2013). Genetic 

counseling was provided for all patients both before and following the completion of the 

study. All patients enrolled in this study provided written informed consent. All methods in 

this study were approved by the Institutional Review Board of the University of California at 

Los Angeles.

2.2 | Exome sequencing and data analysis

DNA samples were collected from the index patient and their family members based on 

family history and individual availability for exome sequencing. Exome capture was 

performed with commercially-available kits and sequencing was performed on the Illumina 

HiSeq platform with paired-end reads (Table S1). WES data analysis was conducted based 

on the Broad Institute’s Genome Analysis Toolkit (GATK3) version 3 best practices 

guidelines (DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al., 2013). 

Sequencing reads were mapped to the human genome (hs37d5) using the Burrows–Wheeler 

Aligner (Li & Durbin, 2009) and postprocessed with SAMtools (Li et al., 2009). Picard 
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Tools (https://broadinstitute.github.io/picard/) was used to compute sequence alignment 

metrics and mark duplicate reads. The Qualimap tool was used to evaluate sequence 

alignment quality (Garcia-Alcalde et al., 2012; Okonechnikov, Conesa, & Garcia-Alcalde, 

2015). The mean coverage of the protein-coding RefSeq genes was 94.3× with standard 

deviation 22.3× (range 50.3× to 204.5×). GATK was used for indel realignment, base quality 

score recalibration, joint genotyping, variant quality score recalibration, variant evaluation, 

and variant selection. Variant evaluation and selection were based off NCBI Reference 

Sequence Database RefSeq (https://www.ncbi.nlm.nih.gov/refseq; O’Leary et al., 2016) 

exon intervals. Variants were annotated with either the SNP & Variation Suite v8 or VarSeq 

v1 (both from Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com). The Exome 

Aggregation Consortium (ExAC; http://exac.broadinstitute.org/) and the Genome 

Aggregation Database (gnomAD; http://gnomad.broadinstitute.org/) public databases were 

used to filter for variants with a minor allele frequency ≤2% (Lek et al., 2016). Variants that 

were found to be disproportionately common among internal controls (e.g., batch effects) 

were excluded from the analysis. Phenotypic keywords provided by clinicians were used to 

generate gene lists from the OMIM (https://www.omim.org/; OMIM, 2019) and Human 

Gene Mutation Database Professional Version (HGMD; https://

www.qiagenbioinformatics.com/products/human-gene-mutation-database/; Stenson et al., 

2014) databases. Variants found within exons and splice regions of genes from these gene 

lists were first assessed for their clinical significance as previously described (Fogel et al., 

2014; Richards et al., 2015). Variants were designated as pathogenic or likely pathogenic 

based on information from clinical databases such as HGMD, ClinVar (https://

www.ncbi.nlm.nih.gov/clinvar/), or reports from published studies. Novel variants have been 

submitted to ClinVar as clinically appropriate. Comparator WES data were incorporated into 

the analysis when available (Table S2). If available, variants within linkage peaks (see 

below) were also prioritized for initial analysis. Subsequently, variants outside of the gene 

lists and linkage peaks were then analyzed. Variant classification and interpretation were 

based on the American College of Medical Genetics and Genomics guidelines (Richards et 

al., 2015). Sanger sequencing was used to confirm variant segregation with disease status if 

family members were available. Identified variants that had <Q500 were confirmed by 

Sanger sequencing (Strom et al., 2014). Statistical analysis of comparative diagnostic 

efficacy was performed using data from multiple previously published studies (Table S3).

2.3 | Array genotyping and pedigree verification

Data from Illumina Infinium Human Exome v1–2 array and Human CytoSNP-12v1–0_D 

BeadChips (both Illumina, San Diego, CA) were generated for linkage analysis for selected 

index patients and their family members. The quality assessment included confirmation of 

sample identity and purity using the Error Rate In Sequencing (ERIS) pipeline. An “e-

GenoTyping” approach was used to screen all sequence reads for exact matches to probe 

sequences defined by the variant and position of interest. Samples that passed quality control 

metrics of ERIS single nucleotide polymorphism (SNP) array concordance (>90%) and 

