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Abstract: In this paper, the post-processing of 3D-printed poly lactic acid (PLA) parts is investigated.
Workpieces are manufactured by fused deposition modeling (FDM) 3D printing, while they may
have defects in some areas such as edges. A post-processing is introduced here for 3D-printed
samples by low power CO2 laser. The thickness of the FDM samples are 3.2 mm and printed by
optimum conditions. Effects of process parameters such as focal plane position (−3.2–3.2 mm),
laser power (20–40 W), and laser cutting speed (1–13 mm/s) are examined based on the design of
experiments (DOE). Geometrical features of the kerf; top and bottom kerf; taper; ratio of top to the
bottom kerf are considered as output responses. An analysis of the experimental results by statistical
software is conducted to survey the effects of process parameters and to obtain regression equations.
By optimizing of the laser cutting process; an appropriate kerf quality is obtained and also optimum
input parameters are suggested. Experimental verification tests show a good agreement between
empirical results and statistical predictions. The best optimum sample with 1.19 mm/s cutting speed,
36.49 W power and 0.53 mm focal plane position shows excellent physical features after the laser
cutting process when 276.9 µm top and 261.5 µm bottom kerf width is cut by laser.

Keywords: post-processing; additive manufacturing; laser cutting; fused deposition modeling; 3D
printing; design of experiments

1. Introduction

Laser material processing (LMP) has been implemented as a useful method in many industrial
applications. For instance, high accuracy and quick operation are provided by the laser material
processes [1]. Many of workpieces manufactured by traditional and non-traditional methods need
post-processing for improving the quality of the processes [2]. LMP methods are beneficial for different
industrial applications. For example, laser welding, laser surface hardening, laser drilling, laser
additive manufacturing, laser engraving, laser forming, laser machining, and laser cutting are some of
the useful applications of the laser technologies [3–11]. In the well known laser cutting process, by
focusing the laser beam on a particular point, the material is cut off by the laser. First it melts and then
evaporates [12–14]. The mixture of many processes is extremely interesting, and the main aims of many
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huge factories reach to a superb quality, whereas the time and money are saved. Currently, additive
manufacturing (AM) is becoming more and more extensive in various areas such as architecture,
medical and industrial fields [15]. In the AM methods, a 3D workpiece is produced by adding layers of
substance. The AM processes are typically more sustainable than traditional manufacturing processes,
because they waste less energy and material [16–20]. Polylactic acid (PLA) has had the second largest
amount of utilization of all bioplastics in the world [21–23]. Recycling and biodegradability of PLAs
has increased the importance of this material in the new technological world, where they do not have
any disadvantages for the environment [24–31]. Furthermore, corn starch is one of the richest source of
PLA. These materials, after being released into nature, are degradable and capable of being eventually
degraded. In other words, they are biodegradable and biocompatible [32]. The viscosity of polymer
melts is mainly determined by chemical structure, molecular weight, as well as temperature and shear
rate in the course of processing and PLA itself could be either amorphous or semi-crystalline based on
its chirality [33].

Many research works have investigated the laser cutting process. The laser cutting process of fiber
glass sheets with changing inputs of laser cutting process was investigated by Choudhury et al. [34].
The material thickness, speed of CNC table and nozzle diameter on kerf quality were studied. Caiazzo
et al. [35] examined the laser cutting process of different polymeric plastics such as PC, PE and PP by
a high-power CW laser. The range of laser variation (laser power and laser cutting speed) showed
that the laser power is more effective when the cutting speed is low. Additionally, the thickness of
samples had an effective role on laser inputs. Zhou et al. [36] investigated the relationship between the
theoretical and experimental study of laser cutting by CO2 laser. In the following, some studies which
have used this method for the laser cutting process are discussed. The design of experiments (DOE) is
a well known approach for laser material processing and many researchers in the last decade have
conducted many investigations on it. By determining input and output variation of the process and
also specifying certain experiments, it can reach the optimization condition parameters for each process.
Davim et al. [37] tried to improve the cutting quality of poly methyl methacrylate (PMMA) edges
by CO2 laser. The conclusion depicted that the heat affected zone (HAZ) dimensions were between
0.12 and 0.37 mm, without bore. Additionally, the roughness of the surface was very low. In highly
advanced industries, nanocomposites have many applications, whereas their processing is a tough
function. The addition of carbon nanotubes to plastics for improving mechanical properties have many
effects on the post-production processes of these composites. For example, Ayob Karimzad et al. [38]
used response surface methods (RSMs) in the laser cutting process of nanocomposites containing
carbon nanotubes. Inputs variations such as focal plan position (FPP), laser power and laser cutting
speed were selected. Results showed that the least dimension of the kerf width was 1.5 %. Eltawahni et
al. [39] studied a Box–Behnken design and laser cutting process dependency. The conclusion showed
that the laser inputs (laser power, cutting speed and FPP) had good significant conditions in the
ANOVA tables for all the outputs results.

