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Abstract

Neutrophils are major innate immune effector cells for host defense and have been a topic of active research for
their participation in the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA)
due to recently discovered neutrophil extracellular trap (NET) formation. NET formation and other mechanisms
leading to  the  release  of  neutrophil  nuclear  and cytoplasmic  contents  are  implicated  as  a  source  of  citrullinated
antigens in RA. Further investigations are required to delineate what factors diverge neutrophils from host defense
to autoimmune response in RA.
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Introduction

Neutrophils play a pivotal role in the innate immune
system for host  defense in fighting microbe invasion.
They  migrate  to  the  infection  site  as  the  first
responders  during  acute  inflammation.  It  has  been
well  established  that  neutrophils  kill  pathogens via
phagocytosis  and  degranulation[1–  2].  A  novel  third
mechanism  was  discovered  by  Brinkmann et  al[3] in
2004 that  neutrophils  utilize to kill  microbes and this
was named neutrophil extracellular traps (NETs). The
NETs  are  mainly  composed  of  histones  and  DNA
fiber  which  entrap  and  facilitate  the  killing  of
pathogens[3].  Indeed,  neutrophils  undergone  NET
formation  are  identified in  situ in  surgically  excised
appendicitis  tissue  in  humans[4] implying  NET
formation  involves  fighting  microorganisms in  vivo.

Since the discovery of NETs, the field of research has
been  extremely  active  and  continues  to  expand.
Contribution of NET formation to the pathogenesis of
autoimmune  chronic  inflammation  has  been
implicated because of extracellular extrusion of DNA
and histones and other proteins that stimulate immune
responses  leading  to  the  subsequent  inflammatory
process  and  cause  tissue  damage[5].  However,
controversy and confusion have been generated due to
contradictory  results  and  divergent  scientific
concepts[6– 7]. NET formation has been interchangeable
with  NETosis,  a  term  coined  by  Steinberg  and
Grinstein  to  distinguish  its  difference  from  apoptosis
and  necrosis[8].  The  initial  description  of  NET
formation  for  bacteria  killing-appears  to  be  more
physiological, i.e.,  neutrophils  are  activated  by
bacteria,  lipopolysaccharide  (LPS),  interleukin  (IL)-8
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or  a  low  concentration  of  phorbol  12-myristate  13-
acetate (PMA). The release of DNA, histones, granule
proteins by neutrophils  are independent  of  cell  death.
In  other  words,  viable  neutrophils  form  NETs  to
control  pathogens.  The  neutrophil  cell  death  referred
to  as  NETosis  was  obtained  following  non-
physiological stimulation such as a high dose of PMA
with  a  significantly  longer  duration[6–  9].  Therefore,  it
has been suggested by a large group of scientists that
NETosis should be abandoned or only be used where
the  demise  of  the  neutrophil  is  obvious[6–  7],  in
particular, not to be used to describe NET formation in
a physiological situation.

Studies of neutrophils in RA have been focused on
their  role  in  protein  citrullination  in  RA.  NET
formation (or NETosis as has been commonly referred
in  literature)  has  been  linked  to  the  citrullination  of
proteins  in  RA[10].  However,  this  notion  has  been
challenged  by  other  investigators  who  argue  that
leukotoxic  hypercitrullination  (LTH)  and  defective
mitophagy  of  neutrophils  are  likely  the  mechanisms
for  the  generation  of  citrullinated  autoantigens  in
RA[11].  In  comparison  to  the  debatable  notion
regarding how neutrophils contribute to citrullination,
the  cytotoxic  effects  and  inflammatory  cytokine
production  by  neutrophils  in  the  pathogenesis  of  RA
are generally accepted[12–14].

Neutrophils  as  effector  cells  in  RA
inflammation and tissue destruction

Neutrophils are the most abundant cell type present
in  synovial  fluid  in  patients  with  RA[15] although  are
fewer  in  the  synovial  tissue[16–  17],  but  are  in  a  larger
number  at  the  cartilage-pannus  junction  where
synovial tissue invades cartilage[18]. Neutrophils in the
site  of  inflammation  have  become  activated  and
display  longevity[19].  Neutrophils  in  RA  patients  are
functionally  different  from  those  of  healthy
individuals since neutrophils in RA blood are already
primed  for  reactive  oxygen  species  production[20].
Among  the  cell  types  implicated  in  RA  pathology,
neutrophils  have  the  greatest  cytotoxic  potential.
Indeed,  depletion  of  neutrophils  significantly  reduces
the severity of experimental arthritis which implies the
essential  role  of  neutrophils  in  the  pathogenesis  of
RA[21]. This has been confirmed by therapeutic effects
in  clinical  practice  where  many  efficacious  agents
affect neutrophils[14] although these were not originally
aimed  at  targeting  neutrophils.  These  agents  include
corticosteroids,  methotrexate,  tumor  necrosis  factor
(TNF)  inhibitors,  IL-6  receptor  blocker  and  JAK
inhibitors[14].  The cytoplasmic granules  of  neutrophils
contain various serine proteases which can be released
upon stimulation. Immune complexes containing anti-

