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SUMMARY

Netherton syndrome (NS) is a monogenic skin disease resulting from loss of function of 

lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1). In this study we examine if 
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bacteria residing on the skin are influenced by the loss of LEKTI-1 and if interaction between this 

human gene and resident bacteria contributes to skin disease. Shotgun sequencing of the skin 

microbiome demonstrates that lesional skin of NS subjects is dominated by Staphylococcus aureus 
(S. aureus) and Staphylococcus epidermidis (S. epidermidis). Isolates of either species from NS 

subjects are able to induce skin inflammation and barrier damage on mice. These microbes 

promote skin inflammation in the setting of LEKTI-1 deficiency due to excess proteolytic activity 

promoted by S. aureus phenol-soluble modulin α as well as increased bacterial proteases 

staphopain A and B from S. aureus or EcpA from S. epidermidis. These findings demonstrate the 

critical need for maintaining homeostasis of host and microbial proteases to prevent a human skin 

disease.

Graphical Abstract

In Brief

Williams et al. show how an abnormal skin microbiome promotes inflammation associated with 

Netherton syndrome, a monogenic disorder in the human protease inhibitor SPINK5. Subjects 

with Netherton syndrome have excess colonization by S. aureus or S. epidermidis that then 

produce and promote increased protease production in the epidermis.
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INTRODUCTION

The identity and abundance of microbes on epithelial surfaces have been linked to important 

outcomes in human disorders, such as inflammatory bowel diseases, neurological disorders, 

obesity, cancer, diabetes, autoimmune disorders, and skin diseases (Gilbert et al., 2018; 

Helmink et al., 2019; Kho and Lal, 2018; Schmidt et al., 2018). Symptoms associated with 

microbial dysbiosis are generally thought to reflect the influence of specific members of the 

microbial community on health. For example, the presence of Staphylococcus aureus (S. 
aureus) on subjects with atopic dermatitis (AD) is strongly associated with disease 

(Alsterholm et al., 2017; Gong et al., 2006; Kong et al., 2012; Leyden et al., 1974; Paller et 

al., 2019). However, even in this example, S. aureus is not universally found on all AD 

subjects, and the role of the microbe in AD pathogenesis continues to be debated (Paller et 

al., 2019). It also remains unclear why S. aureus promotes inflammation in the absence of 

infection in AD but not in healthy individuals. Although much progress has been made in 

the past decade toward understanding the roles of the microbiome in human health, the 

inability to connect host genotypes to microbial functions has made it difficult to establish 

causality for microbes in human inflammatory diseases.

The contribution of the host to control the composition of the resident microbiome is poorly 

understood. In the case of AD, mutations in the skin barrier protein filaggrin (FLG) 

represent the most significant known genetic risk factor (Esparza-Gordillo et al., 2009; 

Morar et al., 2007). FLG mutations in AD have also been associated with an increase of S. 
aureus colonization in subjects (Clausen et al., 2017). However, not all subjects with FLG 

mutations have dysbiosis of the microbiome, and most AD subjects do not have FLG 

mutations. The complexity of a multifactorial disease such as AD makes it difficult to 

connect skin inflammation to microbial dysbiosis through a human genetic abnormality. 

Several murine models have been useful to show how host genetic modifications can 

influence microbial colonization or inflammation, but much work remains to establish this 

link in humans (Kobayashi et al., 2015; Nakatsuji et al., 2016). Overall, there is a paucity of 

examples of a canonical pathway connecting a human gene to microbial dysbiosis and 

subsequent disease symptoms.

In this study, we investigated subjects with the autosomal-recessive skin disease Netherton 

syndrome (NS) to understand the relationship between human genetic mutations and the role 

of the microbiome in skin disease. NS subjects have a single gene mutation in the serine 

protease inhibitor Kazal type 5 gene (SPINK5) that leads to a loss of function of the protein 

lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1) (Chavanas et al., 2000). 

Mechanistically, this mutation leads to an increase in epidermal serine protease activity that 

subsequently leads to skin barrier damage and inflammation. The mouse Spink5 knockout is 

lethal shortly after birth because of a severely impaired epidermal skin barrier (Bonnart et 

al., 2010; Briot et al., 2009; Descargues et al., 2005). In humans, NS subjects typically have 

a generalized skin inflammatory phenotype at birth that reflects the abnormal development 

of the epidermal barrier due to the lack of LEKTI-1 activity. However, patients with NS 

improve with age, and adults do not show a generalized skin phenotype. Adults with NS 

typically have limited and distinct skin locations with epidermal breakdown, and this clinical 

phenotype changes over time. On the basis of this clinical finding, we investigated if the 
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function of the local skin microbiome could contribute to the localized and transient nature 

of skin disease in adult NS subjects.

Recently S. aureus was shown to damage normal human keratinocytes through the release of 

bacterial proteases and the production of phenol-soluble modulin alpha (PSMα) peptides 

that induce human endogenous serine protease activity on the skin surface (Liu et al., 2017; 

Nakagawa et al., 2017; Nakatsuji et al., 2016; Williams et al., 2017, 2019). These findings 

showed that bacterial products can negatively modulate the host skin barrier either by direct 

action of their own secreted proteases or by controlling host protease responses.

On the basis of the variable clinical phenotype of adult NS subjects and previous findings 

with S. aureus, we hypothesized that the mutation of the human protease inhibitor gene 

SPINK5 could enable the skin microbiome to further exacerbate the clinical phenotype of 

NS beyond the effects on epidermal differentiation observed in newborns. This hypothesis 

was further supported by the fact NS subjects can also frequently become infected by S. 
aureus (Chao et al., 2005; Renner et al., 2009; Zhvania et al., 2017). Unexpectedly, all ten 

NS subjects assessed in our study were dominated by S. aureus and/or Staphylococcus 
epidermidis (S. epidermidis). Furthermore, aside from the previously established capacity of 

S. aureus to alter proteolytic balance in the epidermis, we discovered that an S. epidermidis 
cysteine protease may also play an important role in damaging the skin and inducing 

inflammation. Overall, this study allows for a better understanding of how interactions 

between systems of microbial and human proteases activity are important to maintain 

homeostasis and contributes to disease in NS.

RESULTS

The Skin Microbiome of NS Is Distinct from Healthy Skin

Swabs were collected from the skin of ten subjects with NS whose clinical diagnosis was 

confirmed by the presence of causative mutations in SPINK5. Swabs were collected on 

different anatomical areas of the trunk and extremities according to the presence of a lesion. 

Several subjects were also screened at multiple time points. Areas sampled included the 

abdomen, thigh, and arm, which have similar microbial content under healthy conditions 

(Table S1). The number of collected samples varied from one subject to another depending 

of the number of visits the subject had during the time of the study. The microbiota from 

individual swab samples were studied by both deep shotgun sequencing and culturing of live 

individual bacterial isolates (Figures 1A and 1B; Figure S1). To permit adequate depth of 

sequencing, only samples with less than 98% of human genomic DNA contamination were 

fully sequenced (five healthy subjects and six NS subjects). Meta-analysis of the assembled 

contigs revealed major differences between the healthy and NS cohorts but a similarity 

between bacterial DNA sequences from lesional and non-lesional sites within the NS group 

(Figures 1C–1E; Figure S2). Of the 40 most abundant bacterial species and strains, 

Cutibacterium acnes predominated on healthy control subjects, except for one subject with 

Enhydrobacter aerosaccus, while both the lesional and non-lesional skin of NS subjects had 

increased staphylococcal species, including both S. epidermidis and S. aureus (Figure 1F; 

Figure S3). Overall the most abundant species on either healthy or NS skin samples was 

frequently greater than 30% of the entire community. These data show a large difference 
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between the compositions of the overall bacterial community of NS subjects compared with 

controls. This difference in bacterial communities between healthy skin and NS exceeds 

prior reports of the difference in the microbiome between subjects with AD and controls 

(Byrd et al., 2018).