ERIS average contamination rate (<5%) were carried forward into quality filtering, pedigree 

validation, and linkage analysis. Insertions/deletions and nonautosomal polymorphisms and 

variants without an rs identifier were all removed. SNPs that had high missingness or 

mapped to identical locations (duplicates) were also removed. The prePRIMUS QC pipeline 
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was used to estimate pairwise kinship and PRIMUS (Staples et al., 2014; Staples et al., 

2016) was used to reconstruct and validate pedigrees. In the absence of array data, pedigree 

verification was approximated off WES variant calls by calculating the unadjusted Ajk 

statistic (Yang et al., 2010) with the relatedness algorithm from VCFtools (Danecek et al., 

2011). Patient-reported sex was verified by exome data coverage of the sex chromosomes. 

Two sample swaps were confirmed and the corresponding pedigrees were updated for 

analysis.

2.4 | Linkage analysis

Multifamily parametric linkage analysis was conducted with ALLEGRO (Gudbjartsson, 

Jonasson, Frigge, & Kong, 2000) using either a fully penetrant dominant model with no 

phenocopies (f0, f1, f2 = 0,1,1) or a recessive model (f0, f1, f2 = 0,0,1) corresponding to 

patterns of affection in the pedigree to identify overlapping haplotypes shared identically by 

descent (IBD). Identified candidate regions where IBD sharing was consistent with the 

model of inheritance for the disease were then used to prioritize variants for subsequent 

WES analyses. Because of power, the logarithm of the odds scores generated from these 

analyses did not meet genome-wide significance thresholds and thus was not considered.

2.5 | CNV analysis

CNV analysis was conducted off WES data with read depth approaches using both Copy 

Number Inference From Exome Reads (CoNIFER; Krumm et al., 2012; O’Roak et al., 2012) 

and HMZDelFinder (Gambin et al., 2016) as well as exome hidden Markov Model (XHMM; 

Fromer & Purcell, 2014; Fromer et al., 2012; Poultney et al., 2013). A total of 53 families 

from the expanded cohort that had WES on one the following captured kits: Nextera Rapid 

Capture Exome, NimbleGen Seqcap EZ GSC VCRome, or Agilent SureSelect Human All 

Exon V4 Capture (Table S1) were selected for CNV analysis. In addition, 15 families from 

the original cohort (Fogel et al., 2014) that had WES on either Nextera Rapid Capture 

Exome or NimbleGen Seqcap EZ GSC VCRome capture kits were also included for CNV 

analysis. Cases were grouped by their capture kit platform for analysis. CNV calls in low 

complexity regions were removed. Intersecting CNV calls between CoNIFER and XHMM 

as well as CNV calls from HMZDelFinder were analyzed. All CNV calls were compared to 

the following CNV databases: ExAC CNV (Ruderfer et al., 2016), Database of Genomic 

Variant (DGV; MacDonald, Ziman, Yuen, Feuk, & Scherer, 2014) and DECIPHER (Firth et 

al., 2009). CNV calls that were present in multiple studies in DGV were classified as likely 

benign. CNV calls that were found in ExAC CNV were evaluated based on population and 

frequency information. If appropriate, biallelic inheritance was considered. CNV calls that 

were found in DECIPHER were evaluated based on reported phenotypes, overlapping gene 

annotation, and pathogenicity/contribution.

2.6 | Short tandem repeat (STR) expansion detection analysis

STR expansion screening was conducted with STRetch (Dashnow et al., 2018) on the same 

families as the CNV analysis described above. BAM files were grouped by corresponding 

capture kit platforms and processed through the STRetch_exome_bam_pipeline.groovy 

pipeline. The EXOME_TARGET parameter was configured to the corresponding capture kit 

target coordinates for each run. A bed file with all STRs defined in the human genome was 
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provided for the input_regions parameter. STRetch calls that had locus coverage lower than 

3 and p_adj value >.05 were filtered. Only calls within genic regions were analyzed. Calls in 

known STR disease-causing genes were further evaluated for pathogenicity based on 

segregation of disease status (if applicable) and phenotype.