citrullinated  protein  antibodies  (ACPA)  and
rheumatoid  factor  (RF)  in  RA  joint  can  trigger
neutrophil  degranulation  through  FcγR[22].  For
example,  neutrophil  elastase  and cathepsin  G process
IL-33,  an  IL-1  family  cytokine,  into  three  bioactive
forms.  Moreover,  these  forms  of  IL-33  can  be
produced by neutrophils in vivo[23]. Neutrophil elastase
and  collagenase  cleave  collagen,  elastin  and  lubricin
which  directly  involve  cartilage  damage[24–  25].  Mice
with  deficiency  in  full  activation  of  cathepsin  G,
neutrophil  elastase  and  proteinase  3  are  defective  in
the  local  production  of  IL-1β  and  TNF  and  are
resistant  to  induction  of  experimental  arthritis[26].
These  results  provide  direct  evidence  indicating  the
importance of these proteases in causing inflammation
in arthritis.

Myeloperoxidase  (MPO)  is  the  most  abundant
cytotoxic  enzyme  in  the  azurophilic  granules  of
neutrophils.  Increased  levels  of  MPO  are  present  in
RA plasma, synovial fluid and tissue[27–28]. In addition
to  its  microbicidal  functions,  MPO  interacts  with
vascular  endothelial  cells  to  increase  endothelial
permeability  which  is  a  critical  process  during
inflammation[29].  Moreover,  MPO  also  potently
attracts more neutrophils to the site of inflammation[30]

to  amply  the  reaction.  MPO  triggers  inflammatory
cytokine  production  to  further  exacerbate  the
inflammation. In vitro, MPO can enhance proliferation
but  decrease  apoptosis  of  RA synovial  fibroblast-like
synoviocytes[28].  Mice  deficient  in  endogenous  MPO
significantly attenuated K/BxN arthritis and collagen-
induced arthritis[28].

Neutrophils  regulate  immune  and
inflammatory response in RA

Neutrophils in RA joint become activated likely by
the  microenvironment  and  the  activated  neutrophils
are  resistant  to  apoptosis  and  can  survive  for  several
days  compared  to  the  short  life  span  of  24  hours  in
peripheral  blood[31–  32].  Besides  secreting  proteases,
activated neutrophils act like macrophages or dendritic
cells  in  the  regulation  of  adaptive  immune  response.
RA  synovial  fluid  neutrophils  secrete  a  number  of
inflammatory  TNF  family  cytokines  including
TNF[33–  34],  B  cell-activating  factor  (BAFF)[35] and
receptor  activator  of  nuclear  factor  kappa  B  ligand
(RANKL)[36].  BAFF  is  a  B  cell  growth  factor  that
induces  B  cell  proliferation  and  contributes
autoantibody  production  in  RA[37].  RANKL  mediates
osteoclast  differentiation  and  is  the  major  factor
causing  bone  erosion  in  RA[38].  Activated  neutrophils
also  express  chemokines  and  chemokine  receptors
which  facilitate  the  migration  of  and  infiltration  of
neutrophils  in  RA  joint[39–  41].  Genetic  deficiency  or

Neutrophils in rheumatoid arthritis 87



pharmacological  inhibition  of  CCR2  abolishes
neutrophil  infiltration  into  the  joints[39].  It  has  been
shown  that  neutrophils  can  acquire  the  capacity  of
antigen presentation in vitro and ex vivo to autologous
memory  CD4+ T  cells  in  a  major  histocompatibility
complex Ⅱ (MHC Ⅱ)  dependent  manner[42].  This
property  of  neutrophils  has  been  observed  in  RA.
Thus,  RA  joint  neutrophils  express  MHC-Ⅱ.  These
MHC-Ⅱ expressing  neutrophils  can  present  antigen
and  stimulate  CD4+ T  cells  proliferation[43].  These
results  indicate  that  activated  neutrophils  gained
function to regulate T and B cell function.