Analysis of the diversity of staphylococcal species on NS and healthy controls showed an 

increase in the relative abundance of S. aureus and S. epidermidis on NS subjects regardless 

of whether the swabs were collected from lesional or non-lesional sites (Figure 2A; Figure 

S1). However, analysis of the absolute abundance of total live staphylococci and S. aureus 
on skin by colony counting showed a significant increase on the lesional skin of NS subjects 

compared with non-lesional skin sites and skin from healthy controls (Figure 2B). Also, all 

of the NS subjects in this study were colonized by S. aureus at least at one time point from 

multiple collections (Figure 2C; Figure S4). Together, these findings unexpectedly showed 

that S. aureus and S. epidermidis dominate NS skin in terms of both absolute abundance of 

live colonies and relative species abundance as determined by shotgun metagenomic 

analysis.

S. aureus Phenol-Soluble Modulin α Promotes Epidermal Protease Activity that Is 
Amplified in NS

To identify the mechanism by which S. aureus could promote disease in NS, we examined 

the S. aureus virulence factor PSMα. This peptide has been shown to induce activity of 

several serine proteases of the kallikrein (KLK) family in human keratinocytes (Williams et 

al., 2017,2019). We hypothesized that induced expression of human proteases by PSMα 
might be amplified by the lack of the serine protease inhibitor LEKTI-1 in NS subjects. Our 

metagenomic analysis showed that DNA for the psmα operon was elevated in all samples in 

which S. aureus colonization was present (subjects 1, 6, 7, and 8), and a strong correlation 

between the presence of psmα and disease severity was observed (Figure 3A). psmα mRNA 

extracted from skin swabs also correlated with the abundance of S. aureus colonization on 

NS skin (Figures 3B and 3C). Analysis of individual S. aureus colonies further revealed that 

expression of the psmα operon varied between isolates and that this expression correlated 

with the capacity of an isolate to induce endogenous serine protease activity in primary 

human keratinocytes (Figure 3D).

To further establish if S. aureus isolates from NS skin could damage the skin and therefore 

participate in disease, we selected one lesional S. aureus isolate per subject to apply 

epicutaneously to murine back skin. As expected, similar to what was observed with S. 
aureus laboratory strains or isolates from AD skin (Byrd et al., 2018; Liu et al., 2017; 

Nakagawa et al., 2017; Nakatsuji et al., 2016; Williams et al., 2017, 2019), all the tested S. 
aureus isolates induced visual skin inflammation and barrier damage as assessed by 

increased transepidermal water loss (TEWL) and endogenous trypsin activity (Figures 3E 

and 3F). Furthermore, skin exposed to S. aureus from NS also demonstrated increased 

mRNA for cytokines linked to general inflammation, including Il1b, Il6, Il17a/f, and Ifng 
(Figure 3G). These findings demonstrate that S. aureus NS isolates have the capacity to 

promote skin barrier damage and inflammation in vivo. Next, to determine the relevance of 

the increased expression of S. aureus psmα in NS subjects, normal human keratinocytes 
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were exposed to PSMα3 peptide in culture following inhibition of SPINK5 by small 

interfering RNA (siRNA). As expected, the NS keratinocyte model lacked SPINK5 mRNA 

expression, and this correlated with increased baseline trypsin activity from the cells. 

However, PSMα3 significantly increased keratinocyte trypsin activity in SPINK5-deficient 

cells (Figures 3H and 3I) above normal cells. These data demonstrate how PSMα peptides 

from S. aureus can exacerbate proteolytic activity in NS skin because of the unopposed 

induction of epidermal serine protease activity by this bacterial toxin.

S. aureus Cysteine Proteases Staphopain A and B Are Associated with Disease in NS

In addition to the keratinocyte protease activity induced by PSMα, staphylococci also 

secrete several proteases that could interact with LEKTI and participate in damaging the 

epidermis in NS (Nakatsuji et al., 2016; Williams et al., 2019). To determine the effect of an 

S. aureus protease on skin barrier damage and inflammation, we assessed individual protease 

gene deletions in a parental strain of S. aureus USA300 LAC. Individual deletions of the 

genes encoding the cysteine proteases staphopain A and B (scpA, sspB) did not significantly 

decrease skin damage induced by S. aureus after topical application on mouse skin, but a 

combined knockout of both cysteine proteases reduced inflammation and increased TEWL 

associated with loss of skin barrier integrity (Figures 4A and 4B). Similar amounts of 

bacteria were found on mouse skin after treatment, showing that this effect was not due to a 

difference in levels of colonization by the mutant strains of bacteria (Figure S5). The 

abundance of gDNA for these cysteine proteases was increased in NS subjects with elevated 

S. aureus abundance in the metagenomic dataset (Figure 4C). In parallel with these findings, 

both scpA and scpB showed significantly increased abundance of mRNA on lesional NS 

skin compared with non-lesional and healthy controls and correlated with the absolute 

abundance of S. aureus found on NS subjects (Figures 4D and 4E). These findings show that 

S. aureus cysteine proteases staphopain A and B can also contribute to skin barrier damage 

on subjects with NS.

S. epidermidis Cysteine Protease EcpA Is Associated with Disease in NS and Can Promote 
Skin Damage

Because a predominance of colonization by S. epidermidis was also seen in NS, we sought 

to determine how this species might contribute to disease. A potential role for S. epidermidis 
was particularly evident in NS subject 3 (NS3), who displayed low levels of S. aureus 
colonization but elevated S. epidermidis relative to controls (Figures 2A and 2C). S. 
epidermidis is known to secrete a single cysteine protease termed extracellular cysteine 

protease A (EcpA) that has similarity to S. aureus cysteine proteases staphopain A (ScpA) 

and staphopain B (SspB) (Dubin et al., 2001; Oleksy et al., 2004). Alignment of amino acid 

sequences of the active cysteine proteases showed homology between S. aureus staphopains 

A and B and S. epidermidis EcpA (Figure 5A; Figure S6). Using a single-gene deletion 

knockout for the EcpA gene (ecpA) in S. epidermidis, we established that S. epidermidis can 

also drive skin barrier damage and inflammation on murine back skin through the expression 

of this cysteine protease (Figures 5B and 5C). The difference of effect between the two 

bacteria was not due to a different level of colonization (Figure S5A). Analysis of the human 

skin swab samples showed increased S. epidermidis gDNA absolute abundance levels on 

both non-lesional and lesional skin that were comparable to increases in S. aureus compared 
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with healthy control subjects (Figure 5D). Furthermore, mRNA abundance for ecpA found 

on NS skin swabs was significantly elevated on lesional skin, and the relative abundance 

correlated with the gDNA absolute abundance of S. epidermidis found on the skin (Figures 

5E and 5F). These data revealed that subject NS3 had the highest abundance of both S. 
epidermidis and ecpA mRNA and displayed the least amount of live S. aureus (Figure 2C). 

The analysis of individual S. epidermidis isolates from subject NS3 then revealed that 

activity of EcpA varied between isolates (Figure 5G). To determinate if S. epidermidis 
isolates from NS skin could damage the skin, an S. epidermidis isolate selected for having 

EcpA activity was applied on mice. Similar to what was observed with S. aureus clinical 

isolates, this S. epidermidis isolate induced skin damage measured by increased TEWL and 

increased endogenous trypsin activity (Figures 5H and 5I). Moreover, S. epidermidis isolate 

NS3 2 also increased the mRNA levels of Il1b, Il6, and Il17a/f but not Ifng or Il4 (Figure 

5J). These findings suggest that S. epidermidis can contribute to skin damage when present 

on NS skin through the expression of the cysteine protease EcpA.

