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Abstract

Background: Using the American College of Surgeons National Surgical Quality Improvement 

Program (NSQIP) complication status of patients who underwent an operation at the University of 

Colorado Hospital, we developed a machine learning algorithm for identifying patients with one or 

more complications using data from the electronic health record (EHR).

Methods: We used an elastic-net model to estimate regression coefficients and carry out variable 

selection. International classification of disease codes (ICD-9), common procedural terminology 

(CPT) codes, medications, and CPT-specific complication event rate were included as predictors.

Results: Of 6,840 patients, 922 (13.5%) had at least one of the 18 complications tracked by 

NSQIP. The model achieved 88% specificity, 83% sensitivity, 97% negative predictive value, 52% 

positive predictive value, and an area under the curve of 0.93.

Conclusions: Using machine learning on EHR postoperative data linked to NSQIP outcomes 

data, a model with 163 predictors from the EHR identified complications well at our institution.

Abstract Summary

Using the American College of Surgeons National Surgical Quality Improvement Program 

(NSQIP) complication status of patients who underwent an operation at the University of Colorado 

Hospital, we developed a machine learning algorithm for identifying patients with one or more 

complications using data from the electronic health record (EHR). The model achieved 88% 

specificity, 83% sensitivity, 97% negative predictive value, 52% positive predictive value, and an 
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area under the curve of 0.93. The model developed could be used for electronic postoperative 

complication surveillance to supplement manual chart review.

Graphical Abstract
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Introduction

Assessment of quality of surgical care and monitoring of patient postoperative complications 

is an important concept in current health care delivery. Surveillance of postoperative 

complications has been traditionally conducted through clinical registries such as the 

American College of Surgeons (ACS) National Surgical Quality Improvement Program 

(NSQIP), which began in 2005 with the goal of identifying and preventing surgical 

complications. The currently-available NSQIP data provide high quality outcomes data on 

18 different complications for more than 6.6 million patients undergoing surgery in over 720 

hospitals in the United States and internationally. At participating centers, trained surgical 

clinical reviewers collect preoperative and operative characteristics and 30-day postoperative 

complications on a representative sample of patients undergoing major surgeries. Thirty-day 

postoperative outcomes are determined through chart reviews and by patient and family 
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contact after the index operation. Although the NSQIP data are considered to be of high 

quality, the data collection methods greatly limit the number of patients who can be assessed 

(~15% of those patients undergoing surgery at most large hospitals) because the process is 

time-consuming and costly, and participating hospitals must pay to participate.

There is a large literature regarding the use of statistical models applied to the electronic 

health record (EHR) to identify surgical complications: surgical site infections, 1–4 urinary 

tract infections, 5–15 sepsis, 16 bleeding, 17, 18 and any type of complication. 19–21 Most 

work on the identification of postoperative complications using EHR data has used 

structured data for the identification of specific types of complications, but because of the 

chosen statistical models for these analyses, the authors only explored a small number of 

explanatory variables. 1, 2, 22, 23 Other work has included the addition of natural language 

processing (NLP) of text records in the EHR. 5, 7, 10, 19, 21 Overall morbidity surveillance 

has been a major goal of the NSQIP, and it is a good measure of overall quality of care 

across hospitals. 24, 25 Furthermore, because each of the 18 complications tracked by the 

NSQIP occur infrequently, it is difficult to build models for each complication separately, 

and therefore, a single overall model has potential to achieve higher positive predictive 

value.

In this study, we used structured data from the EHR and machine learning to identify 

surgical patients who experienced one or more of the 18 ACS NSQIP postoperative 

complications: bleeding, superficial surgical site infection (SSI), deep incisional SSI, organ 

space SSI, wound disruption, sepsis, septic shock, pneumonia, unplanned intubation, 

ventilator dependence greater than 48 hours after surgery, urinary tract infection (UTI), deep 

vein thrombosis (DVT)/thrombophlebitis requiring treatment, pulmonary embolism, cardiac 

arrest requiring cardiopulmonary resuscitation, myocardial infarction, acute renal failure, 

progressive renal insufficiency, and stroke. This is a novel application of high-dimensional 

machine learning to identify postoperative complications using EHR data. The model 

developed could be used for electronic postoperative complication surveillance to 

supplement manual chart review.