NET formation in RA

Enhanced  NET  formation  in  neutrophils  of  RA
patients  has  been  observed  by  many  studies[44–  53].
Interestingly, one study suggests that the plasma level
of cell-free nucleosome can be used as a biomarker for
the identification of RA patients with high specificity
and sensitivity[48].  Neutrophils  in  the peripheral  blood
and synovial fluid of RA patients display a propensity
of spontaneous formation of NETs. Furthermore, NET
formation  of  RA  neutrophils  is  further  enhanced  by
LPS  stimulation  when  compared  with  those
neutrophils  isolated  from  the  blood  of  healthy
individuals  or  synovial  fluid  of  patients  with
osteoarthritis  (OA).  This  implies  that  neutrophils  in
RA patients  have  been  primed  to  form NETs in  vivo
which  is  evident  by  the  presence  of  NET  forming
neutrophils  in  RA  synovial  tissue,  rheumatoid
nodules,  and  neutrophilic  dermatoses.  RA  joint
contain  stimuli  that  are  capable  of  inducing  NET
formation.  These  include  IgA RF containing immune
complex[46],  purified  IgG  from  RA  plasma[54],  ACPA
and  RF  in  the  synovial  fluid  and  inflammatory
cytokines  such  as  TNF  and  IL-17A[44].  In  particular,
ACPA against citrullinated vimentin which suggested
to  be  pathogenic  in  RA  potently  induce  NET
formation  of  neutrophils  from  both  healthy  controls
and  RA  patients.  These  results  suggest  that  inducing
NET formation  in  RA is  one  of  the  mechanisms  that
ACPA mediate the disease. Interestingly, TNF and IL-
17A  synergize  in  inducing  NET  formation  of  RA
neutrophils, i.e.,  TNF  priming  significantly  increased
the NET forming induced by IL-17A[44].

Mechanisms  of  NET  contribution  to  the
pathogenesis  of  RA  have  been  investigated.  First,
NETs  can  promote  inflammatory  property  of
fibroblast-like  synoviocytes  (FLS).  When  FLS  are
exposed  to  NETs,  NETs  can  be  internalized  by  FLS.
FLS  from  both  RA  and  OA  can  be  stimulated  by
NETs and secrete significantly increased levels of IL-
6[44].  The internalization is Toll-like receptor (TLR)-9

mediated.  Furthermore,  NET  internalization  induces
MHC-Ⅱ upregulation  by  FLS.  Arthritogenic  NET
peptides  are  loaded  onto  the  MHC Ⅱ compartment
and can be presented to and activate CD4+ T cells[55].
Most  strikingly,  humanized  HLA-DRB*04:01
transgenic  mice  can  produce  ACPA  after
immunization  with  NETs  loaded  FLS.  These  ACPA
recognize  α-enolase,  citrullinated  fibrinogen  and
citrullinated vimentin which all are highly specific for
RA.  These  ACPA  production  is  CD4+ T  cell
dependent.  These  animals  also  display  pannus
formation and cartilage degradation, although an overt
clinical  arthritis  was  not  observed[55].  NET  contains
mainly  citrullinated  histones.  Citrullinated  H2B
histones  are  present  in  high  levels  in  RA  synovial
fluid  in >90% of  RA  patients  studied.  These
citrullinated  H2B  histones  were  able  to  stimulate
macrophages  to  produce  TNF  and  propagate
neutrophil  activation.  Furthermore,  immunization  of
mice with citrullinated H2B histone demonstrated that
they  were  also  arthritogenic  in  the  setting  that  mice
have  been  primed  by  anti-collagen  type Ⅱ
antibodies[56].  These  results  may  imply  that
citrullinated  proteins  contained  in  NETs  may  have
triggered  the  immune  response in  vivo in  immunized
mice.  ACPA  production  is  a  hallmark  of  RA.
However,  how  ACAP  is  initiated  has  remained
elusive. NET formation has been considered to be the
source  of  citrullinated  autoantigens  and  may  have
initiated  the  autoimmunity  to  citrullinated  proteins  in
RA[10,57].  Khandpur et  al demonstrated  that  induced
NETs  from both  healthy  individuals  and  RA patients
contain citrullinated vimentin[44].  More relevant to the
disease  is  that  spontaneously  formed  NETs  from RA
patients  contain  citrullinated vimentin  which binds  to
ACPA[44]. Citrullination of histones is a critical step in
the  initiation  of  NET  formation  and  citrullinated
histones comprise around 70% of all NET proteins[10].
Autoantibodies  against  citrullinated  histones  are
readily  detected  in  RA  sera  and  synovial
fluid[50–51,56,58]. About 40% of recombinant monoclonal
antibodies  derived  from  ACPA  positive  RA  patient
synovial  tissue  display  reactivity  against  citrullinated
histones[59].  Interestingly,  anti-citrullinated  histones
can be detected many years before RA develops in at-
risk population[51,58,60].  NETs may release citrullinated
histones  that  trigger  immune  response  to  produce
antibodies  against  these  modified  proteins  and
subsequently  ACPA  recognize  other  citrullinated
proteins  are  produced  along  with  established
inflammation.