DISCUSSION

A fundamental understanding of how commensal microbial gene products interact with the 

human genome is generally lacking. In this study, we focused on subjects with an 

autosomal-recessive skin disease that results from loss-of-function mutations in a single 

gene, the serine protease inhibitor SPINK5. This syndrome was of interest because although 

it is a germline mutation, the severity and location of inflammation vary over time, thus 

suggesting the potential that this single-gene mutation enables a dynamic epidermal 

microbial community to influence the observed phenotype. Bacteria present on subjects with 

NS were similar to one another but differed greatly from bacteria present on the skin of 

healthy control subjects. Staphylococcal species, in particular either S. aureus or S. 
epidermidis, were predominant on NS subjects. Genomic and functional analysis identified 

specific gene products from these bacteria that altered the proteolytic activity of the 

epidermis and therefore were relevant to subjects with loss of SPINK5. This human disease 

demonstrates how products of the human and microbial genomes can interact and illustrates 

the functional consequences of loss of homeostasis driven by a defect in this system. The 

epidermal ecosystem is multidimensional, and our findings show how several bacterial genes 

from different species can contribute to a disease phenotype. Overall we provide an 

important model of how communication with commensal microbes influences human health.

This study presents one of the most deeply sequenced skin microbiome datasets to date, 

which has allowed metagenomic co-assembly. The QUAST analysis of the co-assemblies 

shows that the major shared genomes were highly covered, as does the psmα contig 

analysis. The strain resolved phylogenetic profiling was conducted using software explicitly 

designed for this analysis (Nayfach et al., 2016). Despite the findings of the metagenomic 

sequencing presented in this study, we do recognize several potential shortcomings. As with 

other skin microbiome studies, a lack of ability to remove the majority of human DNA 

contamination leads to difficulty in assessing bacteria reads with enough coverage for 

assembly. Sampling of the NS subject cohort was also not contained to a single common 

site, because of the sporadic nature of NS skin lesions. Skin swabs were collected based 

upon the availability of lesions at each visit. These swab sites were predominately on the 
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abdomen and local extremities (e.g., shoulder, arm, thigh), which all have similar baseline 

healthy microbiomes and are thus relevant to compare. Age can also lead to varying skin 

microbiome populations. It has been observed that younger patients have significantly less 

Propionibacterium on the skin surface than older patients (Oh et al., 2012). Subject ages in 

this study varied drastically, ranging from 12 to 47 years, with the presence of younger 

subjects making it difficult to include age-matched healthy control subjects. Despite these 

challenges in sample collection with a rare skin disease, all sites sampled displayed a clear 

phenotype of increased staphylococci colonization that differed greatly from normal skin 

(age range 27–52 years) and often was predominated by S. aureus. This does not occur in 

the healthy population despite age or swab site, and the percentage of NS individuals who 

were positive for S. aureus (>90%) greatly exceeded how often AD subjects are colonized 

by S. aureus (>50%). Overall, these findings provide a highly informative deep shotgun 

sequencing metagenomic analysis of a skin disease and suggest that the gene mutation in NS 

results in a unique skin microbiome.

Several of the observations made in this study were unexpected. S. aureus was known to 

promote damage to keratinocytes and induce skin inflammation (Liu et al., 2017; Nakagawa 

et al., 2017; Nakatsuji et al., 2016; Williams et al., 2017, 2019) but was not known to play 

such an important role in NS. Although the presence of S. aureus on NS subject skin was 

already reported in the literature (Chao et al., 2005; Renner et al., 2009; Śmigiel et al., 

2017), the present study showed that NS subjects appeared to be almost universally 

colonized by S. aureus. Furthermore, we demonstrated that S. aureus isolates from NS 

subjects have similar effect on mouse skin to what was previously observed with isolates 

from AD skin (Williams et al., 2019). PSMα from isolates of both diseases induced serine 

protease activity and promoted skin damage. Moreover, S. aureus staphopain A (scpA) and 

staphopain B (sspB), two cysteine proteases previously underappreciated for their virulence 

capacity, were shown to contribute to this response. Human keratinocytes showed increased 

protease activity when SPINK5 was silenced and treated with PSMα3, thus showing in 

human cells how the loss-of-function mutations in SPINK5 found in NS subjects will 

increase their susceptibility to proteolytic damage promoted by S. aureus. In agreement with 

our data, a case report showed a very significant improvement of symptoms and quality of 

life of a subject with NS after treatment with an anti-staphylococcal bacteriophage 

preparation (Zhvania et al., 2017). Altogether, these findings demonstrate how S. aureus 
present on NS skin is a major factor that exacerbates the pathogenesis of NS.

An important and unexpected observation from this study was also that S. aureus is not the 

only member of the complex skin microbiome that promotes inflammation in NS. 

Metagenomic analysis of NS subjects found an increase in the relative abundance of S. 
epidermidis, with one subject being preferentially dominated by S. epidermidis. We 

demonstrated that an S. epidermidis NS isolate was able to induce skin damage in mice. This 

finding was very surprising, as S. epidermidis was previously regarded as one of the key 

members of the normal skin microbiota and not recognized to have pathogenic effects when 

colonizing only the skin surface. In contrast, S. epidermidis has been hypothesized to have 

multiple beneficial effects for the host (Byrd et al., 2018; Nakatsuji and Gallo, 2019; Stacy 

and Belkaid, 2019). Various S. epidermidis strains have been shown to have the capability to 

tune skin immunity, to promote wound repair, to limit pathogen infections, and to protect 
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against skin tumors (Lai et al., 2009, 2010; Linehan et al., 2018; Naik et al., 2015; Nakatsuji 

et al., 2017, 2018). Under some conditions, such as those that were apparently present on 

NS3, S. epidermidis may effectively outcompete S. aureus for dominance on the skin 

(Nakatsuji et al., 2017). Although S. epidermidis can also be an invasive pathogen (Dong et 

al., 2018; Le et al., 2018; Otto, 2009; Uçkay et al., 2009), this behavior is opportunistic and 

occurs typically in a setting of immunosuppression or implanted foreign devices.

The cysteine protease EcpA was shown to be a major factor used by S. epidermidis to 

damage the skin, as its deletion in a laboratory strain prevented this effect, and several 

clinical isolates expressing EcpA had a similar capacity to promote epidermal injury. It is 

unlikely that the capacity of S. epidermidis to induce skin inflammation is specific to NS 

isolates. As EcpA expression is under the control of the accessory gene regulatory (agr) 
quorum sensing system of S. epidermidis (Olson et al., 2014), we speculate that either the 

density of S. epidermidis on normal skin is too low to activate the agr quorum sensing 

system, or other commensal coagulase-negative staphylococci can inhibit its agr system 

when the relative abundance of S. epidermidis is low. This could explain why on healthy 

skin S. epidermidis does not produce sufficient EcpA to induce disease. Alternatively, 

LEKTI-1 has also been shown to have the capacity to inhibit cysteine proteases (Bennett et 

al., 2010). Thus, in NS subjects, the loss of a single gene expressing LEKTI-1 could lead to 

a skin microenvironment that promotes excess activity of EcpA. This may occur in 

association with S. aureus, or in some cases, such as subject NS3, skin lesions may be 

induced by S. epidermidis acting alone. The contribution of other bacterial proteases or 

toxins to this system cannot be excluded and are considered to be likely (Cheung et al., 

2014; Qin et al., 2017; Queck et al., 2009).

NS has similarities to AD but also has important differences. For instance, NS subjects show 

large dysbiosis across both non-lesional and lesional skin, while AD subjects mostly display 

dysbiosis only on lesional sites (Byrd et al., 2017). AD subjects display increased S. 
epidermidis and S. aureus skin colonization during disease flares (Byrd et al., 2017), a 

response similar to what we observed here on NS subjects. Interestingly, all NS subjects in 

this study revealed high amounts of S. aureus, but many AD subjects are not culture positive 

for S. aureus. Interestingly, our findings show how “commensal” S. epidermidis strains may 

behave on the skin in a similar way to S. aureus to disrupt proteolytic balance and promote 

inflammation. Therefore, consideration should also be given to S. epidermidis as a pathogen 

in AD. Further research into the negative effects of S. epidermidis in AD and other disorders 

is needed.

