S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Applied Mathematics Letters 107 (2020) 106442

e

“= Applied
Mathematics
Letters

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml —

Dynamics of an SEIR model with infectivity in incubation period R

Check for

and homestead-isolation on the susceptible™

Jianjun Jiao *, Zuozhi Liu, Shaohong Cai

School of Mathematics and Statistics, Guizhou University of Finance and
Economics, Guiyang 550025, PR China

ARTICLE INFO ABSTRACT

Article history: In this paper, we present an SEIR epidemic model with infectivity in incubation
Received 1 April 2020 period and homestead-isolation on the susceptible. We prove that the infection-
Received in revised form 22 April 2020 free equilibrium point is locally and globally asymptotically stable with condition
Accepted 22 April 2020 Ro < 1. We also prove that the positive equilibrium point is locally and globally

Available online 25 April 2020 asymptotically stable with condition Rg > 1. Numerical simulations are employed

to illustrate our results. In the absence of vaccines or antiviral drugs for the virus,

Keywords:

An SEIR epidemic model our results suggest that the governments should strictly implement the isolation
Homestead-isolation on the system to make every effort to curb propagation of disease during the epidemic.
susceptible ©2020 Elsevier Ltd. All rights reserved.

Infectivity in incubation period
Infection-free

1. Introduction

The establishing and analyzing mathematical models play important roles in the control and prevention
of disease transmission. Compartment model is the base and also a powerful mathematical framework for
understanding the complex dynamics of epidemics. At present, Many researchers [1-3] are increasingly
interested in the influence of these behavioral factors on the spread of infectious diseases. Cooke and
Driessche [4] proposed and investigated a classical SEIR epidemic model, which has became the most
important model in diseases control. Therefore, ODEs, PDEs and SDEs are employed to study SEIR
epidemic models, and some results could be found in literatures [5-8]. Zhao et al. [9] investigated an extended
SEIR epidemic model with non-communicability in incubation period. National Health Commission of the
People’s Republic of China declared that the incubation period of the COVID-19 is about ten days, the
incubation period is infectious [10]. The COVID-19 outbreak in China presents that physical protection and
social isolation are critical to controlling the epidemic in the absence of vaccines or antiviral drugs for the
virus.
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2. The model

Inspired by the above discussions, we consider an SEIR epidemic model with infectivity in incubation
period and homestead-isolation on the susceptible.

%it) = A= B(1=0)SO)I(t) + 02 E(t)] — wS(2),
G5O _ 51— 00O 1() + 02(0)] — 6+ ) B

— = =0E(t)— (y+ o+ p)(t),

S0 = (v + 050)I(t) — pR(t),

where S(t) represents the numbers of the susceptible population at time ¢. E(t) represents the numbers of the
exposed population at time ¢. I(t) represents the numbers of the infected population at time ¢. R(t) represents
the numbers of the recovered population at time ¢t. A > 0 represents the enrolling rate. 5 > 0 represents the
infective rate from S to E. 0 < 67 < 1 represents the homestead-isolation rate of the susceptible. 0 < 6 < 1
represents the infective effect of the exposed in incubation period. p > 0 represents the natural death rate.
0 > 0 represents the transition rate from F to I. 7 > 0 represents the transition rate from I to R. o > 0
represents hospitalized rate of I for the disease. 3 > 0 represents the recurring rate of I, and 6 > O (y+o+p).

3. The dynamics

In this paper, We only consider the following system for R(t) being not involved in the first, second and
third equations of (2.1).