The post-processing of additive manufacturing is sometimes essential for many industrial products
and more precise applications. Based on the relevant literature, investigations on the laser cutting
of 3D-printed parts by fused deposition modeling (FDM) is rare. Therefore, pioneer investigations
should be carried out, in order to analyze possible advantages of the laser cutting on the printed parts.
In this paper, the effects of laser beam on top and bottom kerf width, ratio of the top kerf to bottom
kerf and kerf taper in the CO2 laser cutting of PLA sheets 3D-printed by FDM are investigated. The
optimization of laser cutting is investigated in order to achieve the best geometrical objects, whereas
the quality of kerf are preserved. On account of the low dimensional accuracy of the components
produced in the laminate process, post-machining processes are required. Consequently, the laser is
used to improve the dimensional accuracy.
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2. Experimental Design and Methodology

In this study, the RSM is used to output variables (responses) [40–42]. The purpose of this
method is to find a logical mathematical relationship between input and output variables. When all
autonomous variables can be measured during a study, the response surface is to be asserted as a
function by Equation (1) [43–46]:

Y= f(x1, x2, x3, . . . , xk) (1)

where “k” is the autonomous changeable number (independent variables). A quadratic polynomial
function is assumed in the RSM with regard to the output responses as [47–50]:

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix2
i +
∑

i

∑
j

βi jxix j + ε (2)

βi in this equation is a linear coefficient, β is a constant term, the term βij is an interaction
coefficient, βii is a coefficient of quadratic and ε is the error term. Three variable laser parameters
which have been taken into account in this experimental work are mentioned in Table 1.

Table 1. Three levels of cutting parameters.

Variable Symbol Unit −2 −1 0 +1 +2

Scanning speed S mm/s 1 4 7 10 13
Laser power P W 20 25 30 35 40

Focal plane position FPP mm −3.2 −1.6 0 1.6 3.2

According to Figure 1, FPP has 3 positions (positive, zero and negative position) at workpieces.
In particular, when FPP is discussed in this research, the focal length is in the position of the workpiece,
which is precisely the FPP on top of the sheet at zero position.
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Figure 1. Alteration of figure plan position (FPP) on the sheet.

Table 2 shows the input variables as well as the measured values for output responses of 17
experiments. FPP, laser cutting speed and laser power are selected as input laser parameters for laser
cutting process in this study. Additionally, the top and the bottom kerf width, ratio of the top kerf to
bottom kerf width and taper are considered as output experimental parameters.
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Table 2. Results overview for laser cutting experiments.

Sample
No.

Input Variables Output Responses

P (W) S (mm/s) FPP (mm) Top Kerf Width
(µm)

Bottom Kerf
Width (µm) Ratio Taper (◦)

1 35 4 −1.6 631.30 576.950 1.0942 0.4865
2 30 13 0 358.62 273.490 1.311 0.7620
3 30 7 0 387.93 406.890 0.953 −0.1697
4 30 7 0 400 415.517 0.962 −0.1342
5 30 7 −3.2 934.60 681.230 1.372 2.267
6 30 7 3.2 732.75 543.670 1.347 1.692
7 25 10 1.6 413.79 386.630 1.070 0.2431
8 25 10 −1.6 472.41 332.720 1.419 1.250
9 25 4 1.6 332.75 303.500 1.096 0.2618

10 25 4 −1.6 608.62 546.670 1.113 0.5545
11 35 10 −1.6 582.75 383.390 1.519 1.784
12 30 7 0 429.31 453.870 0.945 −0.2198
13 40 7 0 385.34 364.780 1.056 0.1840
14 35 10 1.6 429.31 453.870 0.945 −0.2198
15 30 1 0 320.04 310.210 1.031 0.0880
16 20 7 0 401.72 387.500 1.036 0.1273
17 35 4 1.6 381.03 403.440 0.944 −0.2006

3. Experimental Work

3.1. Polylactic Acid Sheet Fabricated by 3D Printing

Figure 2 shows the process from fabricating PLA samples by FDM 3D printing to the laser cutting
process by CO2 low power laser. After printing the sheets by FDM process, the laser cutting process is
performed on the CNC table.
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Figure 2. A schematic of the experimental process.