3 | RESULTS

Overall, 49% of the cohort was female (90/184) with an average age of 50 years (standard 

deviation 20 years, range 2–88 years) and primarily of European (73%) descent (Tables S4–

7). The majority of the cases were sporadic (124/184, 67%) and adult-onset (127/184, 69%; 

Table 1). Pathogenic or likely pathogenic variants were identified in 24% (44/184, Tables 1 

and 2; Table S5) and VUS were identified in 23% (43/184, Tables 1 and 3; Table S6). 

Because VUS require clinical follow-up (e.g., additional confirmatory diagnostic testing, if 

available, or subsequent bioinformatic revaluation) we combined these categories to obtain 

an overall rate of 47% for identification of clinically relevant variation (87/184, Tables 1–3; 

Tables S5–7). There was no notable difference in overall observation of clinically relevant 

variants between familial (43%, 26/60) or sporadic cases (49%, 61/124) or in early-onset 

(58%, 33/57) versus adult-onset (43%, 54/127) cases (Tables 1–3; Tables S5 and S6). 

Generally, as expected, more pathogenic/likely pathogenic variants were found in familial 

(30%, 18/60) and early-onset cases (35%, 20/57) relative to sporadic and adult-onset cases 

(21%, 26/124 and 19%, 24/127, respectively; Tables 1–3; Tables S5 and S6). Pathogenic/

likely pathogenic mutations were predominantly identified in genes associated with 

recessive disorders with compound heterozygous variants being the most common (41%), 

followed by heterozygous variants in genes associated with dominant disorders (25%) and 

homozygous recessive variants (23%, Table 1). De novo variation made up 7% of the 

pathogenic/likely pathogenic variants (Table 1). The most frequently encountered genes 

identified with pathogenic/likely pathogenic variants were SPG7 (20%, 9/44), CACNA1G 
(Ngo et al., 2018), and SYNE1 (7%, 3/44 each), and ITPR1, KCNA2, and SPG11 (5%, 2/44 

each, Table 2) similar to the original cohort (Fogel et al., 2014).

Following exome analysis, CNV and repeat expansion analysis was performed on a 

representative subset of the overall cohort (26%, 68/260) consisting of 53 undiagnosed 

families from the expanded cohort (29%, 53/184) and 15 undiagnosed families from the 

initial cohort (20%, 15/76) where WES data were available from multiple members to 

confirm disease segregation. A pathogenic CNV deletion was identified in two families 

(2.9%, Tables 1, 2, and 4; Table S5). In one family with six members affected by progressive 

adult-onset ataxia across two generations, a CNV deletion (exons 3–33) in the ITPR1 gene 

was identified. Similar deletions have previously been reported to cause SCA15/16 (van de 

Leemput et al., 2007). The CNV deletion was detected by CoNIFER and XHMM in both the 

patient and affected son’s WES data. Actual breakpoints were clinically confirmed through 

NGS and quantitative PCR. In the other family, a pathogenic deletion in the FARS2 gene 

was identified during the reanalysis of the original cohort, described in detail below. A 

pathogenic repeat expansion was also identified in one family (1.5%) by STRetch (Tables 1 

and 2; Table S5). This expansion is associated with Spinocerebellar ataxia type 8 

(Mundwiler & Shakkottai, 2018; Paulson, 2018) and was subsequently confirmed by clinical 

testing in the proband.
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Reanalysis of variants from the original cohort at 5 years resulted in an unchanged 

diagnostic interpretation in 58 of 76 cases (76%), and reclassification in the remaining 18 

cases (24%, Table 4). In six subjects, variants previously classified as VUS were reclassified 

as benign based on either being too common in the human genome using updated ExAC/

gnomAD frequency data or because they did not segregate with the disease when additional 

family members were tested. Conversely, six nondiagnostic cases were reclassified as having 

a reportable VUS based on interval evidence supporting disease. Two nondiagnostic cases 

and two with a previously reported VUS were reclassified as now having pathogenic/likely 

pathogenic variants based on interval updates. One patient had an originally reported VUS in 

the PNPLA6 gene reclassified as benign and a previously unreported VUS reported in the 

TBK1 gene due to a more consistent phenotype. Last, one patient had originally reported 

VUS in the ZFYVE26 gene reclassified as benign and a previously unreported pathogenic 

variant reported in the FARS2 gene (Sahai et al., 2018) due to a more consistent phenotype 

along with the identification of the second pathogenic variant through our CNV analysis 