This study of subjects with NS provides insight into host genetic mechanisms behind 

changes in the human skin microbiome. In the case of NS, loss of a single serine protease 

inhibitor is enough to enable dysbiosis, but it is unclear why normal appearing skin on NS 

subjects also has an abnormal microbiome. Other host factors may be involved in control of 

the microbial community on the skin. The presence of the gene products identified here from 

S. aureus and S. epidermidis appears to contribute to the pathogenesis of skin lesions in the 

adult subjects, but it does not answer why dysbiosis is established. We hypothesize that the 

proteolytic imbalance from loss of SPINK5 influences innate immune function and the 

physical barrier. For example, serine proteases promote activation and inactivation of the 
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antimicrobial peptide LL-37 (Yamasaki et al., 2006). LL-37 is an important antimicrobial 

peptide in the skin against S. aureus (Larrick et al., 1995; Noore et al., 2013). Elevated 

serine protease activity promotes cleavage of LL-37 (Morizane et al., 2010). Once S. aureus 
colonization is established, its own secreted proteases can also degrade LL-37 (Sieprawska-

Lupa et al., 2004; Sonesson et al., 2017). Thus, it is possible that elevated endogenous serine 

protease activity due to loss of SPINK5 can prevent host immunity from establishing a 

healthy homeostasis. As the epidermis matures, established changes to the microbial 

ecosystem can then further enable manifestations of disease in NS in a localized and 

transient pattern. Because LEKTI-1 deficiency is lethal in mice (Descargues et al., 2005), 

efforts are currently being made to develop a viable mouse model for NS to further 

investigate this question.

In conclusion, this work illustrates how the rare monogenetic skin disease NS results in the 

establishment of a distinct bacterial community on the skin of adult subjects that is 

dominated by S. aureus and S. epidermidis. Our data suggest that specific gene products 

from these microbes may promote the barrier disruption that is characteristic of this disorder. 

These observations reveal an unanticipated pathway for Staphylococci to contribute to skin 

inflammation in this disease. Importantly, this work also illustrates how a single genetic 

modification in a host extracellular protease inhibitor affects the complex ecosystem of the 

skin. These observations uncover potential areas for future therapeutic interventions in NS.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Richard Gallo (rgallo@ucsd.edu). All bacteria strains used in 

this study are available from the lead contact while the metagenomic dataset is deposited to 

NCBI and available according the Bioproject number PRJNA551026.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human subjects—All experiments involving human subjects were sponsored by 

INSERM Institute (C12-56, ID-RCB Number: 2013-A00275-40) and were carried out 

according to protocols approved by the French Agence Nationale de Sécurité du 

Médicament (ANSM; Project #131066B42) and by the Institutional Review Board (Project 

#101-13). Skin swabs from 10 subjects with NS (non-lesional and lesional; ages ranging 

from 12-47 years old listed in Table S1) and 8 healthy subjects (ages ranging from 27-52 

years old listed in Table S2) were used in this study (Table S1). Both NS and healthy groups 

included both male and female subjects. NS subjects were confirmed clinically according to 

at least 3 of the following parameters: (i) scaly erythroderma in the first year of life, (ii) 

ichthyosis lineariz circumflexa; (iii) hair shaft defect including trichorrhexis invaginata, and 

(iii) atopic manifestations (elevated total IgE serum levels). Second, NS subjects were 

confirmed due to analysis of subject mutations to the SPINK5 gene by direct sequencing of 

the coding region and adjacent intronic sequences of SPINK5 as reported previously (Bitoun 

et al., 2002). To compare the severity between individuals, a severity score (Figure S1) based 
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on the following criteria: scaly erythroderma and ichthyosis lineariz circumflexa (absent = 0, 

minimum = 1, moderate = 2, severe = 3, very severe = 4) was used.

Bacteria preparation—All S. aureus and S. epidermidis strains were grown overnight 

(18h) to stationary phase in 3% tryptic soy broth (TSB) at 300RPM in a 37°C incubator 

unless stated otherwise. This growth time for all staphylococci indicated approximately an 

OD600nm reading of 10 and 1e9 CFU. For treatment of bacterial supernatant on human 

keratinocytes, overnight cultured bacteria were pelleted (15min, 4,000RPM, RT) followed 

by filter sterilization of the supernatant (0.22 μm). For mouse experiments with live bacteria 

colonization, bacterial CFU was approximated by OD600nm prior to application to mouse 

back skin followed by confirmation of the actual CFU the following day.

Mouse model of epicutaneous bacteria exposure—Age-matched 8-10 weeks old 

female C57BL/6J mice were used in all experiments (n = 3-5 per condition). Mice were co-

housed with 3-5 mice per cage in all experiments. All animal experiments were approved by 

the UCSD (University of California, San Diego) Institutional Animal Care and Use 

Committee (Protocol#S09074). A previously described mouse model of epicutaneous 

bacterial exposure was used (Williams et al., 2019). Briefly, the dorsal skin of anesthetized 

mice (2% isoflurane) was shaved and depilated using Nair cream for 2min followed by 

immediate removal with sterile alcohol wipes. The skin barrier was allowed to recover from 

hair removal for 24h prior to application of bacteria. S. aureus and S. epidermidis (1e7 CFU) 

in 3%TSB was applied to murine skin for 48h at a 100 μL volume on a 2x1cm piece of 

sterile gauze. A bio-occlusive dressing (Tegaderm; 3M) along with a flexible fabric Band-

Aid was applied on top of gauze to hold in place for duration of the treatment.

Normal human keratinocyte model—Normal neonatal human epidermal keratinocytes 

(NHEKs; Thermo Fisher Scientific) were cultured in Epilife complete medium containing 

60 μM CaCl2 (Thermo Fisher Scientific) supplemented with 1x Epilife Defined Growth 

Supplement (EDGS; Thermo Fisher Scientific) and 1x antibiotic-antimycotic (PSA; 

100U/mL penicillin, 100U/mL streptomycin, 250ng/mL amphotericin B; Thermo Fisher 

Scientific) at 37°C, 5%CO2. NHEKs were only used for experiments between passages 3-5. 

NHEKs were grown to approximately 80% confluency followed by differentiation in high 

calcium (2mM CaCl2) EpiLife complete medium for 48h. For bacterial supernatant 

treatments, differentiated NHEKs were treated with sterile-filtered bacterial supernatant at 

5% by volume to Epilife medium for 24h.

SPINK5 gene silencing human keratinocyte model—NHEKs grown to 50% 

confluency were treated for 24h with 20nM SPINK5 silencer select siRNA or a siRNA 

scrambled (-) control (ThermoFisher Scientific) using Lipofectamine RNAiMAX 

Transfection Reagent (Invitrogen) and OptiMEM medium (GIBCO). After 24h, remaining 

siRNA was removed and NHEKs were supplemented with fresh Epilife complete medium 

for 48h until cells reached about a complete monolayer followed by addition high calcium 

Epilife complete medium 2mM CaCl2 for an additional 48h. Finally, S. aureus synthetic 

PSMα3 peptide (10 μg/mL) was added to differentiated NHEKs for an additional 24h prior 

to analysis.
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METHOD DETAILS

Collection of skin microbiome from human subjects—For all subjects with 

Netherton syndrome, collection of surface bacteria was done from a pre-measured area 

(15cm2) of both lesional and non-lesional skin, on different anatomical areas according to 

lesion location and at different time points (Table S1). For the healthy subjects, surface 

bacteria were similarly collected on matching anatomical areas (Table S2). For collection of 

skin microbiome DNA, swab head was soaked in 1mL of molecular biology grade TE buffer 

(Invitrogen) containing 0.1% Triton X-100 and 0.05% Tween-20 and surface bacteria were 

collected by rubbing the pre-measured skin area with 50 strokes of constant pressure. Swab 

head was placed in a microcentrifuge tube and immediately stored at −80°C for further 

analysis. For collection of skin microbiome RNA and live bacteria, swab head was soaked in 

3%TSB and 16.67% glycerol solution and surface bacteria were collected as described 

above. Swab head was placed in a microcentrifuge tube containing 1 mL of 3%TSB and 

16.67% glycerol solution. Following 1 min of vortexing samples, the bacterial suspensions 

were stored at −80°C for further analysis. After skin microbiome collection, the skin of 

subjects was cleaned with an alcohol swab.