%ﬁt) = 4= p(1=00)SOL(t) + 0:B(t)] — pS(t),
d]fTEt) =B —01)SE)[I(t) + 02E(t)] — (6 + p)E(t), (3.1)
B0 550) - (34 0 + 1)
Then, one equilibrium point of system (3.1) can be easily obtained PY(S° 0,0) with SO = %7 and
another equilibrium P*(S*, E*, I*) of system (3.1) is also obtained,where S* = B(lf’g)*‘[‘;jr‘gg((jiglm, B —

AB(1=01)[6+02 (y+o+m)]—p(y+o+u) (5+ « _ 3{AB(1=61)[5+82(v+o+ Fo+u)(0+ .
(1—61)[6+02 (v 5+z)] n(y DI u), I+ — 9145( (»y+12[+u)(26(1u) wl} 7/4((77+0+5)(%+uu)) with A8(1 — 6,)[6 +
Os(v + o + p)] > p(y + 0 + p)(d + p). Then, we define the basic reproduction number of system (3.1) as

AB(L = 61)[0 4 O2(y + o + )]
ply+o+p) (@ +p)

Ry =

Theorem 3.1. The equilibrium point PO(%7 0,0) system (3.1) is locally asymptotically stable if only if Ry < 1.

Proof. System (3.1) is linearized at equilibrium point Po(ﬁ, 0,0), and its Jacobian matrix J is

—H -B(1 —91)9250 -B(1 —91)50
JO=| 0 B(1—01)05—0+p) B1-6,)S" |. (3.2)
0 ) —(y+ 0o+ p)

We can easily have fO(\) = det[\] — J°], where

PP = A+ N+ 0+ ) = B = 01)025°N A+ (v + 0 + )] = 65(1 — 01)S°}, (3-3)
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(3.3) is obviously a cubic polynomial, we can replace the coefficient with as, as, a1, ag. Therefore, (3.3) can
be rewritten as
o) = azA? + aaA? + a1\ + ao, (3.4)

where ag = u(AB—C), a1 = [(AB—C)+u(A+B)], as = p+A+B, a3 = 1 with A = (6+p) —B(1—61)602S°,
B=vy+0+u, C=063(1-01)S°.

According to Routh—Hurwitz criterion, equilibrium point Po(ﬁ, 0,0) of system (3.1) is locally asymptot-
ically stable if only if (i)ag, a1, as,as > 0, and (it)ajas — agag > 0.

IfAB(1—01)[0+02(y+ 0o+ p)] < u(y+ o+ p)(6+ u), then,

ap = p(AB = C) = p(y + o+ p)(6 + p) = AB(1 = 01)[0 + O2(y + 0 + p)] > 0,

a1 = [(AB = C) + pu(A+ B)] > (6 + p) (v + 0o+ p)
AB(L=00)[0 +0(v+o+p)]  p@0+p)(v+o+p) — ABL—61)[6 + b2(y + 0 + p)]

—~ + > 0,
Iz p(y+o+p)

ag=p+A+B=p+ 6+ pu) —B(1—01)6025+7+0+u

S ro 0+ p) — ABA-0)F + (v +o+ )]

(0 + p) ’
and a3 = 1 > 0. Therefore, ag,as,as,as satisfy the condition (i) of Routh—-Hurwitz criterion. While
ag < (6 +p)(y+o+p), a1 > ply+ o+ u) and as > (6 + w), hence, ajas — agaz > 0. Obviously,
ap, ai, as, az satisfy the condition (i7) of Routh-Hurwitz criterion. Therefore, equilibrium point Po(ﬁ, 0,0)

of system (3.1) is locally asymptotically stable if only if Ry < 1.

Theorem 3.2. The equilibrium point Po(ﬁ,0,0) system (3.1) is globally asymptotically stable if only if
Ry < 1.

