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Abstract
Early application of genomic selection relied on SNP estimation with phenotypes or de-regressed proofs (DRP). Chips of 50k 
SNP seemed sufficient for an accurate estimation of SNP effects. Genomic estimated breeding values (GEBV) were composed 
of an index with parent average, direct genomic value, and deduction of a parental index to eliminate double counting. Use 
of SNP selection or weighting increased accuracy with small data sets but had minimal to no impact with large data sets. 
Efforts to include potentially causative SNP derived from sequence data or high-density chips showed limited or no gain in 
accuracy. After the implementation of genomic selection, EBV by BLUP became biased because of genomic preselection and 
DRP computed based on EBV required adjustments, and the creation of DRP for females is hard and subject to double counting. 
Genomic selection was greatly simplified by single-step genomic BLUP (ssGBLUP). This method based on combining genomic 
and pedigree relationships automatically creates an index with all sources of information, can use any combination of male 
and female genotypes, and accounts for preselection. To avoid biases, especially under strong selection, ssGBLUP requires that 
pedigree and genomic relationships are compatible. Because the inversion of the genomic relationship matrix (G) becomes 
costly with more than 100k genotyped animals, large data computations in ssGBLUP were solved by exploiting limited 
dimensionality of genomic data due to limited effective population size. With such dimensionality ranging from 4k in chickens 
to about 15k in cattle, the inverse of G can be created directly (e.g., by the algorithm for proven and young) at a linear cost. Due 
to its simplicity and accuracy, ssGBLUP is routinely used for genomic selection by the major chicken, pig, and beef industries. 
Single step can be used to derive SNP effects for indirect prediction and for genome-wide association studies, including 
computations of the P-values. Alternative single-step formulations exist that use SNP effects for genotyped or for all animals. 
Although genomics is the new standard in breeding and genetics, there are still some problems that need to be solved. This 
involves new validation procedures that are unaffected by selection, parameter estimation that accounts for all the genomic 
data used in selection, and strategies to address reduction in genetic variances after genomic selection was implemented.
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Introduction

Genomic selection is now widely practiced across the breeding 
and genetics industry. This is evident by large-scale genotyping 
using inexpensive SNP chips. As of November of 2019, genotypes 
were available for over 3 million U.S. Holsteins (https://queries.
uscdcb.com/Genotype/cur_freq.html), over 700,000 for American 

Angus (S. P.  Miller, American Angus Association, Saint Joseph, 
MO, personal communication), and over 100,000 animals per 
line for some pig and broiler breeding companies.

Generally, the beginning of genomic selection is attributed 
to a study by Meuwissen et  al. (2001). They used simulated 
data to conduct analyses with a large number of equally 
spaced markers; no attempt was made to identify QTLs but 
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some markers were by chance to be closely linked to QTLs. 
Computations included haplotypes, and analyses were done 
by methods called BayesA and BayesB that assumed different 
distribution of haplotype effects. With 2,200 genotyped animals, 
they obtained prediction accuracies of 0.85. The accuracies were 
>0.7 after five generations without phenotyping or with only 
500 genotyped animals. Such high accuracies with small data 
created high hopes in the animal breeding community.

The first large-scale genotyping was possible after the 
introduction of the SNP 50k bovine chip (Matukumalli et  al., 
2009), which provided an affordable and accurate technology 
for genotyping. Much subsequent work on the methodology of 
genomic selection focused on SNP effects and on the creation of 
a genomic relationship matrix (G) (VanRaden, 2008), a concept 
that allowed conceptual comparisons between pedigree-based 
and genome-based predictions. Methods using either SNP effects 
or genomic relationships led initially to field data analyses using 
a multistep methodology (VanRaden, 2008; VanRaden et al., 2009), 
where a regular genetic evaluation by pedigree BLUP (meant 
as non-genomic method throughout the paper) is followed by 
the extraction of pseudo-phenotypes of genotyped animals, a 
genomic analysis for genotyped animals, and the creation of an 
index combining results from BLUP and the genomic analysis 
(VanRaden et al., 2009). The multistep methodology is the natural 
choice when the genomic and pedigree/phenotypic data are 
owned by separate organizations.

When the genomic selection was introduced, the main 
focus was on testing models to increase accuracy, in particular 
increasing the accuracy of prediction by SNP selection (or 
differential weighting), assuming that it was possible to 
identify most pairs QTL-closest SNP from data. However, as the 
data grows bigger, gains with SNP selection become smaller 
or nonexistent (Karaman et  al., 2016). Subsequently, most 
commercial evaluations do not use SNP selection.

The multistep method is relatively complicated and in its 
initial form relies on the existence of animals (bulls) with high 
accurate EBVs from pedigree information. It is also subject to 
double counting of the genomic information when both parents 
and progenies are genotyped. Because the genomic information 
can be expressed as genomic relationships (VanRaden, 2008), 
Misztal et  al. (2009) proposed a single-step evaluation that 
enhanced the BLUP machinery with a relationship matrix that 
combines pedigree and genomic relationships. Subsequently, a 
pedigree-based BLUP with any model of analysis could support 

genomic models just by replacing the relationship matrix. 
A combined matrix was first shown by Legarra et al. (2009) and 
complete analysis using the so-called single-step genomic BLUP 
(ssGBLUP) was presented by Aguilar et al. (2010) and Christensen 
and Lund (2010). In the following studies, ssGBLUP was shown to 
be as accurate, or more, than multistep analyses.

Initially, the main focus of the single-step research was 
ensuring compatibility of genomic and pedigree information 
(Vitezica et  al., 2011) because incompatibility creates biases, 
especially under strong selection. A  later focus was extending 
ssGBLUP to larger numbers of genotyped animals (Legarra and 
Ducrocq, 2012; Fernando et al., 2014, Liu et al., 2014; Misztal et al., 
2014a). Currently, ssGBLUP is the main tool for genomic evaluation 
in species other than dairy. If a population includes non-genotyped 
animals with phenotypes, the transition to some form of single 
step is unavoidable because BLUP, which is used to created pseudo-
observations adopted in multistep, becomes biased by genomic 
preselection (Patry and Ducrocq, 2011b). The only alternative to 
ssGBLUP that has been explored is the use of segregation analysis 
to partially “infer” genotypes of the ancestors of genotyped 
animals, to later introduce this information in a refined ssGBLUP 
(Meuwissen et al., 2015). This strategy gave promising results but it 
is computationally complex and has not been pursued.