Microbiome metagenomic analysis

DNA extraction, library preparation, and shotgun sequencing—Microbiome 

DNA was extracted from skin swab using the PureLink Microbiome DNA Purification Kit 

according to manufacturer’s instructions (Thermo Fisher Scientific). After purification, 

samples were treated with NEBNext microbiome DNA enrichment kit according to 

manufacturer’s instructions (New England Biolabs) except that SPRI select beads (Beckman 

Coulter) were used for the final clean-up step and 40μL of Low EDTA TE buffer (Swift 

Biosciences) to elute the samples. The concentration of samples was monitored before and 

after enrichment using Qubit dsDNA HS assay kit (Invitrogen). 300bp fragments were 

generated by sonication. Next-generation sequencing (NGS) libraries were then prepared 

using Accel-NGS 2S Plus DNA Library Kit and 2S Indexed Adaptor Kit according to 

manufacturer’s instructions (Swift Biosciences) and using SPRI select beads (Beckman 

Coulter) for all clean-up steps. Before indexing, the quality and fragment-size of the libraries 

were checked using High Sensitivity D1000 ScreenTape according to manufacturer’s 

instructions (Agilent Technologies). Finally, HiSeq 2500 150bp paired-end sequencing 

(Illumina) was performed. 17 samples in total (12 NS lesional (n = 6) and non-lesional (n = 

6) and 5 healthy controls) were selected for metagenomic sequencing based upon < 98% 

human DNA contamination. Cumulatively, the total number of reads across all samples was 

2.6x108 reads (with an average of 1.5x107 reads per sample.

Quality control, host removal and metagenomic co-assembly—Raw 

metagenomic reads were trimmed for quality by removing low quality reads, followed by 

removal of reads that mapped to the human genome (assembly19) using KneadData (version 

0.5.4) with default parameters. Post quality trimming, the percentage of host contamination 

among subjects ranged from < 10% in some samples to > 80% in a few others, accounting 

for an average of approximately 1x107 reads per sample. The total number of reads after 

discarding those that mapped back to the human reference was 4.1x107, with an average of 

2.4x106 reads per sample. The host decontaminated reads from all samples (skin conditions 
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including both NS syndrome (non-lesional and lesional) and healthy samples) were then co-

assembled using metaSPAdes (version 3.11.1) on k-mer sizes of k = 21,33,55,77. 

Furthermore, reads across all samples were also combined and co-assembled on the basis of 

skin condition; i.e., healthy, lesional, and non-lesional to compare total size for the 

assembled cohorts and assess cumulative genome length and subsequent genome overlap 

between them (Table S3).

Taxonomic composition using species and strain level profiling—Species level 

taxonomic profiling was performed on the post-processed reads in order to examine the 

community composition using MIDAS (version 1.3.0) by leveraging approximately 30,000 

bacterial reference genomes, clustered into 5,952 species groups. Relative taxonomic 

abundances were estimated for each of the bacterial species groups, or strains, across 30 

universal single copy marker genes included in the marker_genes reference database by 

mapping reads to gene-specific, species-level mapping thresholds (94.5%–98% nucleotide 

identity). Hierarchical clustering was performed for the top 40 most prevalent species were 

visualized for the entire cohort using “dplyr” to filter the data frame and “heatmap3” with 

the “average” linkage method for generating the heatmap in R (version 3.4.1). MIDAS also 

allowed for pan-genomic profiling by mapping metagenomic reads to species of interest to 

quantify the abundance of these pangenomic genes, with at least one mapped read, across all 

samples. Results were visualized using “dplyr” and “reshape2” to manipulate the data and 

“ggplot2” for generating the plots in R.

Community richness and diversity based on ordination analyses—Microbial 

community richness and diversity metrics were examined using multidimensional scaling 

techniques like Principal Coordinates Analysis (PCoA) on the read counts matrix previously 

generated by taxonomic species level profiling for all samples. Beta diversity metrics like 

bray-curtis dissimilarity index and alpha diversity metrics like shannon, chao1 and 

observed_otus were calculated on reads from all species that had an abundance of at least 

1.0 across all samples. These metrics were then explored and visualized in QIIME 2 (version 

2019.1). Between and within beta diversity based on sample groupings by skin condition 

(healthy/non-lesional/lesional) and subject code was also explored.

Identification of staphylococcal virulence factors among subjects—Each contig 

from the all-inclusive co-assembly was screened for the presence and expression of specific 

virulence factors produced by S. aureus and S. epidermidis that are vital for pathogenicity, 

specifically the following six genes: (1) Phenol-soluble modulin α (PSMα1: 

fMGIIAGIIKVIKSLIEQFTGK (Williams et al., 2019) (2) Staphopain A (scpA [GenBank: 

CAD61962.1]) (3) Staphopain B (sspB [GenBank: AAG45844.1]) (4) Extracellular cysteine 

protease (ecpA [GenBank: AJ298299]. Assembly ORFs were called on all contigs using 

FragGeneScan (version 1.16), and read counts for each ORF across all samples were 

obtained by mapping reads to predicted ORFs using clc_ref_assemble_long in CLC 

Assembly Cell (CLC bio, version 3.22.55705) using the method as described in (Dupont et 

al., 2015). These ORFs were also searched against PhyloDB (version 1.076) using Blast (E-

value threshold < 1e-03) to establish phylogenetic annotation. Additionally, the ORFs were 

also searched against the Pfam and TIGRfam custom database using HMMER (version 3.0) 
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to establish functional annotation. For Pfam and TIGRFAM assignments, only matches with 

scores above the model trusted cut-off score were considered. Finally, all phylogenetic and 

functional annotation results were merged with the read counts for all ORFs across all 

samples.

Quantification of live staphylococci and collection of isolates from skin swabs
—For quantification of live staphylococci and collection of clinical isolates, swabs were 

rapidly thawed, vortexed, serial diluted and plated onto mannitol salt agar (MSA) selection 

plates supplemented with 3% egg yolk. After overnight incubation at 37°C, the number of 

colony-forming unit (CFU) was determined. S. aureus was distinguished from coagulase-

negative staphylococci (CoNS) according to mannitol metabolism and the egg yolk reaction 

as described previously (Iwase et al., 2010; Nakatsuji et al., 2017). For each swab, various 

CoNS and S. aureus isolates were picked, cultured overnight at 37°C in 3%TSB and stored 

at −80°C in 3%TSB and 16.67% glycerol solution for further analyses.

Quantification of staphylococcal genomic DNA (gDNA)—The absolute abundance 

of S. aureus and S. epidermidis gDNA in the microbial DNA elution prepared from skin 

swabs was determined by quantitative real-time PCR (qPCR) as previously described 

(Nakatsuji et al., 2013, 2016). Briefly, qPCR was performed with Power SYBR Green 

Master mix (Applied Biosystems) using S. epidermidis and S. aureus specific primers, 

targeting the S. epidermidis gseA gene and S. aureus femA gene respectively. To determine 

the relative CFU of S. aureus or S. epidermidis specific DNA, a standard curve was 

generated with gDNA extracted from known CFUs of S. aureus (ATCC113) or S. 
epidermidis (ATCC12228), respectively. The specificity of all primer pairs was confirmed by 

melting curve analysis and comparison with standard curves.