Proof. From system (3.1), we can obtain that

%(S(t) + E(t) +1(t) < A—pS(t). (3.5)
This implies that
11?1 sup(S(t) + E(t) + I(t)) < 2 (3.6)
For t > 0, (3.6) shows that
2 ={(8@t), E(t), () € R} | S(t) + E(t) +1(t) < g}, (3.7)
is a positive invariant set of system (3.1).
Lyapunov functions are defined as
S®) A 6+
Vi(t) = /ﬁ (=, V()= B0+ 10, (3.8)
For all t > 0, the derivatives of Vi (t) and V5(t) are
Tt — (1 = B = SO + 625(0)] - S0}
(4 nS () A= 081D + 0:B(0) )

-5y - B(1—01)SH)[I(t) + 0 E(t)] + r ’
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and
dVa(t ]
B _ g0 - 005w + o8]+ CHOETED 1) (3.10)
For Ry < 1, we have
dV(t)  dVi(t) N dVa(t)
e dt dt (3.11)
(A—pS@)? _ (O+my+o+p '
= — — — < .
S0 5 (I1-Rp)I(t) <0
As we know that %Et) = 0 holds if and only if S(t) = S° E(t) = 0,1(t) = 0. From system (3.1), we know

that {(4,0,0)} is the largest invariant set in the region Xy = {(S(t), E(t),I(t)) € R3 VO _ 0 for t > 0.
w + dt

Lyapunov-LaSallle asymptotic stability theorem in [11] implies that equilibrium (%, 0,0) of system (3.1) is
globally asymptotically stable.

Theorem 3.3. If Ry > 1, Equilibrium point P*(S*, E*,I*) of system (3.1) is locally asymptotically stable.

Proof. System (3.1) is linearized at equilibrium point P*(S*, E*, I*) and its Jacobian matrix J* is

—p = B(1 = 01)(I" + 62E7) —B(1—01)025" —B(1 —61)5~
0 ) —(y+o+p

We can easily have f*(\) = det[\] — J*], where

FfA) = +p+BA—01)(I" +6:E7)]
AN+ (0 +p) = B(L = 00)0257|[A+ (v + 0+ p)] — 68(1 — 01)S™} (3.13)
FB(1 = 01) (I + 2 E7)[B(1 — 01)025" (A +~ + 0 + p) +68(1 — 61)S™].

(3.13) is obviously a cubic polynomial, we can replace the coefficient of (3.13) with ag, as, a1, ag. Therefore,
(3.13) can be rewritten as

f*(/\) = ag)\3 + ag)\Q + a1 A+ ag, (314)
where ag = A(BC — D) + (A — p){[B — (0 + n)]C + D}, a1 = BC = D + AB+ AC + (A — p)[B — (6 + )],
ay = A+B+C, ag = 1, where A = M+ﬂ(1—01)[1*+92E*} >0, B= ((5+M)—B(1—91)925* > 0,
C=v+0+4+u>0,D=68(1-0,)S*>0.

According to Routh-Hurwitz criterion, equilibrium point P*(S*, E*, I*) of system (3.1) is locally asymp-
totically stable if only if (i)ag, a1,a2,as > 0, and (ii)ajas — agas > 0. Obviously, as > 0 and a3 > 0. If
AB(L = 01)[6 + O2(y + o + )] > p(y + o + ) (6 + p), then,

ap = A(BC = D) + (A — p){[B = (6 + n)]C + D}

=pB(1=01)[6 = O2(y + 0+ p){AB(L = 61)[6 + O2(y + 6 + p)] — pu(y + 6+ p) (6 +p)} >0,
a; =BC — D+ AB+ AC + (A — p)[B — (6 + )]

[0+ (y+o+ w0+ 62y + o0+ p)
(y+ o+ )0+ )

PBA=00)0:(y + 0+ p)( + p{AB(L — 01)[8 + O2(y + o + )] — p(y + 0+ p)(6 + p)}
O+ 0a(y+0+p)

>
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B =01)b(v+ o+ )6+ p){ABA = 01)[0 +b2(v+ o+ p)] —ply+ o+ )0+ p)}
§+02(y+o+p)

> 0.

Then, ag, a1, az, as satisfy the condition (¢) of Routh-Hurwitz criterion.