Advances in genotyping techniques are allowing sequence 
data to be generated at a lower cost; therefore, there is an 
interest to exploit these data (Georges et  al., 2019). Sequence 
data can be used to identify recessive genes, targets for gene 
editing, and also potential causative SNP that can aid a genetic 
prediction across breeds or lines (Hayes and Daetwyler, 2019). 
However, gains with using the potential causative variants for 
genetic prediction appear to be limited (VanRaden et al., 2017; 
Fragomeni et  al., 2019), with perhaps the exception of across-
breed prediction (Moghaddar et al., 2019).

Although the rate of increase in genetic gain delivered by 
genomic selection can be over 100 % in some cases (García-
Ruiz et al., 2016), issues have recently emerged. One important 
issue is the fast reduction in additive genetic variance and 
more undesirable genetic correlations between important 
traits (Hidalgo et  al., 2020). This reduction is even more 
noticeable when genomic information is not used for variance 
components estimation. The same phenomenon may be 
responsible for the reported reduction of 33% in heritability 
in computations of genomic predictions for production yield 
traits to avoid bias in genomic estimated breeding values 
(GEBV; VanRaden et al., 2014).

From the onset of genomic selection, many ideas were 
proposed and usually tested by simulation, and many of these 
ideas were later applied to real data sets, first small then large. 
Many of these studies led to questions about various aspects of 
genomic selection, for example: Is it better to use haplotypes 
instead of SNP? What is the optimal number of SNP? Why there 
are discrepancies between simulation and field studies? Why 
is SNP selection less useful with large data? How can we use 
unknown parent groups (UPG) in genomic models? Is there 
any limit to genomic selection?. The purpose of this paper is 
to present and evaluate proposed ideas on genomic selection 
considering most up-to-date experiences with field data.

Exploring Genomic Selection Developments

Initial developments

Genomic selection is generally attributed to a study by 
Meuwissen et  al. (2001) where simulated data for up to 2,200 
phenotyped animals with genomic information expressed 
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as 50k haplotypes. For prediction, haplotype effects were 
estimated by several methods including treating them as fixed 
effects, by haplotype-BLUP assuming haplotypes as normal 
random effects, by BayesA assuming a t-distribution of effects 
(allowing for large effects), and by BayesB assuming a mixture 
distribution where most haplotypes had null effects. The 
accuracy of predicting breeding values for the next generation 
was the highest using BayesB and reached 0.85. The persistence 
of accuracies over generations (without additional phenotypes) 
was excellent, decaying only to 0.72 after an additional five 
generations of data. Reducing the number of animals with 
phenotypes to 1,000 only slightly reduced the accuracy to 0.79. 
The study by Meuwissen et al. (2001) generated great excitement 
in the animal breeding community, showing the possibility of 
very high accuracy with small data. However, this turned out 
to be true because the simulation was unrealistic with a small 
genome and QTLs of large effect, and no selection. Muir (2007) 
showed low persistence of genomic predictions under selection 
and dependence of accuracy on population parameters.

Much of the work involving the methodology of genomic 
selection on a practical side was accomplished by VanRaden 
(2008) using SNP markers instead of haplotypes. Also, he 
showed the equivalence of BLUP with SNP effects to genomic 
BLUP (GBLUP) using G; where G = ZZ/k, with Z being the matrix 

of gene content, k = 2
n SNP∑
i=1

pi(1− pi), and pi the frequency of the 

ith SNP. While genomic and pedigree inbreeding were highly 
correlated (r = 0.68) using base allele frequencies (AF) but lowly 
using current AF (r = 0.12), any AF resulted in similar prediction 
accuracy. The SE for elements of G was inversely proportional 
to the square root of the number of markers. He stated that 
genomic relationships are due to shared alleles, and he related 
the distribution of such alleles to a study by Stam (1980). 
VanRaden (2008) findings on gene frequencies were validated by 
Strandén and Christensen (2011) who showed that in SNP, BLUP 
and GBLUP AF only affect the mean of predictions. The number 
of shared alleles, also known as independent chromosome 
segments (ICS), was used for approximating the accuracy of 
genomic selection based on the number of genotyped animals 
and heritability (Goddard, 2009); lower Ne means fewer segments 
to estimate and higher accuracy of genomic selection for the 
same population size.

Limited dimensionality of genomic information

Genomic prediction in farm animals is possible because of the 
small effective population size (Ne). Stretches of DNA from 
overrepresented ancestors (i.e., popular bulls) form relatively 
few segments called LD blocks (Muir, 2007), shared segments 
(VanRaden, 2008), or ICS (Goddard, 2009). While the segments 
are not easily identified and have fuzzy limits (i.e., they are 
broken at slightly different places across two sibs), they appear 
indirectly, for example, as singular G that needs to be blended 
to become full rank. The number of chromosome segments is 
usually quantified by the formula presented by Stam (1980) as 

4 NeL, where L is genome length. In a simulated population, 
Pocrnic et al. (2016a) found that the accuracy of prediction using 
a recursion was maximized assuming 4 NeL segments. They also 
showed that for a large population the number of segments can 
be estimated as the number of the largest eigenvalues explaining 
98% of the variation in G, with the remaining 2% interpreted as 
noise. Extension of their studies to farm animals (Pocrnic et al., 
2016b) allowed to determine the number of segments, and 
indirectly Ne, and the optimal size of the SNP chip for several 
species (see Table 1).

The genomic prediction does not act on individual 
segments but on their clusters, where the four largest clusters 
could account for 10% of the genetic variation (Pocrnic et al., 
2019a). Small data only allow to estimate only the largest 
eigenvalues (or clusters), but they explain a large portion of 
the genomic variation in G. Subsequently, moderate accuracy 
of genomic selection can be achieved with small data sets, and 
large data sets are needed for additional improvements. The 
same study explains why SNP selection improves accuracy in 
small but not in large data sets. Genomic selection works by 
estimating the effects of chromosome segments, and once 
nearly all are well estimated, the accuracy is high without 
SNP selection (Karaman et  al., 2016) or weighting (Lourenco 
et al., 2017).