(Table 4). As described above, the CNV analysis of 15 families from this original cohort 

(20%, 15/76) identified one (7%, 1/15) pathogenic/likely pathogenic variant. Together, these 

reclassifications resulted in a modest increase in pathogenic/likely pathogenic variant calls 

(28%, 21/76 vs. 21%, 16/76) and overall clinically relevant variants (63%, 48/76 vs. 61%, 

46/76, Table 4). Combining these data with our expanded cohort, our collective observation 

of pathogenic/likely pathogenic variation is 25% (65/260) and clinically relevant variants 

were seen in 52% (135/260, Tables 1–4; Tables S5 and S6). For the combined cohort the 

most commonly identified genes with pathogenic/likely pathogenic variants were SPG7 
(17%, 11/65), SYNE1 (9%, 6/65), CACNA1G, ITPR1, and SPG11 (5%, 3/65 each), and 

GBE1, KCNA2, SPAST, and WFS1 (3%, 2/65 each, Tables 2 and 4; Table S5; Fogel et al., 

2014).

An important diagnostic question concerns how effective exome detection truly is for all 

known genetic ataxias. To estimate this, we examined the diagnostic rates for families with 

multiple affected members (either parents or siblings) where a Mendelian genetic etiology 

can most strongly be presumed. Next we combined our data with the clinically relevant 

exome diagnostic rates from five recent independent WES studies (Montaut et al., 2018; 

Nibbeling et al., 2017; Ohba et al., 2013; Pyle et al., 2015; Sawyer et al., 2013) of similar 

undiagnosed families with ataxia obtaining a mean diagnostic rate of 42% from 139 total 

families (58/139, Table 1 and Table S3). To assess the efficiency of exome sequencing as a 

diagnostic test we assumed all these families had a Mendelian genetic cause detectable by 

exome sequencing, thus setting the maximum diagnostic rate at 100% (adjusted to 96% for 

average exome coverage). Using a one proportion test, the observed diagnostic rate of 42% 

differs significantly from the maximum expected rate of 96% (z score = 32.5; p < .0001; 

95% confidence interval = 34–51%). These data are sufficiently powered at this level of 

significance to show a significant discrepancy between the observed diagnostic rate and an 

expected rate as low as 51%. Therefore, even in a population with the strongest likelihood of 

having a Mendelian genetic cause identifiable by WES, half of the patients remain 

undiagnosed. Incorporating our data with that from a total of six additional studies that 

examined ataxia patients using NGS panel testing (Coutelier et al., 2018; Farwell et al., 

2015; Marelli et al., 2016; Nemeth et al., 2013; Sun et al., 2018; van de Warrenburg et al., 
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2016) did not improve the maximum observed diagnostic confidence interval above 51% 

(Table 1 and Table S3). Incorporating sporadic cases from the above studies further weakens 

the maximum potential diagnostic rate (Table S3).

4 | DISCUSSION

In this report, we performed exome sequencing on 184 patients with undiagnosed familial 

and sporadic ataxia and/or spastic paraplegia with suspicion for a genetic cause based on 

either familial inheritance patterns or negative screening for alternative acquired causes of 

ataxia (Fogel et al., 2014). CNV and repeat expansion analysis were also performed in a 

representative subset of the cohort, representing approximately one-third of undiagnosed 

cases. We identified pathogenic/likely pathogenic variants in 24% (44/184), and VUS in 

23% (43/184) of cases for an overall clinically relevant detection rate of 47% (87/184). This 

included identification of a pathogenic CNV in one family and a pathogenic repeat 

expansion in another. Of note, 11 cases classified as nondiagnostic in this study were 

ultimately clinically diagnosed with multiple system atrophy, cerebellar type, and another 

case was identified with a VUS associated with increased risk for this condition (Gilman et 

al., 2008; Zhao et al., 2016). We also reclassified variants from our previously reported 76 

cases (Fogel et al., 2014) based on current annotation, which has been shown to improve 

diagnosis over time (Alfares et al., 2018; Ewans et al., 2018; Fogel, 2018b; Fogel, Lee, 

Strom, Deignan, & Nelson, 2016; Fogel et al., 2016; Nambot et al., 2018; Rexach et al., 