In order to produce PLA sheets, 3D printing is utilized by FDM technology. The simplified
software is used to set parameters for manufacturing 3D samples, see Figure 2 and Table 3. In the 3D
printer, extruder temperature (230 ◦C), infill percentage (16.86 %) and layer thickness (0.23 mm) are
selected as constant parameters by optimum settings [29]. A bioactive and biodegradable PLA sheet
with dimensions of 10 × 5 cm and a thickness of 3.2 mm is fabricated. Table 4 shows properties of
the PLA.
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Table 3. Printer specifications.

Device Parameters Parameter Range

Type of printer FDM Sizan Model 3
Print size 20 × 20 × 20 cm

Laying accuracy 30 µm
Temperature of plate 110 ◦C

Nozzle diameter 0.5 mm
Temperature of nozzle 260 ◦C

Speed of printer 300 mm/s

Table 4. Specification of polylactic acid (PLA).

Feature Amount

Name Polylactic acid (PLA)
Crystallinity 37%

Chemical formula (C3H4O2)n
Tensile modulus 2.7–16 GPa

Density 1.210–1.430 g·cm−3

Melting point 150 to 160 ◦C (302 to 320 ◦F)
Glass transition 60–65 ◦C

Injection mold temperature 178 to 240 ◦C (353 to 464 ◦F)

3.2. Laser Cutting Process

In this present study, 60 Watts of CO2 is examined for the laser cutting process on the PLA sheets.
The geometric characteristics of the cut are the width of the uppercut, the width of the lower cut, taper,
and the ratio of the width of the incision to the uppercut to the lower cut width, as shown in Figure 3.
The geometric characteristics are shown in the transverse section of the cutting kerf. The geometric
features (such as top and bottom kerf width) were measured by the ImageJ software. Equation (3)
defines the tapering angle as depicted in Figure 3:

α = tan−1 wt −wb
2t

(3)

where α is the angle of the cone, wt denotes the width of the upper kerf, wb is the width of the lower kerf
and the thickness of the samples is shown by t. To specify the FPP length, an acrylic sheet positioned
80 degrees to the laser beams should be placed. Due to the effect of the beam on the sheet, the position
of the FPP of the laser is determined (Figure 4a,b). Figure 4c shows the determination of the FPP using
a CO2 laser.
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Figure 4. Determination of the laser beam focal point: (a) before passing through laser, (b) effect of the
laser beam on the acrylic sheet that identifies the location of the focal point, (c) FPP determining with
the CO2 laser.

Three input parameters including laser cutting speed, laser FPP and laser power of the laser are
selected as input process parameters. Similarly, the FPP is located at the top or bottom of the workpiece,
with a positive and negative FPP. In Figure 1, the FPP of the positive, zero and negative laser is shown
from the left to right, respectively.

By performing a few preliminary tests, changing the parameters and keeping other parameters
constant, the range of parameters is determined. The cutting speed is changed from 4 to 20 mm/s in the
first experiments. The FPP of −1.8 mm and the laser power of 40 W are considered in these experiments.
Due to the fact that the material thickness used in this paper is 3.2 mm, the experiments are focused on
the initial position of the FPP of 1.8 mm. A speed of 12 mm/s was selected as an appropriate speed
with respect to the cut-off and the completeness of the cutting, while 40 W is selected as the best suited
laser power in these experiments. The results indicated that when the FPP is located in zero position
(exactly on the workpiece), the cutting quality is better than other cuts (Figure 5).
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After photography, images are taken to obtain the upper and lower kerf and the tapering of each
kerf is measured by the ImageJ software. Using this software, the geometric properties of the kerfs can
be achieved. Figure 6 illustrates the top and bottom cutting kerfs of tests # 1–6.
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4. Results and Discussion

The process scope is determined by performing a series of first tests, changing the parameters
and keeping other parameters constant. To reach the complete cutting with proper appearance and
non-defect on the parts, input and output parameters of this study were evaluated by RSM. In the
following, each one of the output results for geometrical specifications are investigated.