Material and Methods

Data:

In the present study, we used the 6,840 patients who underwent surgery at the University of 

Colorado Hospital (UCH ) between July 1, 2013 and November 1, 2016, whose records 

were abstracted for inclusion in the ACS NSQIP. These patients’ EHR data were obtained 

and linked by our institution’s data repository team, Health Data Compass. The EHR data 

included demographic characteristics, International Classification of Disease versions nine 

and ten (ICD-9/10) codes, Current Procedural Terminology (CPT) codes, and medication 

codes and names. ICD-10 codes reported for patients who underwent treatment after 

October 1, 2016, were back-coded to ICD-9 codes. We coded ICD-9 and CPT independent 

variables as positive only if the codes were observed between 0 and 30 days after initial 

operation. We coded medications as positive only if they were observed between 3 and 30 

days after the initial operation to avoid coding prophylacticly-delivered medications as 

indicators of postoperative complications. Surgical complication status, i.e. presence or 
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absence of the 18 ACS NSQIP complications, came from the UCH ACS NSQIP database. 

Informed consent was not required for this study. This study was approved by our 

institutional review board.

Statistical methods:

We designed our analysis to follow the recommendations of the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement. 
26 The dataset was temporally split into training and test datasets. Using a non-random 

technique (i.e., using a temporal split rather than resampling techniques, such as bootstrap or 

cross-validation) to divide the dataset is recommended by TRIPOD. The prevalence of 

complications did not change considerably over time (Table 1), therefore the temporal split 

allowed us to test whether the model fit to the training set was valid on a future held-out 

sample.

The training data consisted of operations performed from 2013 to 2015 (N=5,194; patients 

with no complication=4,484 [86.3%], patients with ≥ 1 complication=710 [13.7%]) and the 

test set consisted of operations performed in 2016 (N=1,646; patients with no 

complication=1,434 [87.1%), patients with ≥ 1 complication=212 [12.9%]). We formulated 

a comprehensive model consisting of all ICD-9 codes, CPT codes, and medications that 

were observed in at least five patients and had a bivariable association with one or more 

complications of p ≤ 0.1. In addition, we included the CPT-specific overall complication 

rate, defined as the rate of one or more complications experienced by ACS NSQIP patients 

for each particular surgical procedure calculated from the national ACS NSQIP dataset of 

more than 6.6 million patients. A binomial generalized linear model with an elastic-net 

penalty was used to conduct supervised learning on the ACS NSQIP outcomes data, to 

estimate coefficients and to carry out variable selection. The elastic-net penalty uses a 

combination of the least absolute shrinkage and selection operator (lasso) and ridge 

penalties, therefore some coefficients were permitted to be equal to zero (as in the lasso) and 

correlated covariates were reweighted appropriately (as in the ridge). 27 Penalized regression 

was used primarily because the number of covariates outnumbered the number of individuals 

who had a complication in this dataset. Furthermore, elastic-net regularization reduces the 

chance of overfitting to the training data and performs variable selection in a continuous 

manner by allowing some coefficients to be equal to zero (as opposed to discarding variables 

based on p-value, like stepwise selection). Ten-fold cross-validation was performed to 

determine the optimal value for the lasso penalty (i.e., lambda) using the glmnet package28 

in R (R Foundation for Statistical Computing, Vienna, Austria). In other words, the training 

data were divided into ten equally sized subsets, models were fit to 9/10 of the data and 

tested on the 1/10 held out, and this was repeated ten times for each of the ten subsets. The 

lambda value that minized the test set misclassification error from this procedure was 

chosen. The elastic-net tuning parameter (i.e., alpha) was set at 0.5. We estimated the 

predicted probabilities of one or more complications in the test set using the fitted model and 

performed classification using the Youden’s J threshold29 estimated in the training dataset. 

Models were compared with respect to sensitivity, specificity, area under the curve (AUC), 

accuracy, negative predictive value (NPV), positive predictive value (PPV), false negatives 

and false positives when classifying one or more complications in the test data. We also 

Bronsert et al. Page 4

Am J Surg. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evaluated the calibration and discrimination graphically for the final model. Youden’s J and 

all other performance statistics were estimated using the pROC package30 in R.