Leukotoxic hypercitrullination of neutrophils
and RA

Despite  that  these  studies  suggest  NETs  provide
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citrullinated proteins as antigens for ACPA production
in  RA,  this  notion  has  been  challenged[11,61].  Andrade
and  colleagues  suggest  that  a  different  form  of  cell
death of neutrophils which is similar but distinctively
different  from  NET  formation  is  the  source  of
citrullinated  proteins  in  RA  joint[11,61– 64].  It  has  been
demonstrated that citrullination in the RA joint is cell-
associated  and  that  a  broad  range  of  proteins  are
citrullinated. This pattern of citrullination was termed
"cellular  hypercitrullination"  which  is  prominently
induced  by  immune-mediated  membranolytic
pathways causing cell membrane pore formation, such
as  the  action  by  perforin  and  membrane  attack
complex (MAC) of activated complements.  Owing to
its  cytotoxicity  in  nature  and  resultant
hypercitrullination,  the  membranolytic  process  was
also  termed  "LTH".  On  the  contrary,  NET  formation
does  not  induce  hypercitrullination  observed  in  RA
joint[64].  The  so-called  NET  formation  or  NETosis  in
the  literature  was  inappropriately  claimed  to
contribute RA hypercitrullination[11,61]. Experimentally
perforin  and  MAC  caused  neutrophil  death  trigger
hypercitrullination  and  this  process  is  calcium
dependent.  In  other  words,  a  surge  of  calcium influx
precedes neutrophil death. Hypercitrullination is likely
mediated  by  activation  of  peptidylarginine  deiminase
(PAD)-2,  PAD3,  and  PAD4.  These  are  all  different
from  NET  formation  in  which  histone  H3
citrullination  is  catalyzed  preferentially  by  PAD4[65].
Recently,  Konig et  al[62] demonstrated  that
Aggregatibacter  actinomycetemcomitans,  a  pathogen
causing  periodontitis  can  cause  cell  death  and
hypercitrullination in neutrophils  by secreting a pore-
forming  toxin  called  leukotoxin  A  (LtxA).  The
spectrum  of  protein  citrullination  (citrullinome)  of
neutrophils  induced  by  purified  LtxA  are  markedly
overlapped with citrullinome of  RA synovial  fluid[62].
This  observation  is  relevant  to  the  pathogenesis  of
RA. In a cohort of RA patients, up to 43% have shown
previous A. actinomycetemcomitans infection vs. 11%
in  controls.  Furthermore,  the  positivity  of  anti-LtxA
antibodies  (indication  of A.  actinomycetemcomitans
infection) is significantly associated with the presence
of  ACPA and this  association  is  more  pronounced  in
RA patients bearing HLA-DRB1 alleles[62].

Mucosal sites as origin of RA-contribution of
neutrophils

It  has  been  hypothesized  that  RA  may  be  initiated
extraarticularly.  This  hypothesis  is  supported  by  that
at-risk  individuals  do  not  display  synovitis  even  as
late  as  one week prior  to  clinical  onset  of  arthritis[66],
but ACPA and RF can exist in the circulation for over