Estimation of haplotypes or SNP effects

If the DNA information is inherited as chromosome segments, 
it would be natural to base the estimation on haplotypes rather 
than on SNP effects. Using haplotypes would potentially account 
for epistasis within each block, as for instance, a segment of 5 
SNP can be estimated as having 25 different SNP combinations, 
as opposed to only 5 SNP effects. In practice, the difference 
in accuracy in models with haplotypes and SNP effects is 
negligible (Cuyabano et  al., 2015; Jónás et  al., 2016). Problems 
using haplotypes are the need for a complex data preparation 
and arbitrary choices in their definition, poor estimates for rare 
haplotypes and the existence of spurious haplotypes due to 
genotyping errors.

Multistep genomic evaluation

A study by VanRaden et  al. (2009) using field data sets 
established a mature multistep methodology for genomic 
selection in dairy cattle. The steps included running pedigree-
based BLUP with the national database, creating pseudo-
observations for genotyped animals (bulls) such as daughter 
yield deviation (DYD). These pseudo-observations are fit into 
a model estimating on SNP effects assuming normal (linear) 
or non-normal (nonlinear) distributions. Finally, genomic 
predictions for a genotyped animal or candidate to selection are 
obtained combining pedigree and genomic-based predictions 
into an index:

GEBV = w1PA+w2DGV−w3PI,

Table 1.  Estimated number of chromosome segments, effective population size, and the optimal size of SNP chip following Pocrnic et al. (2016) 

Species Estimated number of segments Estimated optimal size of SNP chip Estimated effective population size

Broiler chicken 4.2k 50k 44
Pig 4.1k 49k 48
Angus cattle 10.6k 127k 113
Jersey cattle 11.5k 138k 101
Holstein cattle 14.0k 168k 149
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where GEBV is the genomic estimated breeding value, PA is 
parent average, DGV is direct genomic value, and PI is parental 
index created based on pedigree relationships for genotyped 
animals. Essentially, PI removes double counting of relationship 
information because part of PA is included in DGV, and weights w1 
to w3 could be approximated from reliabilities of each component. 
Genomic prediction in the aforementioned paper was validated 
by forward prediction, where prediction for young bulls using 
truncated data were compared with pseudo-phenotypes of those 
bulls obtained by BLUP with complete data. That study also showed 
that increasing the reference size of the genotyped population 
has a higher impact on prediction accuracy than the number of 
SNP markers and that assuming non-normal SNP distribution 
has a positive effect only on traits with large effect QTL. Instead 
of creating DYD, which is time-consuming, pseudo-observation 
could be calculated as deregressed proofs (DRP) (VanRaden and 
Wiggans, 1991; Garrick et al., 2009; Wiggans et al., 2011).

Another version of a multistep method depended on using 
genomic predictions called molecular breeding value as a 
correlated trait (Kachman, 2008; MacNeil et  al., 2010). In this 
version, GEBVs for genotyped animals based on previously 
estimated SNP effects were added as an extra trait with genetic 
correlation computed separately. Because genomic predictions 
indirectly include parent average, it was hard to account for 
double counting, and genetic trend was abnormally high even 
for early time periods when the genomic selection was not 
practiced (Lourenco et al., 2018).

Single-step genomic evaluations

The multistep methodology was well suited for scenarios where 
the phenotype and genomic data belong to separate organizations, 
and especially when most information can be condensed in 
a small number of animals to genotype. This includes dairy 
populations with a large number of average information bulls 
with many daughters. When a population includes both males 
and females, creating DRP free of double counting is hard, 
especially when genotyping includes parents and their progeny 
(Legarra et al., 2014). As the genomic information can be used to 
capture relationships, Misztal et  al. (2009) proposed combining 
pedigree and genomic relationships into a combined relationship 
matrix. Subsequently, pedigree-only analyses could be converted 
to genomic analyses only by replacing the pedigree relationship 
matrix by the combined matrix, and the steps of construction 
pseudo-phenotypes and the index would no longer be needed. 
This combined matrix (H) was first presented by Legarra et  al. 
(2009) who proposed to extend the genomic information to non-
genotyped animals based on the joint distribution of breeding 
values of non-genotyped (u1) and genotyped (u2) animals:

H =

ñ
var (u1) cov (u1,u2)

cov (u2,u1)var (u2)

ô
=

ñ
A11 +A12A−1

22 (G−A22)A−1
22 A21A12A−1

22 G
GA−1

22 A21 G

ô

where subscripts 1 and 2 refer to non-genotyped and genotyped 
animals, respectively; A is the pedigree relationship matrix and 
G is the genomic relationship matrix or G. Christensen and Lund 
(2010) arrived to the same results, using the notion of predicting 
the genotype at non-genotyped individuals using pedigree 
information.

The inverse of H was presented by Aguilar et al. (2010) and 
Christensen and Lund (2010) as:

H−1 = A−1 +

ñ
0 0
0 G−1 −A−1

22

ô

In the analyses done by Aguilar et  al. (2010), the reliability of 
the new method called ssGBLUP was as high or higher than in 
multistep.

Further research involving ssGBLUP was split into several 
directions. The first was compatibility between pedigree and 
genomic relationships, as incompatibility can generate biases 
or losses of accuracy under selection (Vitezica et al., 2011). The 
second was an extension to a very large number of genotyped 
animals as initial implementation was based on dense matrices 
(Aguilar et al., 2011), which restricted the number of genotyped 
animals to about 100k animals. Finally, there was an interest 
in accommodating SNP weighting via a weighted G, especially 
with potential causative SNP obtained from sequence data. 
The interest in single-step methods increased as the genomic 
selection was underway, because pedigree BLUP and, therefore, 
multistep methods were becoming biased due to genomic 
preselection (Patry and Ducrocq, 2011b), whereas ssGBLUP 
accounts for preselection.