Transepidermal water loss measurement—To determine damage to the epidermal 

skin barrier, transepidermal water loss (TEWL) of murine skin treated for 48h with S. aureus 
or S. epidermidis was measured using a TEWAMETER TM300 (C & K).

RNA isolation and quantitative real-time PCR—All RNA was isolated using the 

Purelink RNA isolation kit according to manufacturer’s instructions (Thermo Fisher 

Scientific). For mouse tissue, about 0.5cm2 full thickness skin was bead beat in 750 μL of 

RNA lysis buffer (2x 30sec with 5min on ice after each, 2.0mm zirconia bead). Tissue was 

then centrifuged (10min, 13,000RPM, 4°C), followed by adding 350 μL of clear lysate to 

70% EtOH and column based isolation of RNA. For isolation of human skin swab 

microbiome RNA, skins swabs were vortexed (30sec) followed by incubation of 250 μL 

with RNAprotect reagent (QIAGEN) for 10min prior to centrifugation (10min, 13,000RPM, 

RT), resuspension in 750 μL of RNA lysis buffer, and bead beating (2x 1min with 5min on 

ice after each) using lysing matrix B tubes. Samples were then centrifuged again and 350 μL 

of clear lysate was added to 70% EtOH as above. After RNA isolation, samples were 

quantified with a Nanodrop (ThermoFisher Scientific), and 500ng of bacterial or mouse 

RNA was reverse-transcribed using the iScript cDNA synthesis kit (Bio-Rad). qPCR 

reactions were ran on a CFX96 Real-Time Detection System (Bio-Rad). For mouse samples, 

gene-specific primers and TaqMan probes (Thermo Fisher Scientific) were used with 
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GAPDH as a housekeeping gene. For bacterial RNA, SYBR Green qPCR Master Mix 

(Biotool) was used along with specific primers. The mRNA relative abundance of the genes 

sspB, scpA and ecpA were normalized to the overall skin area swabbed.

NHEK and murine skin trypsin activity analysis—NHEK conditioned medium was 

added at 50 μL to black 96 well black bottom plates (Corning) followed by addition of 150 

μL of the peptide Boc-Val-Pro-Arg-AMC (trypsin-like substrate, BACHEM) at a final 

concentration of 200 μM in 1x digestion buffer (10 mM Tris-HCl pH7.8, Teknova) and 

incubated at 37°C for 24h. Relative fluorescent intensity (excitation: 354nm, emission: 

435nm) was analyzed with a SpectraMAX Gemini EM fluorometer (Thermo Fisher 

Scientific). For murine skin trypsin activity analysis, 0.5cm2 full-thickness skin was bead 

beat (2.0mm zirconia beads, 2x 30sec with 5min on ice after each) in 1mL of 1M acetic acid 

followed by an overnight rotation at 4°C. Samples were centrifuged (10min, 13,000RPM, 

4°C), added to a new microcentrifuge tube followed by protein concentration using a 

speedvac to remove all remaining acetic acid. Proteins were re-suspended in molecular grade 

water (500 μL) and rotated overnight at 4°C followed by another centrifugation. Clear 

protein lysates were added to a new tube, and BCA (Bio-rad) analysis used to determine 

protein concentration. Finally, 10 μg of total protein was added to a 96 well plate followed 

by analysis with the trypsin substrate as above.

Staphylococcus epidermidis protease EcpA activity analysis—For the 

measurement of S. epidermidis protease activity, bacteria were grown for 24h in 3%TSB at 

37°C before preparation of filtered-sterilized supernatant. The supernatant was tested for 

ecpA activity using a specific FRET substrate with the sequence (5-FAM)-Lys-Leu-Leu-

Asp-Ala-Ala-Pro-Lys-(QXL520)-OH (AnaSpec, Fremont, CA) (Olson et al., 2014). 25 μl of 

S. epidermidis supernatant was added to black 96 well black bottom plates (Corning) 

followed by addition of 25 μL of 1x digestion buffer (10 mM Tris-HCl pH7.8, Teknova) 

containing the ecpA FRET substrate (1nM final). Relative fluorescent intensity (excitation: 

485nm, emission: 538nm) was measured with a SpectraMAX Gemini EM fluorometer 

(Thermo Fisher Scientific) at t = 0 and after incubation at 37°C for 24h.

Mature cysteine protease Staphopain A, Staphopain B and EcpA sequence 
alignment—The amino acid sequence of the mature forms of the two S. aureus cysteine 

proteases Staphopain A (UniProtKB/Swiss-Prot: P81297.2) and Staphopain B (UniProtKB/

Swiss-Prot: P0C1S6.1) and the S. epidermidis cysteine protease EcpA (UniProtKB/Swiss-

Prot: P0C0Q0.1) were aligned using Geneious R11.1.5 (https://www.geneious.com).

QUANTIFICATION AND STATISTICAL ANALYSIS

All figures utilized non-parametric unpaired Kruskal Wallis analysis, Student’s t tests, and 

One/Two-way ANOVAs for statistical analysis as indicated in the figure legends. All 

statistical analysis was performed using GraphPad Prism Version 8.0 (GraphPad, La Jolla, 

CA). All data is presented as mean ± standard error of the mean (SEM) and a P value ≤ 0.05 

considered significant.
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DATA AND CODE AVAILABILITY

The accession number for the Netherton syndrome high-throughput shotgun sequencing 

metagenomic datasets generated in the course of this project have been deposited at the 

National Center for Biotechnology Information Sequence Read Archive under BioProject 

ID: PRJNA551026. Any further details regarding these datasets will be made available upon 

request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Netherton subjects have increased S. aureus or S. epidermidis on their skin

• S. aureus PSMα induces greater protease activity in keratinocytes deficient in 

SPINK5

• S. epidermidis EcpA protease damages the epidermis

• S. aureus and S. epidermidis proteases induce skin inflammation in mice
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Figure 1. Netherton Skin Microbiome Differs from Healthy Skin
(A) Representative picture of Netherton syndrome skin with severe disease.

(B) Workflow of Netherton skin microbiome collection and analysis.

(C) QUAST plots to assess the size of contigs for all assemblies. Three different co-

assemblies were performed: reads from all samples (healthy and infected) (black), reads 

from only the Netherton cohort (red), and reads from only the healthy samples (blue).
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(D) Pie chart representing the percentage of the top 10,000 contigs unique (blue) or shared 

(red) between healthy subjects and Netherton syndrome patients (left chart) and between 

Netherton syndrome non-lesional skin and lesional skin (right chart).

(E)Principal-coordinates analysis (PCoA) plot of beta diversity among samples using the 

Bray-Curtis dissimilarity metric. Each dot represents an individual swab. Swabs 

fromlesional and non-lesional skin from the same subject are connected by a black line.

(F) Hierarchical clustering of samples showing the top 40 most prevalent species across all 

samples.

See also Figures S1–S3.
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Figure 2. Staphylococcus aureus Colonization Is Increased on Netherton Syndrome Skin
(A) Percentage relative abundance of staphylococcal species within the total bacterial 

population on healthy controls, NS non-lesional, and NS lesional skin. NS subjects are 

arranged according to disease severity.

(B) S. aureus (red) and total staphylococci (black) colony-forming units (CFUs) per square 

centimeter of skin from healthy controls and NS non-lesional and lesional skin (n, number of 

swabs assessed per condition). Results represent mean ± SEM, and the non-parametric 

unpaired Kruskal-Wallis test was used to determine statistical significance: *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001.