While ag < (A —p)D, a1 > AB+ (A — p)[B — (§ + p)] and a2 > v + o + 2, hence, ajas — agas >
% +uB(1—01)(6+p)I* > 0. Obviously, ag, a1, as, ag satisfy the condition (i7) of Routh-Hurwitz
criterion. Therefore, equilibrium point E*(S*, E*, I*) of system (3.1) is locally asymptotically stable if only

if AB(1 = 01)[6 + O2(y + 6 + )] > p(y + 0 + ) (0 + p).

Theorem 3.4. Fquilibrium point P*(S*, E*,I*) of system (3.1) is globally asymptotically stable if and only

Proof. Lyapunov functions are defined as

5() X
Va(t) = / (1- %)du, (3.15)
and
Vi(t) = E(t) — E* — E*1 EE(t) T MTM[I( t)— I —I"1 II(?]. (3.16)
For all t > 0, the derivatives of V3(t) and V4(t) are
dVs(t) S*
ot — (1 )l — B = 0)SEI(D) +62E(0) — S(e)
= (8" = SO)1 = 505) + (W) E*(1 = 5l1- (317)
_S@UE) + 92E(t))]
S*(I* + 0.E*) 7
and Avi(t) dB(t) 5+ dI(t)
4 7
@ U E(t)) @ s [1_m]7
_O+mEMI 0+ w0+ o+ mI
SIS0 + 6:() ’ (319
= O W T T T 0,5
B = 01)SW)[L(t) + 62 E(t)] It)  E@I
B (6 4 p)E(t) R _I(t)E*+1}'
Then,
V() V() | Vi)
. dt dt
wu(S* — S(t))2 . s*  SHIHE*  E@MI*
s T OTHEB TG T SR e (3.19)
p(S* = S(t)? (5" = 8())?
Therefore, dv(t) = 0 holds if only if S(t) = S*, E(t) = E*,I(t) = I*. Applying Lyapunov-LaSalle asymptotic
stable theorem in [11], {(S*, E*,I*)} is the largest invariant set in ), and it is globally asymptotically

stable. This completes the proof.
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Fig. 1. Threshold analysis of parameter 6; and the basic reproduction number Ry of system (2.1) with S(0) = 100, E(0) = 15,1(0) =
20,4 =10,8=0.2,0, = 0.1, = 0.3, = 0.3,y = 0.2,0 = 0.2, (a) I(t) changes with parameter 6;; (b) Time series of S(t), E(t), and
I(t) change with parameter 6; = 0.7; (c) Time series of S(t), E(t), and I(t) change with parameter 6; = 0.9.

4. Conclusion and simulations

In this work, we consider an SEIR epidemic model with infectivity in incubation period and homestead-
isolation on the susceptible. The basic reproduction number of system (2.1) is obtained as

_ AB(AL—01)[6 + b2(y + 0 + )]
p(y + o+ p)(6 + p)

We have proved that the infection-free equilibrium point P° is locally and globally asymptotically stable

Ry

if only if Ry < 1. We also have proved that if Ry > 1, equilibrium point P* is locally and globally
asymptotically stable. If it is assumed that S(0) = 100, F(0) = 15,I(0) = 20,4 = 10,5 = 0.2,0, =
0.1, =0.3,0 = 0.3,y = 0.2,0 = 0.2, we employ with computer aided techniques to obtain the threshold
07 = 0.85 of parameter 6, (see (a) in Fig. 1.). If we select 6, = 0.7, the basic reproduction number of system
(2.1)Ry = 1.7619 > 1, it can be seen that the equilibrium point P* is globally asymptotically stable.(see
(b) in Fig. 1.). If we select [ = 0.9, the basic reproduction number of system (2.1)Ry = 0.5873 < 1, it
can be seen that the equilibrium point P is globally asymptotically stable.(see (c) in Fig. 1.). The proofs
and the numerical simulations are employed to illustrate that the strategies of the homestead-isolation on
the susceptible are very important in the epidemics of infectious diseases. Our results suggest that the
governments should strictly implement the isolation system to make every effort to curb propagation of
disease.
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