Different single-step formulations

Several alternative single-step formulas were proposed. These 
included equations where G is not inverted (Legarra and Ducrocq, 
2012), where SNP effects are estimated for the genotyped animals 
and a polygenic effect is fit for non-genotyped animals (Legarra 
and Ducrocq, 2012; Liu et al., 2014), and where SNP effects were 
fit for all animals using imputed genotypes (Fernando et  al., 
2014; Taskinen et al., 2017). The purpose of these formulas was to 
reduce computations with many genotyped animals. As opposed 
to a regular ssGBLUP, which can be applied to an existing BLUP 
software just by replacing the relationship matrix, SNP-based 
models require new programming. Meuwissen et  al. (2014) 
proposed an alternative single-step approach by combining 
identical by descent and identical by state approaches.

Compatibility between genomic and pedigree 
relationships

An important issue in single-step methodology is the 
compatibility of genomic and pedigree relationships. While the 
genomic relationships indirectly account for all the ancestors 
but have an arbitrary scale depending on gene frequencies, 
the pedigree relationships have a well-defined scale but are 
limited by the depth and completeness of the pedigree. When 
pedigrees were complete up to a base population, scaling G for 
compatibility (same means for diagonals and off-diagonals) 
with the pedigree relationship matrix for genotyped animals 
(A22) improved accuracy and eliminated bias for a population 
under strong selection (Chen et al., 2011a; Vitezica et al., 2011). 
With no selection, the impact of scaling was minimal. Similar 
scaling could be accomplished automatically by using base 
population gene frequencies (Strandén and Christensen, 2011; 
Christensen, 2012), although finding those frequencies when 
the base population is not genotyped, for example, using the 
method of Gengler et al. (2008), can be time-consuming, and it 
suffers sometimes from a clear definition of base population as 
described below.

When the base populations are heterogeneous with missing 
pedigrees across generations, as is typical in ruminants, ssGBLUP 
may diverge or become biased, and the standard way to ensure 
convergence was by including a parameter ω as in Tsuruta et al. 
(2011):

H−1 = A−1 +

ï
0 0
0 G−1 −ωA−1

22

ò
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The parameter ω compensates for incomplete pedigree and 
incomplete accounting of inbreeding (Misztal et  al., 2017). 
Incompleteness of pedigree in A22 can be minimized by 
truncating old data and pedigree (Misztal et  al., 2013b) or by 
assigning nonzero inbreeding to unknown parents (VanRaden, 
1992); old missing pedigree becomes irrelevant with truncation 
of data. Truncation to two generations of phenotypes and three 
generations of pedigree reduced bias without lowering accuracy 
(Lourenco et al., 2014; Howard et al., 2018).

In a single-step SNP-based model known as single-step 
Bayesian Regression (ssBR) developed by Fernando et al. (2014), 
the compatibility between genomic and pedigree information 
is provided partially by the use of fixed effects in a model for 
genotyped animals (Hsu et  al., 2017), similar to Vitezica et  al. 
(2011) where this effect is implicitly fit as random. This arises 
from the findings of Strandén and Christensen (2011) that 
solutions from SNP BLUP and GBLUP are independent of gene 
frequencies if the model includes a mean. However, the missing 
pedigree problem is present in all single-step formulations and 
it becomes more complex with several base populations as 
described below.

Missing pedigree and UPG

In several species, there is a need to define several populations. 
This is the case in ruminants with missing parents (whereas 
unknown parents of animals born in 2000 are better than 
unknown parents of animals born in 2016), and the case in pigs 
and birds (with several lines collapsing into one, and with 2-, 
3-, and 4-way crosses). These base populations have different 
means due to selection and not considering them leads to 
strong biases.

In BLUP, the genetic merit of these different base populations 
is often modeled by genetic or UPG (Quaas and Pollak, 1981; 
Quaas, 1988; Westell et  al., 1988). In ssGBLUP, when UPG are 
applied only to pedigree relationships (A) as follows:

H∗ = A∗ +



00 0
0G−1 −A−1

22 0
00 0




The convergence rate can be slow or no convergence may be 
reached (Tsuruta et  al., 2014; Matilainen et  al., 2016), partly 
because UPG were ignored in pedigree relationships for 
genotyped animals (A22). Indeed, construction of A22 implicitly 
assumes complete pedigrees. Misztal et al. (2013b) revised UPG 
equations to include groups also in the genomic portion of H 
based on Quaas–Pollak (QP) transformation:

H∗ = A∗ +



00 0

0G−1 −A−1
22 −

Ä
G−1 −A−1

22

ä
Q2

0−Q′
2

Ä
G−1 −A−1

22

ä
Q′

2

Ä
G−1 −A−1

22

ä
Q2




When UPGs were applied to all components of H as above, 
convergence dramatically improved for a multitrait model 
in the Nordic dairy cattle population (Matilainen et  al., 2016). 
Revised UPGs also worked well for the U.S. Holstein data up to 
2014 (Misztal et al., 2017). However, using data updated to 2015, 
Masuda et al. (2018a), based on cross-validation, reported lower 
reliabilities using revised UPG than not using UPG at all. While 
most animals genotyped earlier were potentially elite, with 
complete pedigree, most genotyped animals after 2014 were 
commercial cows, often with incomplete pedigree and high 
pedigree error rate (Bradford et al., 2019a).

It is not clear whether the equations for UPG in ssGBLUP 
should be considered for G for a single breed as genomic 
relationships are not affected by missing pedigree, and, therefore, 
UPG are automatically accounted for. In other words, if all 
animals were genotyped, terms involving UPG should disappear 
from H* above. Tsuruta et  al. (2019a) found that removing G 
from the equation above improved accuracy and reduced bias. 
In GBLUP, using UPG for G did not increase accuracy for multi-
breed populations (Plieschke et al., 2015).

Missing relationships also cause underestimation of 
inbreeding as animals with missing parents are automatically 
treated as not inbred. One solution is assigning nonzero 
inbreeding to missing parents (VanRaden, 1992; Lutaaya et al., 
1999; Aguilar and Misztal, 2008). Such assignment improved 
convergence rate and bias in ssGBLUP in Holsteins (Misztal et al., 
2017; Tsuruta et al., 2019a) although it only slightly affected the 
accuracy.