2019; Wright et al., 2018). This resulted in four cases previously classified as nondiagnostic 

or having a reportable VUS being reclassified with a pathogenic/likely pathogenic genetic 

variant. Six previous nondiagnostic cases were reclassified as having a reportable VUS, and 

six cases with variants previously designated as VUS or likely pathogenic reclassified as 

benign. Two cases had a previous VUS reclassified as benign but also had either a new VUS 

or pathogenic variant reported in a different gene. Despite these adjustments, our overall rate 

of detecting clinically relevant variants remained similar to our previous study (63%, 48/76 

vs. 61%, 46/76) although pathogenic/likely pathogenic numbers improved (28%, 21/76 vs. 

21%, 16/76). Combining these datasets, the overall detection of clinically relevant variants 

was 52% (135/260) with 25% (65/260) classified as pathogenic or likely pathogenic.

Collectively, numerous studies evaluating WES and NGS-based ataxia gene panels have 

achieved diagnostic rates of 32% across all patients (278/873) and 47% for familial cases 

(43/92), which improves slightly if focused on WES in familial cases (53%, 30/57, Table S3; 

Coutelier et al., 2018; Farwell et al., 2015; Keogh et al., 2015; Lee et al., 2014; Marelli et al., 

2016; Montaut et al., 2018; Nemeth et al., 2013; Nibbeling et al., 2017; Ohba et al., 2013; 

Pyle et al., 2015; Sawyer et al., 2013; Sun et al., 2018; van de Warrenburg et al., 2016). By 

combining our current data with these studies we evaluated the capability of current exome 

sequencing and analysis pipelines to achieve a diagnosis of the remaining unsolved ataxia 

and spasticity cases. Even when combining the data from these multiple independent studies 

(Table S3) and assessing diagnostic rates in familial ataxia, that most likely to have an 

identifiable Mendelian cause, the maximum overall rate of detecting clinically significant 

findings consistently hovers at approximately 50%, well below even a conservative estimate 

of the expected rate.
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While WES efficiently identifies certain types of disease-causing variants including small 

indels, single base changes disrupting protein function, and canonical splice acceptor/donor 

variants, the fact that approximately 50% of cases still remain unresolved highlights gaps in 

sensitivity of detecting of other classes of mutations (Rexach et al., 2019). In particular, 

many structural variants and repeat expansions present in the coding sequence are not 

detected well or reliably genome-wide by WES. For example, exome sequencing can be 

limited in the comprehensive detection of mutations within the mitochondrial genome and is 

incapable of detecting the majority of repeat expansions and noncoding genomic variation 

which can contribute to the modulation of gene expression (Rexach et al., 2019). With recent 

advances in analyses methods, WES can be used to detect CNV affecting multiple exons, as 

illustrated here, but continues to be limited for detecting small CNV (i.e., involving single-

exons), which may be better identified with whole-genome sequencing (WGS) methods 

(Rexach et al., 2019). We assessed 26% (68/260) of our cohort for CNV and repeat 

expansions using the depth of read coverage data from WES, which resulted in the diagnosis 

of only three additional cases (4%). This suggests that the addition of detection methods for 

CNV and known repeat expansions to current diagnostic pipelines may not contribute much 

overall to the missing heredity. However, repeat expansions and single exon heterozygous 

deletions are challenging to reliably call from exome data so this may also indicate that 

current methods need further refinement. Extension to WGS using short read (to observe 

CNV) and long read (to observe CNV and repeat expansion) technologies in the evaluation 

of ataxia promises to improve detection of these genetic causes (Rexach et al., 2019). 

Noncoding variation, such as point mutations in promoter regions, splice sites, or other 

RNA-processing regulatory regions, all potentially detectable by WGS, must also account 

for some disease-causing mutations as well, but their categorization has remained difficult 

(Rexach et al., 2019).

The results of this study further emphasize the need for continued investigation into methods 

to complement and extend the diagnostic value of current next-generation sequencing 

datasets. It is certainly possible, and likely probable, that additional undiscovered genes 

responsible for these phenotypes exist and are causative in a percentage of our population. 