Results

Of the 6,840 patients who underwent operations at UCH between 2013 and 2016 and who 

were entered into the UCH ACS NSQIP database, the majority were women (56.2%), white 

(72.8%), and a little more than half underwent either an orthopedic surgery (26.2%) or a 

general surgery (24.4%) procedure (Table 1). Patients who had any complications tended to 

be older (58.6 years vs. 52.7 years, p<.0001). Patients undergoing vascular surgery (33.2%, 

p<0.0001) or neurosurgical (17.2%, p=0.005) operations had higher rates of complications 

while patients undergoing otolaryngologic (4.9%, p<0.0001) or orthopedic surgery (10.6, 

p<0.0001) operations had lower rates than patients undergoing other surgical specialty 

procedures. The overall complication rate for 2014 was slightly higher than all other years 

(14.7% in 2014, vs. 14.3% in 2013, 12.2% in 2015, and 12.9% in 2016, p=0.04). There were 

no significant differences in overall complication rate by race/ethnicity or gender (Table 1).

The most common complications in this patient population were bleeding (6.8% of 6,840 

patients), UTI (2%), superficial SSI (1.6%), pneumonia (1.4%), sepsis (1.3%), DVT/

thrombophlebitis (1.1%), and organ space SSI (1.0%; Table 2). All other complications 

occurred in less than 1% of patients (Table 2).

Of the 838 explanatory variables included in the comprehensive model, 163 had non-zero 

coefficients: 60 ICD-9 codes, 63 CPT codes, 39 medications, and the CPT-specific 

complication event rate. All variables were dichotomous, except for CPT-specific 

complication event rate, which was continuous. The relationship between CPT-specific 

complication event rate and the probability of any complication was approximately linear 

when visually inspected using a cubic smoothing spline (eFigure 1). The selected variables 

and their coefficient values are provided in Supplementary Table 1.

Table 3 summarizes any complication status for the binary indicators of any of the 60 ICD-9 

codes, any of the 63 CPT codes, and any of the 39 medications. The presence of any of the 

selected ICD-9 codes (19.7% vs. 7.9%, p<0.0001), CPT codes (19.4% vs. 1.8%, p<0.0001), 

or medications (33.1% vs. 3.7%, p<0.0001) was highly associated with higher rates of 

complications. In addition, the median CPT-specific complication rate was much larger (22.7 

vs. 5.9, p<0.0001) for patients having a complication compared to patients who did not have 

a complication.

Table 4 summarizes the classification performance of the model fit to the training data and 

applied to the test data set. Confidence intervals (CI) were estimated using 1,000 bootstrap 

samples. The AUC was 0.93, sensitivity 0.83 (95% bootstrap CI [0.79, 0.88]), specificity 

0.88 (0.87, 0.90), and accuracy 0.88 (0.86, 0.89). PPV was 0.52 (0.48, 0.56) and NPV was 

0.97 (0.97, 0.98). In addition, we examined models to test for temporal changes by using the 

first two years as a training data set and the last two years separately as test sets. The results 

were very similar (data not shown).
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The discrimination plot of the observed and fitted values from the test set displays the 

predicted probabilities from the model fit to the test set by the observed values for any 

complication or no complication (Figure 1a). There was good discrimination, as the 

predicted probabilities were much higher for those with a complication than those without. 

The discrimination slope was 0.44 (i.e., the difference in mean predicted probabilities 

between the two classes). The Hosmer-Lemeshow calibration plot of the observed and fitted 

values from the test set displays the observed and expected rates by deciles of predicted risk 

of any complications (Figure 1b). The model had good calibration since the expected rates 

were almost identical to the observed rates, and a Pearson chi-square statistic with eight 

degrees of freedom was not statistically significant (p=0.7).

Discussion

We developed a model for the surveillance of surgical patients with one or more of the 18 

ACS NSQIP postoperative complications using patients’ EHR data and machine learning 

that correctly classified 83% of patients with a postoperative complication, 88% of those 

who did not have a complication, 88% of the overall outcomes, and achieved an area under 

the ROC curve of 0.93. This model could be used to scale-up surveillance of postoperative 

complications for all patients undergoing surgery at a medical center beyond the small 

sample of patients assessed by the ACS NSQIP protocol, without the need to hire additional 

dedicated staff to do time consuming chart reviews and call backs to patients and their 

families. Furthermore, implementation of this model at other institutions would be relatively 

cheap. At least at our institution, EHR data extraction is free, and the data analyst on this 

project spent about 10 hours cleaning and manipulating the data for analysis. Creation of the 

variables is also EHR-platform independent; it simply requires creation of dummy indicators 

for each variable from a vector of codes. For a given patient, these variables can then be 

multiplied by the coefficients (Supplementary Table 1) and summed, then applying the logit 

transformation to this sum gives the predicted probability of a complication.