The concept of metafounders

Legarra et al. (2015) proposed to account for UPG while providing 
proper scaling by generalizing UPG to metafounders. In their 
approach, G would be derived using 0.5 AF as an “absolute 
reference” (Christensen, 2012), and A would be scaled for 
compatibility with G using relationships among and within 
metafounders, which are seen as pseudo-individuals. These 
relationships represent sizes and overlaps of the different base 
populations (Legarra et al., 2014). They can be estimated in such 
a way so that they account for scaling, unaccounted inbreeding, 
different genetic level (e.g., when using multi-breed animals 
or selected populations), and multiple breeds and crosses. 
Several methods were proposed to estimate the relationships, 
and, in practice, they imply estimating gene frequencies in 
the different base populations (Garcia-Baccino et  al., 2017). 
In simulations and real data, the concept of metafounders 
delivered the least biased predictions (Garcia-Baccino et  al., 
2017; Meyer et  al., 2018; Bradford et  al., 2019b). When applied 
to dairy cattle, the relationships across metafounders could be 
well estimated only for metafounders associated with sufficient 
number of genotypes (S. Tsuruta, University of Georgia, Athens 
GA, personal communication). In dairy sheep, the use of 
metafounders reduces biases in predictions and instability of 
UPG estimates for small data sizes (F Macedo, INRAE, Toulouse, 
France, personal communication).

Evaluations of crossbred populations

Genomic evaluation of crossbred populations may be separated 
into two types, for specific crosses or for complex crosses. In 
pigs and chicken, there is an interest in using F1 and possibly 
three- to four-way crosses for the evaluation of purebreds on 
the commercial scale. In beef and dairy, the interest is to have a 
joint analysis of many breeds with complex crosses (e.g., “Kiwi” 
Jersey–Holstein crosses in New Zealand, 10+ breed crosses by 
International Genetic Solutions, and 50+ beef crosses by The 
Irish Cattle Breeding Federation). More recently, across-breed 
prediction with genomic data is not successful (Erbe et al., 2012; 
Kachman et al., 2013) because the breeds do not share the same 
chromosome segments. Also, the crossbreeds generate limited 
information if the amount of crossbred data is small and if 
they are progeny of very few parents (Pocrnic et  al., 2019b). 
Genetic by environment interaction and purebred-crossbred 
correlations can be considered using multiple-trait models 
(Xiang et al., 2016; Vandenplas et al., 2017). With purebreds and 
defined crosses (F1), the genomic relationships can be adjusted 



6  |  Journal of Animal Science, 2020, Vol. 98, No. 4

Copyedited by: SU

separately for each breed combination using gene frequencies 
or other methods (Makgahlela et al., 2014; Lourenco et al., 2016) 
although the impact of such adjustment is small if the selection 
pressure is low. With many crosses, a simple approach is to 
ignore gene frequencies and have one set of SNP effects (Golden 
et al., 2018) or one G (Mäntysaari et al., 2017) for all breeds and 
breed combinations. Steyn et  al. (2019) simulated five breeds 
using either shared or separate relationships. In the second 
case, the accuracy was compromised if the number of SNPs was 
reduced from 45k to 9k, and despite all breeds having identical 
QTLs, interbreed predictions had low accuracy. In U.S. dairy, SNP 
effects are estimated separately for each breed as otherwise the 
predictions would be based on the dominating breed—Holsteins 
(VanRaden et  al., 2020); phenotypes of crossbreds are not used 
in the regular genetic evaluation of purebreds because of 
concerns of compromising the evaluation of purebreds. The most 
refined method for the F1 crossbreds is by phasing haplotypes 
in crossbreds originating from two parental lines and building a 
model with two H matrices, one per breed (sometimes called the 
breed of origin [BOO] model) (Christensen et al., 2014). Xiang et al. 
(2016) observed an increase in accuracy compared with fitting a 
single H matrix in an analysis of Landrace, Yorkshire, and crosses. 
The method becomes complex for more complex crosses as the 
origin of alleles in each crossbred is more difficult to establish.

The concept of metafounders provides a convenient solution 
to ssGBLUP applied to purebreds and crossbreds (Christensen 
et al., 2015; Xiang et al., 2017). In such a case, the relationship 
across breeds represent a distance from a common genetic 
origin (usually a small relationship, but potentially different 
across pairs of breeds), and the variances within breed reflect 
correct scaling separately for each breed and for all breeds 
simultaneously (Legarra et al., 2015). Xiang et al. (2017) fit this 
model treating each breed combination as a different trait to 
account for G × E and observed the same accuracy as in the BOO 
model of Xiang et al. (2016).

Modifying single step for large data sets

Single-step GBLUP requires explicit or implicit computations 
of G-1 and A−1

22 . When created using dense matrix techniques 
(Aguilar et al., 2011), the practical limit is about 100k animals. 
This is because computations increase cubically and storage 
quadratically with the number of genotyped animals. Several 
strategies were proposed to overcome size limitations.

Indirect computations of A22
−1

Matrix A−1
22  is dense and, therefore, cannot be created efficiently 

for a large number of genotyped animals. Henderson (1976) 
showed that the inverse of a submatrix of A could be obtained 
based on the rules for inversion of a partitioned matrix:

A−1
22 = A22 − (A12)′

Ä
A11
ä−1

A12

When only a product of A−1
22  and a vector is required in the 

iteration process as in the preconditioned conjugate gradient 
(PCG) algorithm, that product can be calculated sequentially 
every round as follows (Masuda et al., 2017; Strandén et al., 2017):

A−1
22 q = [A22 − (A12)′

Ä
A11
ä−1

A12]q

where the product:

s =
Ä
A11
ä−1

A12q

is computed as a solution to:

A11s = A12q

using sparse matrix techniques, in particular, because A11 is 
sparse and small. Masuda et  al. (2017) found that, for a U.S. 
Holstein population, this algorithm required 2 min to set up and 
less than 1 s per round of multiplication.