Even with the use of linkage analysis and the addition of multiple family members when 

available, such genes are challenging to detect if they cause extremely rare or private 

disorders. The development of collaborative resources to merge data and analysis from large 

cohorts of patients with ataxic phenotypes may aid in the discovery of such genes (Fogel, 

2018a), as will a focus on mutation types not typically detected by exome sequencing. For 

example, novel disease-causing repeat expansion disorders continue to be described and 

subsequently identified in undiagnosed patients (Cortese et al., 2019; Ishikawa et al., 2011; 

Kobayashi et al., 2011; Rafehi et al., 2019; Seixas et al., 2017; Valera et al., 2017). 

Furthermore, variants whose effect is determined in combination with additional genes 

(digenic, polygenic), epigenetic, or environmental factors, or causal mutations in the 

noncoding genome that affect gene regulation would be difficult to detect by current DNA-

only methods. The application of “multi-omic” strategies is increasingly being applied to 

facilitate variant interpretation by assessing their effects on the transcriptome, including 

alteration in messenger RNA splicing (Cummings et al., 2017; Elsaid et al., 2017; Kremer et 

al., 2017). Coupling next-generation sequencing methods with transcriptome analysis has 
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already shown diagnostic utility in other rare diseases (Lee et al., 2019). In addition to WGS, 

new sequencing platforms and analysis strategies are in various stages of development that 

could facilitate the identification of rare or novel repeat expansions (Gymrek, Golan, Rosset, 

& Erlich, 2012; Rafehi et al., 2019), or smaller or more complex CNV or CNV mediated by 

difficult to map repeat elements (SINEs, LINEs, etc.; Turner et al., 2016). Additionally, 

pathway or network-based analytic methods have been utilized to identify rare or polygenic 

candidate disease genes based on their convergence upon common disease-associated 

biological pathways (Nibbeling et al., 2017). Finally, epidemiological and computational 

medicine approaches, which are increasingly enabled through large-scale precision health 

initiatives and availability of electronic medical records, have the potential to identify gene-

environment interactions that have long eluded detection (Rexach et al., 2019).

Much of the above discussion still represents areas of advancing research investigation but, 

given the dynamic nature of the field, can be rapidly translated to clinical practice. For the 

clinician evaluating patients with ataxic and related disorders suspected to have a genetic 

etiology, standard of care would still include the use of exome sequencing (Fogel, 2018b; 

Fogel et al., 2014; Rexach et al., 2019) or a comprehensive next-generation sequencing 

panel targeting currently known ataxia genes (Sun et al., 2018) if exome sequencing is 

unavailable. However, once performed and if nondiagnostic, for the remaining undiagnosed 

familial cases with apparent monogenic inheritance, a key focus should be on repeating 

bioinformatic analysis at regular intervals, as well as the implementation of more 

comprehensive genomic tools and more complete methods to identify mutation types 

currently not observed in WES as they become clinically available.

5 | CONCLUSION

Exome sequencing performed in a predominantly adult- and sporadic-onset cohort of 260 

patients with cerebellar ataxia and/or spastic paraplegia observed clinically relevant genetic 

variation in 52% and pathogenic or likely pathogenic variants in 25% of cases, emphasizing 

the importance of coding variation to these disorders. However, improved annotation 

methods and the inclusion of CNV and repeat expansion analysis in a representative subset 

of this cohort did not dramatically improve overall diagnostic rates from prior studies, even 

among familial cases with the highest evidence for monogenic disorders. The discrepancy 

between observed and expected diagnostic rates in familial cases from this and other 

published studies supports a current diagnostic ceiling for exome sequencing of 

approximately 50%, suggesting that a critical limitation to genetic diagnosis in these patients 

rests on the high likelihood that missing pathogenic mutations lie outside the exome and 

must be identified by other methods and more comprehensive genome-wide strategies.
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TABLE 1

Distribution of variant types detected by WES for expanded ataxia cohort

Abbreviations: AO, adult-onset; EO, early-onset (≤age 20 years); LP, likely pathogenic; N, number of index patients; NSV, no significant variants 
identified; Path, pathogenic; WES, Whole-exome sequencing.

a
Variants were considered inherited heterozygous unless parents or other family members were available for testing for de novo confirmation or 

variant was previously reported as de novo through another clinical test.
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