(C) S. aureus CFUs per square centimeter of skin of NS non-lesional (black) and lesional 

(red) skin swabs at different visits (swab number) for each subject within the NS cohort. 
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Each dot represents a swab sample. Different numbers of swabs were collected for the 

different subjects depending on the number of visits they had during the time of the study.

See also Figure S4.

Williams et al. Page 25

Cell Rep. Author manuscript; available in PMC 2020 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Staphylococcus aureus PSMα Is Increased on Netherton syndrome Skin and Promotes 
Epidermal Protease Activity
(A) Normalized counts of the gene psmα detected from metagenomic samples.

(B) Relative abundance of S. aureus psmα mRNA isolated from skin swabs of healthy and 

NS non-lesional and lesional skin (n, number of swabs assessed per condition). Results 

represent mean ± SEM, and a non-parametric unpaired Kruskal-Wallis test was used to 

determine statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(C) Spearman correlation between S. aureus (SA) CFU/cm2 and the relative abundance of S. 
aureus psmα mRNA isolated from skin swabs. Each dot represents an individual swab.
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(D) Pearson correlation between the trypsin activity induced in neonatal human epidermal 

keratinocytes (NHEKs) after culture for 24 h with 5% supernatant of clinical S. aureus (SA) 

isolates from NS skin and the relative abundance of psmα mRNA level in the same SA 

isolates. Each dot represents an individual SA isolate.

(E–G) Epicutaneous application of 1e7 CFU/cm2 of S. aureus clinical isolates on murine 

back skin for 48 h (n = 3 per group). For each NS subject, one lesional S. aureus isolate with 

a high psmα expression was selected for mouse skin application.

(E) Visual representation of murine back skin after 48 h colonization with 1e7 CFU/cm2 SA 

isolates. (F and G) Analysis of (F) epidermal barrier damage (TEWL), trypsin activity, and 

(G) qPCR analysis of inflammatory cytokines stimulated in murine skin by clinical SA NS 

isolates 1–10. qPCR cytokine levels (Ifng, Il4, Il17a, Il17f, Il6, and Il1b) are normalized to 

the housekeeping gene Gapdh.

(H) Relative abundance of SPINK5 mRNA in NHEKs that were treated with scrambled 

control or SPINK5 siRNA (iSPINK5) (n = 3 per condition). Each dot represents an 

individual sample. Results represent mean ± SEM, and Student’s t test was used to 

determine statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(I) Trypsin activity from conditioned medium of NHEKs that were pretreated with 

scrambled control or SPINK5 siRNA (iSPINK5) and then cultured for 24 h with S. aureus 
synthetic PSMα3 peptide (0, 1, 2.5, 5, and 10 μg/mL) (n = 4 per condition). Results 

represent mean ± SEM, and two-way ANOVA was used to determine statistical significance: 

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

In (E)–(I), experiments are representative of two independent experiments. See also Figure 

S5.
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Figure 4. Staphylococcus aureus Staphopain A (scpA) and B (sspB) Are Increased in Netherton 
Syndrome and Induce Epithelial Barrier Damage
(A and B) (A) Representative picture and (B) TEWL measurement of female C57BL/6J 

murine back skin after epicutaneous application of 1e7 CFU/cm2 of S. aureus (SA) wild-type 

(WT), SA scpA knockout (−ΔscpA), SA sspB knockout (ΔsspB), or SA scpA/sspB double 

knockout (ΔscpAΔsspB) for 48 h (n = 5 per group). Results represent mean ± SEM, and 

one-way ANOVA was used to determine statistical significance: *p < 0.05, **p < 0.01, ***p 

< 0.001, and ****p < 0.0001.
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(C) Number of reads from metagenomic data corresponding to S. aureus scpA (red) and 

sspB (blue) genes normalized per library size for each sample.

(D) Relative abundance of S. aureus scpA (red) and sspB (blue) mRNA isolated from swabs 

of healthy control and NS non-lesional and lesional skin normalized to skin area (n, number 

of individual skin swabs per condition). Results represent mean ± SEM, and a non-

parametric unpaired Kruskal-Wallis test was used to determine statistical significance: *p < 

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(E) Spearman correlation between the relative abundance of either scpA (red) or sspB (blue) 

mRNA and S. aureus (SA) CFU/cm2 from all skin swabs. Each dot represents an individual 

swab. Results are represented as mean ± SEM.

In (A) and (B), data are representatives of at least two independent experiments. See also 

Figure S5.
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Figure 5. Staphylococcus epidermidis Colonization Is Increased in Netherton Syndrome Skin and 
Can Induce Epithelial Barrier Damage through the Expression of the Cysteine Protease EcpA
(A) Percentage amino acid sequence identity of the mature forms of the two S. aureus 
secreted cysteine proteases staphopain A (scpA) and staphopain B (sspB) and the S. 
epidermidis secreted cysteine protease EcpA (ecpA).

(B and C) (B) Representative pictures and (C) TEWL measurement of female C57BL/6J 

murine back skin after epicutaneous application of 1e7 CFU/cm2 of S. epidermidis (SE) 

wild-type (WT) or SE ecpA knockout (ΔecpA) strains for 48h (n = 5 per group). Results 
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represent mean ± SEM, and Student’s t test was used to determine statistical significance: *p 

< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(D) Measurement of gDNA absolute abundance of S. epidermidis (blue bars) and S. aureus 
(red bars) CFU/cm2 on NS (non-lesional and lesional) versus healthy skin (n, number of 

individual skin swabs per condition). Results represent mean ± SEM, and a non-parametric 

unpaired Kruskal-Wallis test was used to determine statistical significance: *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001.

(E) Relative abundance of S. epidermidis ecpA mRNA isolated from swabs of healthy 

control and NS non-lesional and lesional skin normalized to skin area (n, number of 

individual skin swabs per condition). Results represent mean ± SEM, and a non-parametric 

unpaired Kruskal-Wallis test was used to determine statistical significance: *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001.

(F) Spearman correlation between the relative abundance of S. epidermidis ecpA mRNA and 

S. epidermidis CFU/cm2 (gDNA) from skin swabs.

(G) Assessment of subject NS3 isolated S. epidermidis isolates from lesional skin swabs for 

specific cleavage of EcpA substrate (n = 3). Results represent mean ± SEM, and a one-way 

ANOVA was used to determine statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, 

and ****p < 0.0001.

(H) Representative picture of murine back skin after 48 h colonization with 1e7 CFU/cm2 of 

clinical S. epidermidis isolate NS3 2 (SE. NS3 2).

(I and J) Analysis of epidermal barrier damage (TEWL), trypsin activity, and qPCR analysis 

of inflammatory cytokines stimulated in murine skin by S. epidermidis isolate SE. NS3 2. 

qPCR cytokine levels (Ifng, Il4, Il17a, Il17f, Il6, and Il1b) are normalized to the 

housekeeping gene Gapdh.

In (B), (C), and (G)–(J), data are representatives of at least two independent experiments. 