Algorithm for proven and young
Because of small effective population size in farm animals, G 
has a rank of about 5k for pigs and chicken to about 15k for 
beef and dairy (Pocrnic et al., 2016b), indicating the existence of 
that many LD blocks or chromosome segments. Subsequently, 
the inverse of G can be obtained by recursion on a number of 
“core” animals equal to the rank of G, indirectly assuming that 
breeding values of N animals contain the same information 
as the effects of N chromosome segments. When animals are 
designated as core (c) or noncore (n), the inverse of G can be 
directly obtained as (Misztal, 2016):

G−1
APY =

ñ
G−1

cc 0
0 0

ô
+

ñ
−G−1

cc Gcn

I

ô
M−1

î
−GncG−1

cc I
ó

where M is a diagonal matrix with elements:

mi = gii−gicG
−1
cc gci

where i refers to the ith genotyped, noncore animal. This method 
has almost a linear cost (computations and memory) with 
the number of animals (Fragomeni et  al., 2015) and has been 
successfully applied to 2.3 M genotyped animals (Tsuruta et al., 
2019b). The choice of core animals for recursion is not critical 
for accuracy when the number of core animals is sufficient but 
influences the convergence rate; the random choice is preferable 
(Bradford et  al., 2017). Lately, Pocrnic et  al. (2019a) found that 
accuracies obtained with N core animals are like those obtained 
with G ignoring all but the largest N eigenvalues. This explains 
why the accuracy with the algorithm for proven and young 
(APY) using 25% of the optimal number of core animals is 
almost the same, as 25% of important eigenvalues explain 90% 
of the genetic variation in G. In fact, the recursion acts not on 
individual chromosome segments but on their clusters.

Inverse by singular value decomposition
The inverse of G can be derived from the eigenvalue 
decomposition:

G = UDU′

where U is a matrix of eigenvectors and D is a matrix of 
eigenvalues. If all eigenvalues are positive, the inverse of G is:

G−1 = U ′ D−1U

If G has small rank, only a small fraction of eigenvalues will be 
meaningful. Let Dt indicate a fraction of D with non-negligible 
eigenvalues, and let Ut be the corresponding eigenvectors. Then:

G−1
t = U

′

t D−1
t Ut

While eigenvalue decomposition of G requires creating G 
explicitly and can be very expensive, a less expensive alternative, 
when there are more genotyped animals than SNP, is the 
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singular value decomposition (SVD) of the matrix of SNP content 
(Z), where Z = UD0.5V. The SVD for a matrix of 720k animals by 
60k SNP takes less than a day (Y. Masuda, University of Georgia, 
Athens, GA, personal communication). The SVD concept can be 
applied separately for each chromosome (Ødegård et al., 2018)

Inverse by the Woodbury formula
Mäntysaari et al. (2017) proposed an inverse of G = ZZ′ + Iε based 
on the Woodbury formula to overcome computing challenges 
when the number of genotyped animals is greater than the 
number of SNP:

G−1 =
1
ε
I− 1

ε
Z(

1
ε
Z ′ Z+ I)

−1

Z ′ 1
ε

where Z′Z is the design matrix of SNP BLUP and I is an identity 
matrix with the same dimension. The formula is an exact 
inversion but is based on an arbitrary value of ε (i.e., 0.05I, 
0.05A22), without which G could not be full rank. The “Woodbury” 
G-1 is dense and is not used explicitly. Its use is only for PCG 
systems in which only a product of this matrix by a vector is 
desired, being reformulated as:

G−1q =
1
ε

¶
I− Z(Z ′ Z+ Iε)−1Z ′

©

q =
1
ε

¶
I− Z(UDU ′ )

−1Z ′
©

xq =
1
ε
{I− SS ′ }q,

with

S = ZU ′ D−1/2

Matrix S has dimensions equal to the number of animals by the 
number of SNP. In practice, the SNP BLUP design-matrix Z′Z is 
not full rank, and one dimension can be reduced to the actual 
rank (5k to 15k for one breed) by truncating U and D to eliminate 
small eigenvalues.

Single-step Bayesian Regression 
If 50k SNP are enough for predictions, an alternative idea was 
to impute genotypes of non-genotyped animals, resulting 
in the same 50k SNP effects to estimate regardless of the 
number of genotyped animals. Let u2, the vector of breeding 
values for genotyped animals be equal to Za, where a is a 
vector of SNP effects. Legarra et  al. (2009) showed that the 
conditional distribution of breeding values for non-genotyped 
and genotyped animals has an expectation equal to A12A−1

22 u2. 
Replacing u2 by Za:

u1 = E (u1 | u2) + ε = A12(A22)
−1Za+ ε = Ta+ ε

where T can be called an imputation matrix for non-genotyped 
animals and ε can be called an imputation error. Then, the 
breeding values in an animal model can be replaced by:

u =

ñ
u1

u2

ô
=

ñ
T
Z

ô
a+

ñ
ε

0

ô

Regardless of the number of animals, the number of “genomic” 
unknowns is equal to the number of SNP, although there is 
an additional uncorrelated effect ε with a simple relationship 
structure (Fernando et al., 2014). The model was reformulated 
for economy of memory by Fernando et  al. (2016) who called 

it “hybrid model,” although the same model had already been 
proposed by Legarra and Ducrocq (2012). As the imputation was 
expensive, and the model is conceived to use Gibbs sampling 
methods, the implementation of ssBR in the BOLT software used 
graphical processing units, that is, GPU (Garrick et  al., 2018). 
Compared with ssGBLUP, ssBR allows the user to estimate SNP 
effects directly but the implementation of complex models (e.g., 
correlated maternal effects with multiple traits) is quite complex. 
The method of ssBR was used for a multi-breed evaluation done 
by the Simmental association for more than 10 breeds (Golden 
et  al., 2018) but they decreased the number of SNPs from 50k 
to about 2.5k preselected SNP, contrary to all other species who 
abandoned the idea of preselecting markers because an optimal 
subset of markers may not be optimal a few generations later. 
A more general (and simple) formulation of the ssBR model was 
given by Taskinen et al. (2017).

Other approaches
Legarra and Ducrocq (2012) developed an assymetric method 
where G was not inverted, but the method did not scale up 
well. Also, both Legarra and Ducrocq (2012) and Liu et  al. 
(2014) proposed methods that used SNP effects estimated for 
genotyped animals. Vandenplas et al (2019) showed that such 
models when solved by the PCG algorithm require a special 
preconditioner for convergence.