a decade before the clinical onset of arthritis[67–68]. This
suggests  that  the  autoimmune  response  has  been  in
operation  elsewhere  precedes  synovitis  in  the  joint.
Mucosal  sites,  in  particular  the  lung,  have  been
considered  the  sites  for  initiation  of  RA[69– 70].
Inflammation  in  the  lung  is  evident  in  some  at-risk
individuals  at  pre-clinical  phase  of  RA[71].  In  at-risk
population  who  later  develop  RA,  ACPA  can  be
detected  in  the  sputum  before  they  appear  in  the
serum[72–  73].  These  autoantibodies  are  likely  produced
locally  at  inducible  bronchus-associated  lymphoid
tissue[74]. The question arises here is how ACPA in the
lung  are  developed  in  the  first  place.  NET  forming
neutrophils may contribute. Both IgA and IgG ACPA
are  detectable  in  the  at-risk  first-degree  relatives  of
RA  patients  and  the  levels  of  these  ACPA  are
associated  with  NET  levels  in  the  sputum[73].  NET
formation  in  the  lung  has  been  associated  with
smoking  and  inflammation  and  both  have  been
associated  with  RA[75–  76].  As  the  first  responders,
neutrophils  respond  primarily  to  pathogen-associated
molecular  patterns  (PAMPs)  or  danger-associated
molecular  patterns  (DAMPs).  It  can  be  hypothesized
that  in  response  to  the  insult  by  PAMPs  or  DAMPs,
neutrophils are recruited into the lung where enhanced
NET  formation  or  LTH  also  takes  place  to  generate
citrullination of proteins to trigger ACPA production.

The  other  mucosal  site  inflammation  associated
with  RA  is  the  periodontium.  Clinical  epidemiology
studies  have  linked  periodontitis  with  RA[77–  80] and
there  are  cases  that  periodontitis  precedes  joint
synovitis  in  RA[81].  Periodontitis  may  breach  the
immune tolerance by generating citrullinated proteins
for  production  of  ACPA[82].  The  major  periodontal
pathogens Porphyromonas  gingivalis and A.
actinomycetemcomitans are  implicated  for  aberrant
citrullination in periodontitis  and RA. P. gingivalis is
the  only  known  human  pathogen  that  produces  PAD
(designated  as  PPAD  to  distinguish  it  from  human
PAD)  which  exhibits  a  specificity  for  C-terminal
arginine  residue  and  generates  citrullinated
neoantigens of those implicated in RA[83– 85].  While A.
actinomycetemcomitans contribute to the citrullination
of  proteins  by  means  of  LTH  in  which A.
actinomycetemcomitans may  cause  pore  formation  of
the  cell  membrane  of  neutrophils  and  lead  to
hypercitrullination[62].  Evidence  presented  above  is
compelling  to  indicate  that  the  citrullination  of
proteins  generated  outside  of  joint  may  initiate  the
breach  of  tolerance  and  ACPA production.  However,
it  is  not  clear  how  the  autoimmunity  in  the  mucosal
site is transferred into the joint (Fig. 1).
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Concluding remarks

The  cytotoxic  and  proinflammatory  properties  of
neutrophils  are likely mediators for RA inflammation
and  tissue  destruction.  There  is  also  compelling
evidence to support the contribution by neutrophils to
citrullination  in  RA.  However,  it  is  debatable  how
neutrophils  initiate  citrullination  in  RA.  Many  earlier
studies  observed  extrusion  of  chromatin  and
citrullinated proteins by neutrophils from RA patients
attributed to the results of NET formation.

The initial description of NET formation which is a
host  defense  mechanism  by  neutrophils  that  is  well
regulated and is not necessarily involved in neutrophil
death.  It  is  apparent  the  so-called  NET  formation  or
NETosis observed in RA patients may all represent an
aberrant NET forming which may have been intended
for host defense but was dysregulated. This may offer
explanation  for  infection  as  an  etiology  for  RA.  The
recently  described  phenomenon  of  neutrophils,  LTH
offers  an  alternative  explanation  for  citrullination  in
RA.  LTH  is  primarily  utilized  by  microbes  to  kill
neutrophils  and  this  process  results  in  release  of  a
broad range of protein citrullination. The citrullination
status  can  be  amplified  or  maintained  by  MAC.  The
major distinction between NET formation and LTH is
that  NET  formation  is  a  NADPH  oxidase  (NOX2)-
dependent  process  for  neutrophils  to  kill  microbes,
whereas  LTH  is  NOX2-independent  process  that  is
utilized  by  microbes  to  achieve  immune  evasion[11].
Both  processes  are  able  to  generate  citrullinated
proteins,  but  NOX2-independent  process  generates
hypercitrullination which may be more pathogenic. In
an  attempt  to  further  delineate  the  citrullination
spectra,  Chapman et  al[86] quantitatively  analyzed  the
proteome  generated  by  either  NOX2-dependent  or
NOX2-independent mode. A broadly similar profile of
protein citrullination can be induced by either mode. It
is not clear whether the subtle difference between the

protein citrullination profiles are meaningful in vivo in
terms  of  contribution  to  the  disease  pathogenesis  in
RA.
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Fig. 1   Neutrophil centered etiology and pathogenesis of RA.
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