See also Figures S5 and S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Staphylococcus aureus NS1 Gallo (UCSD) This Study

Staphylococcus aureus NS2 Gallo (UCSD) This Study

Staphylococcus aureus NS3 Gallo (UCSD) This Study

Staphylococcus aureus NS4 Gallo (UCSD) This Study

Staphylococcus aureus NS5 Gallo (UCSD) This Study

Staphylococcus aureus NS6 Gallo (UCSD) This Study

Staphylococcus aureus NS7 Gallo (UCSD) This Study

Staphylococcus aureus NS8 Gallo (UCSD) This Study

Staphylococcus aureus NS9 Gallo (UCSD) This Study

Staphylococcus aureus NS10 Gallo (UCSD) This Study

Staphylococcus aureus USA300 WT (AH1263) Horswill (UC Denver) Mootz et al., 2015

Staphylococcus aureus USA300 ΔscpA (AH1825) Horswill (UC Denver) Mootz et al., 2015

Staphylococcus aureus USA300 ΔsspB (AH2594) Horswill (UC Denver) Mootz et al., 2015

Staphylococcus aureus USA300 ΔscpAΔsspB (AH2595) Horswill (UC Denver) Mootz et al., 2015

Staphylococcus epidermidis NS3 1 Gallo (UCSD) This Study

Staphylococcus epidermidis NS3 2 Gallo (UCSD) This Study

Staphylococcus epidermidis NS3 5 Gallo (UCSD) This Study

Staphylococcus epidermidis NS3 7 Gallo (UCSD) This Study

Staphylococcus epidermidis NS3 15 Gallo (UCSD) This Study

Staphylococcus epidermidis NS3 31 Gallo (UCSD) This Study

Staphylococcus epidermidis 1457 (AH2490) Horswill (UC Denver) Olson et al., 2014

Staphylococcus epidermidis 1457 ΔecpA (AH2924) Horswill (UC Denver) Olson et al., 2014

Chemicals, Peptides, and Recombinant Proteins

1M Tris-HCl, pH 7.8 solution Teknova Cat# T1078

2-mercaptoethanol Sigma-Aldrich Cat# M6250

Antibiotic-Antimycotic (100X) GIBCO Cat# 15240062

Bacto Agar BD Biosciences Cat# 214010

Boc-Val-Pro-Arg-AMC hydrochloride salt BACHEM Cat# I-1120

Calcium chloride dihydrate Sigma-Aldrich Cat# 22,350-6

Defined Trypsin Inhibitor (DTI) GIBCO Cat# R-007-100

DPBS GIBCO Cat# 14190-144

EpiLife Defined Growth Supplement (EDGS) GIBCO Cat# S-012-5

EpiLife complete medium, with 60 M calcium GIBCO Cat# MEPI500CA

Ethyl alcohol, Pure Sigma-Aldrich Cat# E7023

Formalin Azer Scientific Cat# PFNBF-20

Lipofectamine RNAiMAX Transfection Reagent Invitrogen Cat# 13778030
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Low EDTA TE buffer Swift Biosciences Cat# 90296

Lysing Matrix B MP Biomedical Cat# 116911050-CF

Molecular biology grade TE buffer Invitrogen Cat# AM9849

OptiMEM medium GIBCO Cat# 31985062

PSMα3peptide:fMEFVAKLFKFFKDLLGKFLGNN LifeTein N/A

RNAlater Stabilization Solution Invitrogen Cat# AM7021

RNAprotect Bacteria Reagent QIAGEN Cat# 76506

SPRI Select beads Beckman Coulter Cat# B23317

Tryptic soy Broth (TSB) Sigma-Aldrich Cat# T8907-1KG

Trypsin/EDTA solution GIBCO Cat# R-001-100

UltraPure distilled water Invitrogen Cat# 10977-015

Critical Commercial Assays

2S Indexed Adaptor Kit Swift Biosciences Cat# 26596

Accel-NGS 2S Plus DNA Library Kit Swift Biosciences Cat# 21096

EnzCheck Protease assay kit ThermoFisher Scientific Cat# E6638

iSCRIPT cDNA synthesis Kit BIO-RAD Cat# 178891

High Sensitivity D1000 ScreenTape Agilent Technologies Cat# 5067-5584

High Sensitivity D1000 Reagents Agilent Technologies Cat# 5067-5585

NEBNext Microbiome DNA Enrichment Kit New England Biolabs Cat# E2612

Power SYBR Green Master Mix Applied Biosystems Cat# 4367659

PureLink RNA Mini Kit Invitrogen Cat# 12183025

PureLink Microbiome DNA Purification Kit Invitrogen Cat# A29790

SYBR Green qPCR Master Mix (2X) Biotool Cat# B21204

Qubit dsDNA HS assay kit Invitrogen Cat# Q32851

Deposited Data

Metagenomic Sequencing Dataset This Study BioProject ID: PRJNA551026

Experimental Models: Cell Lines

Human Epidermal Keratinocytes, neonatal (HEKn) GIBCO Cat# C0015C

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratory Strain: 000664

Oligonucleotides

S. aureus femA Forward: AACTGTTGGCCACTATGAGT Paule et al., 2004 N/A

S. aureus femA Reverse: CCAGCATTACCTGTAATCTCG Paule et al., 2004 N/A

S.epidermidis gseA Forward: ATGAAAAAGAGATTTTTATCT Ikeda et al., 2004 N/A

S.epidermidis gseA Reverse: GTTTGGTGACACTCTTAAG Ikeda et al., 2004 N/A

S. epidermidis ecpA Forward: TGTGCTTAAAACGCCACGTA Olson et al., 2014 N/A

S. epidermidis ecpA Reverse: GTATAGCCGGCACACCAACT Olson et al., 2014 N/A

S. aureus psmα Forward: TAAGCTTAATCGAACAATTC Sully et al., 2014 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

S. aureus psmα Reverse: CCCCTTCAAATAAGATGTTCATATC Sully et al., 2014 N/A

S. aureus scpA Forward: CTATTGCAAACGCTGAGAGC Mootz et al., 2015 N/A

S. aureus scpA Reverse: ACGTACGTCAGTAGGAACACTCTT Mootz et al., 2015 N/A

S. aureus sspB Forward: CAGCAAATTGTTGTTGTGCTAG Ma et al., 2012 N/A

S. aureus sspB Reverse: AAGCCAAAGCCGATTCACACTC Ma et al., 2012 N/A

TaqMan Murine Gapdh primers Mm99999915_g1 (Applied 
Biosystems)

N/A

TaqMan Murine Il6 primers Mm00446190_m1 (Applied 
Biosystems)

N/A

TaqMan Murine Ifng primers Mm01168134_m1 (Applied 
Biosystems)

N/A

TaqMan Murine Il4 primers Mm00445259_m1 (Applied 
Biosystems)

N/A

TaqMan Murine Il17a primers Mm00439618_m1 (Applied 
Biosystems)

N/A

TaqMan Murine Il17f primers Mm00521423_m1 (Applied 
Biosystems)

N/A

TaqMan Murine Il1b primers Mm00434228_m1 (Applied 
Biosystems)

N/A

TaqMan Human GAPDH primers Hs02786624_g1 (Applied 
Biosystems)

N/A

Taqman Human SPINK5 primers Hs00928570_m1 (Applied 
Biosystems)

N/A

Silencer Select SPINK5 siRNA s21667 (ThermoFisher) Cat#4392420

Software and Algorithms

CLC Assembly Cell (CLC bio, version 3.22.55705) QIAGEN https://digitalinsights.qiagen.com/
products-overview/analysis-and-
visualization/qiagen-clc-assembly-cell/

Clustal Omega (version 1.2.1) Sievers et al., 2011 http://www.clustal.org/omega/

FragGeneScan (version 1.16) Kim et al., 2015 https://github.com/hallamlab/
FragGeneScanPlus

Geneious R11.1.5 Geneious https://www.geneious.com

GraphPad Prism (version 5.01) GraphPad Software https://www.graphpad.com/

HMMER (version 3.0) Eddy, 1998 http://hmmer.org/

KneadData, (version 0.5.4) https://bitbucket.org/biobakery/
kneaddata/wiki/Home

metaSPAdes (version 3.11.1) Nurk et al., 2017 http://cab.spbu.ru/software/meta-spades/

MIDAS (version 1.3.0) Nayfach et al., 2016 https://github.com/snayfach/MIDAS

PhyloDB (version 1.076) https://scripps.ucsd.edu/labs/aallen/data/

QIIME 2 (version 2019.1) https://qiime2.org/

R (version 3.4.1) R Core team, 2017 https://cran.r-project.org/bin/windows/
base/old/3.4.1/
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