Preselection bias

Under genomic selection, BLUP becomes biased (Patry and 
Ducrocq, 2011a, 2011b) due to preselection on Mendelian 
sampling; for instance, only offspring that has received the 
“good” alleles from a sire gets to be recorded. This has an impact 
on multistep methods which use BLUP as a first step, because 
they will tend to penalize genomically selected animals and, 
therefore, to underestimate the genetic trend. The bias can be 
corrected for (Wiggans et al., 2011, 2012), but the corrections need 
to be reevaluated as genotyping increases. Single-step GBLUP is 
expected to be resistant to selection bias (VanRaden et al., 2012; 
Legarra et  al., 2014) as it considers all available information 
jointly. Masuda et  al. (2018b) ran evaluations with BLUP and 
ssGBLUP for production traits in U.S. Holsteins. They found 
that the trends for BLUP level off, when they should actually 
increase, whereas trends for ssGBLUP were consistent. Based 
on the work at UGA in dairy and in pigs (unpublished), typical 
trends for genotyped animals by BLUP and ssGBLUP indicating 
preselection in BLUP are shown in Figure 1. The preselection bias 
can intensify when more animals are genotyped.

Differences between trends from BLUP and ssGBLUP can 
be used indirectly as a measure of the effectiveness of the 
genomic section. If the trend by ssGBLUP is increasing and 
the trend by BLUP is lower, genomic selection is successful. If 
the trends by both methods are identical, genomic selection 
does not have an impact over the regular selection. If in an 
extreme case, the trends by ssGBLUP decrease, it means either 
poor implementation of genomic selection or a change in the 
selection objectives.

Validation of genomic predictions

Genomic evaluations are validated by realized accuracies or 
reliabilities computed from predictions based on incomplete 
data to predictions/phenotypes based on complete data —see 
review by Daetwyler et al. (2013) and Legarra and Reverter (2018). 
Several types of validations are currently applied, and each 
one is suitable for a different data structure. The k-fold cross-
validation depends on splitting the population into n samples 
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and predicting phenotypes of one sample from the remaining 
samples (Saatchi et al., 2011). It is primarily used for small data 
sets when only one generation is genotyped or when other 
methods cannot be applied. As it follows from the decomposition 
of GEBV (VanRaden and Wright, 2013; Lourenco et  al., 2015a), 
accuracies by clustering methods, such as the k-fold, depend on 
the algorithm for creating the clusters. In particular, BLUP may 
emerge as the best method if most animals in each cluster are 
progeny of the same ancestors.

The validation needs to consider that the breeder wants 
to predict the next generation from former ones, in other 
words, forward and not backward or “sideways.” Thus, another 
validation method is based on a comparison of pseudo-
observations of sires (DYD or DRP) with their (G)EBV obtained 
without their daughter’s information (VanRaden et  al., 2009). 
This validation type is only realistic for populations with sires 
that have large progeny sizes and phenotype recording is mainly 
on progeny, such as in dairy cattle. If pseudo-observations are 
computed by BLUP under genomic selection, this validation 
may be biased by preselection (Masuda et al., 2018b). If pseudo-
observations are computed by ssGBLUP, the bias can be avoided 
but there is a danger of double counting of the genomic 
information, especially if progeny sizes are small. Yet another 
validation method that is called predictive ability or predictivity 
can be used when the validation animals have only their own 
records but not progeny (Legarra et  al., 2008). It is based on 
correlations between GEBV obtained without a phenotype and 
the phenotype adjusted for fixed effects. However, it can only 
be computed for simple models and depends on the quality of 
adjustments (Legarra and Reverter, 2018). Accuracies based on 
validation are depressed by selection and, therefore, are lower 
than individual theoretical accuracies based on prediction error 
variance (PEV; Bijma, 2012; Lourenco et al., 2015a).

A completely different approach to validation was taken by 
Legarra and Reverter (2018) in a method called LR, which stands 
for linear regression. The method LR examines regressions and 
correlations of (G)EBV using complete and partial data sets while 
accounting for the relatedness of animals in the validation and 
additive variances under selection. The advantage of method 
LR is the ability to support any model and any data structure. 
For example, Bermann et  al. (2020) were able to calculate the 
accuracy of evaluations for a threshold model. However, the 
method requires the additive variance for the validation 
population, which may be hard to estimate as typically these 
are a subset of selected animals. Without such a variance, only 
relative comparisons among methods are possible, although 
they are useful to rank methods.

Individual theoretical accuracies

Individual accuracies are published with (G)EBV as a measure 
of precision and they are based on true or approximated PEV 
derived from mixed model equations (Henderson, 1984). The 
PEV can be obtained either via efficient matrix inversion, for 
example, by REML with sparse matrix package YAMS (Masuda 
et al., 2015) or via Gibbs sampling (Tsuruta et al., 2017; Garrick 
et  al., 2018). This is affordable for up to ~100K individuals 
genotyped. The last option can support larger data sets if the 
computation is by GPU (Garrick et al., 2018). For complex models 
and large populations, the computation of PEV is usually too 
expensive and approximations are used instead. With genomic 
information, the PEV for the ith animal can be approximated as 
(Misztal et al., 2013a):

PEVi σ2
e ≈ 1

σ2
e

σ2
a
+ dri + dp

i + dgi

where d are contributions (in terms of effective daughters or 
observations) due to pedigrees (r), phenotypes (p), and genomic 
information (g), and σ2

a and σ2
e are additive and residual variances, 

respectively. Approximate contributions due to pedigree and 
phenotypic information were determined by earlier studies 
(Misztal and Wiggans, 1988; Meyer, 1989; VanRaden and Wiggans, 
1991).

With the multistep SNP model, the contribution due to 
genomic information could be calculated by inversion for any 
number of genotyped animals (VanRaden et al., 2011; Liu et al., 
2017b). To avoid double counting, the calculations exclude the 
genomic information that is already included in the pedigree 
information. In ssGBLUP, the genomic contribution can be 
calculated by combined differences between genomic and 
pedigree relationships (Misztal et  al., 2013a). Edel et  al. (2019) 
provided formulas for avoiding double counting in ssBR. Efficient 
computation of genomic accuracies for any model and data set 
is still a research topic but not a hot one because when the 
models are too large for direct inversion, genomic predictions 
are accurate enough for selection.