4.1. Top Kerf Width

An analysis of variance for the top kerf width is shown in Table 5. All main parameters (FPP, laser
power and cutting speed) are effective on top kerf width. Additionally, FPP2 and S2 are recognized as
effective quadratic terms. According to the top kerf’s ANOVA table, interaction of two parameters is
understandable. This means that the interaction of the FPP and cutting speed in ANOVA table for top
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kerf width (FPP×S) are effective terms. Based on actual and coded quantities, Equations (4) and (5)
are presented.

(Upper Kerf)1.36 = 2368.68936 + 282.66295 × S − 1323.89295 × FPP + 102.75676 S × FPP − 20.32840 × S2 + 578.38346 × FPP2 (4)

(Upper Kerf)1.36 = 3351.24 − 11.61 × S − 1934.71 × FPP + 1972.93 × S × FPP − 731.82 × S2 + 5922.65 × FPP2 (5)

Table 5. Revised ANOVA of top kerf width.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Model 76,260,000 5 15,250,000 65.71 <0.0001
S 539 1 539 0.002322 0.9624

FPP 14,970,000 1 14,970,000 64.50 <0.0001
S × FPP 1,946,000 1 1,946,000 8.38 0.0146

S2 768,000 1 768,000 3.31 0.0962
FPP2 50,300,000 1 5,030,000 216.70 <0.0001

Residual 2,553,000 11 232,100
Lack of Fit 2,426,000 9 269,500 4.23 0.2057
Pure Error 127,300 2 63,673.87

Total 78,810,000 16

R-squared = 96.76% R-squared (Adj) = 95.29%

R-squared is the amount of the experimental data coverage which is obtained by the regression
Equations (4) and (5). Figure 7 illustrates the top kerf width perturbation plot. The effect of the input
parameters at the center point of the space from the design is compared by the perturbation plot. The
perturbation of the top kerf width is illustrated with developing only single parameters over owned
limited area, while other parameters are preserved fixed.
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Figure 8 shows the response of the top kerf width surface plots. When the laser beam is closer to
the surface, the FPP decreases, the case beam zone becomes tinier and the density of the laser beam
increases. As shown in Figure 8a, by reducing the FPP and the cutting speed, the level of absorption
energy is increased to the top of the sample surface and the top kerf width increases. Additionally, the
top kerf width increases with reduction of the FPP and the increase of the laser power as shows in
Figure 8b. The energy, which is radiated to the top kerf width increases, and consequently the top kerf
width increases. By reducing the cutting speed, the interaction time of the beam radiated to the surface
of the sample is increased, thus the top kerf width increases. This phenomenon can be argued with the
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heat input, and Equation (6) describes the amount of heat input based on the scanning speed and the
power of the laser [51]:
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laser power

As shown in Table 2, in tests #12 and #15 (30 W power and zero position of FPP), only the cutting
speed varies. The quality of the kerf is better (cutting speed was 1 mm/s), because the interaction of
the laser beam with the PLA sheet increases at a slow rate, resulting in more heat absorption of the
workpiece. Since the samples are produced by the FDM 3D printing technology, they are layered
structures. When the cutting speed is low, the heat is absorbed more by the workpiece, which eliminates
the roughness. It is worthwhile to mention that, by increasing the cutting speed, the interaction of the
laser action with the workpiece decreases and the heat is less absorbed into the workpiece, affecting
the top kerf width. With increasing cutting speed, the kerf quality does not look good, and according
to the images taken by the optical microscope, the roughness of the kerf surface is high.

4.2. Bottom Kerf Width

It is clear from Table 6 that the FPP and cutting speed are effective terms for main parameters on
bottom kerf width, while several quadratic terms are of significance for bottom kerf width (FPP2 and
S2). Additionally, the interaction effect of FPP and cutting speed (FPP × S) has also been indicated
as a significant term. According to ANOVA Table 6, Equations (7) and (8) represents the regression
equation for the bottom kerf width based on the significant terms.