At UCH, we use the ACS NSQIP data of approximately 2,500 cases annually to monitor 30-

day postoperative mortality, overall morbidity, readmission, and specific types of 

complications (cardiac, pneumonia, unplanned intubation, ventilator depdendence for 

greater than 48 hours, VTE, renal failure, UTI, SSI, and sepsis) across all non-cardiac and 

nontransplantation surgery, for individual surgical specialties and selected specific types of 

operations. Sample sizes are large enough to obtain reliable results for all of surgery 

combined and selected large surgical specialties, but not for lower volume specialties, 

individual providers’ outcomes, or for the selected specific types of operations. An 

automated machine-learning surveillance system using EHR data for all surgical operations 

would have annual sample sizes of nearly 30,000 operations at UCH and >80,000 operations 

in the UCHealth system31, and could potentially obtain reliable results for the lower volume 

surgical specialties and for the specific types of operations. In addition, we could also 

potentially obtain reliable results to support performance measures for individual surgeons. 

Once machine-learning models are developed for 30-day mortality and all of the individual 

types of complications (some of which we have already performed22, 23 ) we plan to use 

these automated EHR derived data in conjunction with our ACS NSQIP data in our quality 

improvement efforts.

Bronsert et al. Page 6

Am J Surg. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The strength of the approach we have taken is that it utilizes available structured data from 

the EHR for all UCH NSQIP patients, unlike previous approaches that applied down-

sampling of the majority class (those who did not have a complication). 1, 19 Furthermore, 

we used a temporal split validation, which would logically apply to the implementation of 

this algorithm, requiring identification of future complications in patients. Limitations of our 

approach include: 1) The lack of claims data and the fact that some patients live out of state 

and therefore might have missing data; and 2) That we only used data from one hospital. In 

future studies, we would ideally obtain claims data for each patient, include additional 

hospitals, and we would attempt to extract additional data from patients’ medical records 

using NLP, as has been done successfully by several other groups. 5, 7, 10, 21

This model is likely only generalizable to hospitals with similar outcome definitions (i.e., 

ACS NSQIP outcomes, not necessarily complications defined by the National Healthcare 

Safety Network, NHSN or Vizient/University HealthSystem Consortium). However, the 

statistical methodology and validation approach are sound and generalizable to individuals 

interested in developing their own models using gold standard data (e.g., ACS NSQIP, 

VASQIP, NHSN/Vizient) for the purpose of postoperative complication surveillance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Discrimination plot. Values on the x-axis are postoperative complication status from the 

NSQIP test set and values on the y-axis are predicted probabilities from the model fit to the 

test set. b) Hosmer-Lemeshow Calibration plot. Values on the x-axis are deciles of 

predicted risk of any complication and values on the y-axis are rates of complications for 

each decile. The two different lines are observed and expected rates.
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Table 1.

Selected Characteristics of University of Colorado Hospital National Surgical Quality Improvement Program 

sample by Any Complication Status, July 1, 2013 to November 1, 2016.

All Patients N (%) Patients with Any 
Complications N (%)

Patients with No 
Complication N (%) P value

a

Characteristics 6,840 922 (13.5) 5,918 (86.5)

Age, years, mean (SD) 53.5 (16.4) 58.6 (15.0) 52.7 (16.4) <0.0001

Gender

  Female 3,843 (56.2) 527 (13.7) 3,316 (86.3) 0.54

  Male 2,997 (43.8) 395 (13.2) 2,602 (86.8)