(Lower Kerf)0.82 = 106.47655 + 10.72785 × S − 32.99704 × FPP + 3.87539 × S × FPP-0.90775 × S2 + 5.37525 × FPP2 (7)

(Lower Kerf)0.82 = 137.09 − 11.88 × S − 18.78 × FPP + 74.41× FPP × C − 32.68 × S2 + 55.04 × FPP2 (8)

Surface plot of the bottom kerf width is shown in Figure 9. Based on Figure 9, when the laser
cutting speed and the FPP parameters are increased, the laser beam interaction effect on the PLA sheet
is low and this phenomenon makes the bottom kerf width samples have low amounts. Additionally,
In Figure 10, the perturbation plot of the bottom kerf width is illustrated. Since the FPP parameter in
the regression Equations (6) and (7) and its F-Value in ANOVA table are greater than the cutting speed
factors, the slope of the FPP curve is greater than the other curves. Therefore, FPP parameter has the
greatest effect on the bottom kerf width.
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Table 6. ANOVA table for bottom kerf width.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Model 12,718.65 5 2543.73 22.69 <0.0001
S 564.87 1 564.87 5.04 0.0463

FPP 1411.01 1 1411.01 12.59 0.0046
S× FPP 2768.24 1 2768.24 24.69 0.0004

S2 1531.34 1 1531.34 13.66 0.0035
FPP2 4344.45 1 4344.45 38.75 0.0001

Residual 1233.26 11 112.11
Lack of fit 1138.58 9 126.51 2.67 0.3019 not
Pure error 94.68 2 47.34

Total 13,951.91 16

R-Squared = 91.16% R-Squared (Adj) = 87.14%
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4.3. Ratio of the Top Kerf to Bottom Kerf

In Table 7, a variance analysis for the ratio of the top kerf to bottom kerf is presented. In this table,
FPP and cutting speed are effective linear parameters. Additionally, FPP2 and S2 are quadratic terms
which have significant effects. The scanning speed and the FPP interaction effect (S × FPP) are the
only significant interaction. Regression equations for the ratio of top to bottom kerf are presented in
Equations (9) and (10).

(Ratio)−0.09 = 0.99379 + 0.00376236 × S − 0.00622428 × FPP + 0.00136254 × S × FPP − 0.000403990 × S2 + 0.00277260 × FPP2 (9)

(Ratio)−0.09 = 1 − 0.011 × B + 0.011 × C + 0.026 × B × C − 0.015 × B2
− 0.028 × C2 (10)

Table 7. ANOVA table of the ratio of top to bottom kerf.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Model 0.002530 5 0.0005060 8.52 0.0016
S 0.0005163 1 0.0005163 8.69 0.0132

FPP 0.0004497 1 0.0004497 7.57 0.0188
S × FPP 0.0003422 1 0.0003422 5.76 0.0352

S2 0.0003033 1 0.0003033 5.11 0.0451
FPP2 0.001156 1 0.001156 19.47 0.001

Residual 0.0006532 11 0.00005938
Lack of Fit 0.0006519 9 0.00007243 111.44 0.0089
Pure Error 0.0000013 2 0.0000006499

Total 0.003183 16

R-Squared = 79.48% R-Squared (Adj) = 70.16%

In Figure 11, the response surface plots for the top to bottom kerf is demonstrated. According to
the FPP, cutting speed, and laser power, by increasing the scanning speed, the ratio of the top to bottom
kerf increases, see Figure 11a,c. Figure 12 shows the ratio of top to bottom kerf perturbation plot.
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Figure 11. Ratio of top kerf to bottom kerf surface plots: (a) FPP and laser cutting speed, (b) laser
power and laser cutting speed, (c) FPP and cutting speed
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4.4. Taper

Taper ANOVA is listed in Table 8. S and FPP are effective linear parameters. Additionally, FPP2 is
the quadratic term and has a significant effect. Taper regression equations based on coded values are
presented in Equations (11) and (12).

(Taper + 0/50)1.02 = 0.072007 + 0.070500 × S + 0.17490 × FPP − 0.054374 × S × FPP + 0.18896 × FPP2 (11)

(Taper + 0/50)1.02 = 0.57 + 0.42 × S − 0.66 × FPP − 1.04 × S× FPP + 1.93 × FPP2 (12)

Table 8. Taper analysis ANOVA.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value

Model 8.83 4 2.21 19.18 <0.0001
S 0.72 1 0.72 6.22 0.0282

FPP 1.73 1 1.73 15.06 0.0022
S × P 0.54 1 0.54 4.74 0.0502
FPP2 5.84 1 5.84 50.72 <0.0001

Residual 1.38 12 0.12
Lack of fit 1.38 10 0.14 70.47 0.0141
Pure error 0.003908 2 0.001954

Total 10.21 16

R-Squared = 86.48% R-Squared (Adj) = 81.97%

Figure 13a shows the effect of the position parameters of the laser power and the FPP on the
taper. The taper is increased by changing the FPP. The parameters’ effect of the laser cutting speed
and FPP on the taper is shown in Figure 13b. While the laser cutting speed and FPP parameters are
increased, the taper increases. As can be concluded, the greatest taper occurs at the major FPP and
highest laser cutting speed. The effect of the FPP and laser cutting speed on the taper is shown in
Figure 14. As indicated in the diagram, the taper is linearly decreasing while the laser cutting speed
decreases, and the taper increases as the position of the FPP decreases.
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5. Optimization

In this section, some tests are investigated to validate the quantities of parameters and determine
the percentage of possible error of the difference in the output responses of the statistical method and
the laboratory method [26,52]. Table 9 shows the actual, predicted and error rate of the experimental
method and the experimental design method for the output responses. As shown in Table 9, the
error rate of experimental and optimization methods is below 15% for the output results of geometric
characteristics (the top and bottom kerfs, the ratio of the top and bottom kerf incisions of optimization
samples) and this is an acceptable error rate for this study. The best test is shown for optimum setting
in Figure 15. The walls of the best optimum setting are in superb condition. Additionally, around the
edges of the laser cutting routs, no defects appear and samples are very suitable for use.

Table 9. Input and output parameters for optimum settings.

Solution Input Parameters Optimum Output Results

1

S (mm/s) P (W) FPP (mm) Top Kerf
(µm)

Bottom
Kerf (µm) Ratio

1.4 30.18 0.53
Actual 327.07 307.69 1.052

Predicted 287.056 289.735 0.945
Error% 13.9 6.19 11.32

2 7.97 24.27 0.98
Actual 406 392 1.035

Predicted 394.29 404.895 0.97
Error% 2.96 −3.18 6.7

3 3.04 27.64 0.45
Actual 387.6 370 1.047

Predicted 333.659 351.065 0.95
Error% 16.1 5.9 10.21

4 2.42 36.57 0.47
Actual 400 364.6 1.09

Predicted 320.037 333.159 0.952
Error% 24.8 9.4 14.4

5 1.19 36.49 0.53
Actual 276.9 261.5 1.05

Predicted 287.077 289.752 0.945
Error% −3.5 −9.7 11.11
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kerf Taper amount. 
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mm. Focal plane position input parameters have good physical features after the laser cutting 
process when 276.9 μm top and 261.5 μm bottom kerf width is cut by laser. 
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6. Conclusions

The post-processing of PLA sheets fabricated by FDM 3D printing was investigated, by
implementing CO2 laser cutting. The effects of laser cutting process parameters on the geometrical
dimension of the kerf (e.g., bottom and top kerf width, ratio of the top kerf to bottom kerf, taper)
were studied by the response surface method. The following conclusions could be drawn from the
experimental study:

(1) Dimensional accuracy of the FDM 3D-printed PLA parts can be improved by laser cutting as a
post processing step. The laser can cut the samples easily, whereas the kerfs dimension quality
has acceptable features.

(2) Decreasing the FPP range from zero to −3 mm causes a decline in the top and bottom kerf width
but decreasing more than −3 mm has an inverse effect.

(3) Kerf taper is increased by changing the FPP. It should be mentioned that the laser cutting speed
and FPP in the liner terms based on the ANOVA table of kerf taper has effective influence on kerf
Taper amount.

(4) The best optimum sample is achieved with 1.19 mm/s cutting speed, 36.49 W power and 0.53 mm.
Focal plane position input parameters have good physical features after the laser cutting process
when 276.9 µm top and 261.5 µm bottom kerf width is cut by laser.

(5) The overall conclusion is that by locating the laser spot point in the profundity of the sheet, the
laser cutting process results in the best quality.
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