Race/Ethnicity

  White, not of Hispanic origin 4,981 (72.8) 690 (13.9) 4,291 (86.2) 0.14

  Hispanic origin 801 (11.7) 94 (11.7) 707 (88.3) 0.14

  Black, not of Hispanic origin 490 (7.2) 72 (14.7) 418 (85.3) 0.41

  Asian or Pacific Islander 143 (2.1) 14 (9.8) 129 (90.2) 0.22

  American Indian or Alaska native 20 (0.3) 1 (5.0) 19 (95.0) 0.51

  Null/unknown 405 (5.9) 51 (12.6) 354 (87.4) 0.65

Primary surgeon specialty

  Orthopedic surgery 1,795 (26.2) 191 (10.6) 1,604 (89.4) <0.0001

  General surgery 1,666 (24.4) 239 (14.4) 1,427 (85.7) 0.23

  Gynecologic surgery 664 (9.7) 96 (14.5) 568 (85.5) 0.44

  Urology 662 (9.7) 95 (14.3) 567 (85.7) 0.47

  Neurosurgery 640 (9.4) 110 (17.2) 560 (82.8) 0.005

  Otolaryngology 586 (8.6) 29 (4.9) 557 (95.1) <0.0001

  Thoracic surgery 345 (5.0) 56 (16.2) 289 (83.8) 0.12

  Vascular surgery 250 (3.7) 83 (33.2) 167 (66.8) <0.0001

  Plastic surgery 232 (3.4) 23 (9.9) 209 (90.1) 0.12

Year of operation

  2013 984 (14.4) 141 (14.3) 843 (85.7) 0.39

  2014 2,136 (31.2) 315 (14.7) 1,821 (85.3) 0.04

  2015 2.074 (30.3) 254 (12.2) 1,820 (87.8) 0.05

  2016 1,646 (24.1) 212 (12.9) 1,434 (87.1) 0.43

Values are n (row percent) unless otherwise specified. Abbreviations: SD, standard deviation.

a
Fisher’s exact or t-test. For multiple categories, p-value indicates comparison to all other categories. P-value in bold if <0.05.
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Table 2.

Frequency and Percent of each of the 18 National Surgical Quality Improvement Program (NSQIP) 

complications in the University of Colorado Hospital NSQIP sample (n=6,840), July 1, 2013 to November 1, 

2016.

Complication N (%)

Bleeding 462 (6.8)

Urinary tract infection 134 (2.0)

Superficial SSI 106 (1.6)

Pneumonia 97 (1.4)

Sepsis 86 (1.3)

DVT/thrombophlebitis 77 (1.1)

Organ space SSI 66 (1.0)

Unplanned intubation 55 (0.8)

Septic shock 45 (0.7)

Deep incisional SSI 40 (0.6)

Ventilator >48 hours 38 (0.6)

Wound disruption 37 (0.5)

Pulmonary embolism 35 (0.5)

Cardiac arrest requiring CPR 19 (0.3)

Acute renal failure 18 (0.3)

Myocardial infarction 14 (0.2)

Stroke 14 (0.2)

Progressive renal insufficiency 13 (0.2)

Abbreviations: CPR, cardiopulmonary resuscitation; DVT, deep vein thrombosis; SSI, surgical site infection.
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Table 3.

Electronic Health Record Predictors (Categorized by type) by National Surgical Quality Improvement 

Program Complication Status

Variable Type

All Patients N (%)
Patients with Any 

Complication N (%)
Patients with No 

Complication N (%)

(n=6,840) (n=922) (n=5,918)

At least one of the 60 ICD-9 codes

  No 3,596 (52.6) 283 (7.9) 3,313 (92.1)

  Yes 3,244 (47.4) 639 (19.7) 2,605 (80.3)

At least one of the 63 CPT codes

  No 2,306 (33.7) 41 (1.8) 2,265 (98.2)

  Yes 4,534 (66.3) 881 (19.4) 3,653 (80.6)

At least one of the 39 medications

  No 4,561 (66.7) 168 (3.7) 4,393 (96.3)

  Yes 2,279 (33.3) 754 (33.1) 1,525 (66.9)

CPT-specific Complication event rate, median 
(IQR)

7.0 (3.1–15.8) 22.7 (12.4–38.6) 5.9 (2.3–13.2)

Abbreviations: CPT, common procedural terminology; ICD, international classification of disease; IQR, interquartile range.

Fisher’s exact p-values for binary variables and Wilcoxon rank sum for CPT-specific complication event rate. All p values were <0.0001.
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Table 4.

Performance of the Model Fit to the Test Data Set using Youden’s J Statistic as the Decision Threshold.

Performance measure Performance Statistic (95% Bootstrap CI)

Training set years 2013–2015

Sample size 5,194

Any complication rate (%) 710 (13.7)

Test set year 2016

Sample size 1,646

Any complication rate (%) 121 (12.9)

Threshold 0.11

Specificity
a 88 (87, 90)

Sensitivity
a 83 (79, 88)

Accuracy
a 88 (86, 89)

NPV
a 97 (97, 98)

PPV
a 52 (48, 56)

False negatives 35 (25, 45)

False positives 165 (142, 190)

AUC
a 93

Abbreviations: AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PV, positive predictive value.

a
Values multiplied by 100.
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