Genetic parameters under genomic selection

Plant breeders estimate variance components at each genetic 
evaluation, partly because they have several random effects (e.g., 
blocks) and partly because their data sets are small. In contrast, 
animal breeders tend to use either once-in-a-while estimates or 
to use pedigree-based estimates for genomic evaluation purposes, 
for example, as in VanRaden (2008). Genetic parameters can be 
estimated with genomic information using ssGBLUP and normal 
tools such as REML or Monte Carlo Markov Chain via Gibbs 
sampling. The use of the genomic information increases the costs 
of computations because the inverse of G is usually dense, whereas 
non-genomic mixed model equations are sparse. Masuda et  al. 
(2014) developed a sparse matrix package that recognizes and 
processes dense blocks rapidly. A  four-trait single-step AIREML 
model with 15k genotyped animals took less than 1 h with the 
new package (Masuda et  al., 2015); the computations increase 
cubically with the number of genotyped animals and of traits.

Comparing genomic and pedigree-based estimates of 
variance components relies on the compatibility of genomic 
and pedigree information (Legarra, 2016). Without selection 
and with a complete pedigree, the estimates of variance 
components ignoring or using the genomic information are 
usually similar, although with the genomic information they 
have lower standard errors (Forni et  al., 2011). Under strong 

Figure 1.  Trend of (G)EBV with ssGBLUP (solid) and BLUP (dashed) indicating 

preselection bias in BLUP. 
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selection, the estimates ignoring the genomic information are 
biased (Gao et al., 2019; Hidalgo et al., 2020). The computed bias 
due to preselection depends on the accuracy of modeling and 
intensity of selection. For example, the popular QMSim program 
for simulation of genomic data (Sargolzaei and Schenkel, 
2009) only performs BLUP selection. If various types of single-
step methods show different results despite being equivalent 
models, the actual variances are affected by small details in the 
models (e.g., Gao et al., 2019)

Before genomic selection, the genetic parameters were 
thought to be generally stable, but this was not studied in 
depth. Under genomic selection, there are indications of rapidly 
changing parameters, perhaps due to the Bulmer effect (Van 
Grevenhof et al., 2012; Hidalgo et al., 2020). For instance, bias for 
U.S. dairy genomic evaluations decreased when heritability was 
reduced to about 70%—50% of the original value (Wiggans et al., 
2012; Misztal et al., 2017), which is an indicator of overestimated 
heritability. Hidalgo et al. (2020) used a Gibbs sampling approach 
to analyze the changes in genetic parameters for growth and 
fitness traits in pigs. To make the computations possible, 
analyses were done in time slices of 3 yr, and genotypes were 
restricted to parents and animals with records. Over time, 
heritabilities for growth were reduced by one half and the 
antagonistic genetic correlations between growth and fitness 
traits became almost twice as strong. Estimates without 
genomic information were quite different. The aforementioned 
study illustrated the tradeoffs in parameter estimation under 
genomic selection. Without genomic information, the estimates 
may be biased, and with all the genomic information available 
the computation are expensive. Cesarani et al. (2019) reported 
biased variance components estimates under genomic selection 
when the genomic information was truncated or too few 
generations were used. A  modest compromise is to restrict 
genotypes only to those animals on which selection was more 
intense and to remove genotypes of all young animals and 
possibly of nonparents. Genetic parameter estimation with a 
large number of genotypes can be possible in GBLUP when the 
APY algorithm is applied. However, in ssGBLUP, A−1

22 is relatively 
dense and using it in computations eliminates most of the gains 
due to using a sparse G−1

APY.

Stability of GEBV

Under BLUP, the evaluation of an animal depends nearly only 
on its phenotype, parents, and progeny. Therefore, EBV for 
animals with no new information are stable even if the accuracy 
is low (and PEV high). In genomic evaluations, all genotyped 
animals are connected through G. It means that information 
on new genotyped animals affects all the other genotyped 
animals, causing fluctuations. Changing core animals in the 
APY algorithm also causes fluctuations in GEBV even though the 
accuracy is not affected (Misztal et al., 2019). When short-term 
fluctuations are undesirable, for example, for merchandising, 
one solution is to use full model genomic prediction (by SSGBLUP 
or multistep methods) periodically (say once a month), compute 
SNP effects, and run interim (e.g., weekly) indirect predictions 
based on backsolved SNP effects. While with small data the 
indirect predictions can be inaccurate due to ignoring parent 
average, in large populations, the fraction of parent average in 
GEBV is small and indirect predictions have similar accuracy to 
complete predictions (Lourenco et al., 2015b; Garcia et al, 2020). 
To mitigate risk associated with potential rank changes of young 
bulls, semen from a team of bulls may be marketed instead of 
semen from individual bulls (e.g., https://www.dairynz.co.nz/
animal/animal-evaluation/bull-team/).

Using sequence data for genomic predictions

As sequencing is becoming less expensive, there is an interest 
in exploiting sequence information in animal genetics. If all 
causative variants and their substitution effects could be 
identified, genomic prediction would be perfect (i.e., selection 
accuracy = 1.0). If those effects were conserved across breeds, 
accurate multi-breed evaluation would be possible (Goddard, 
2017). But substitution effects may vary from breed to breed, 
even at the QTL level, due to gene–environment interaction 
and to nonadditive gene action (Duenk et al., 2020). Sequence 
data are available through selective sequencing of key 
animals across species (e.g., 1000 Bull Genomes Project; http://
www.1000bullgenomes.com/; Hayes and Daetwyler, 2019) and 
imputation for the remaining animals (Ros-Freixedes et  al., 
2020). For a successful incorporation of potential causative SNP, 
they need to be very close to the actual causative SNP, and their 
a priori variance in a model need to be large as otherwise their 
value is strongly regressed toward 0 (Brøndum et al., 2015).

Practical results using sequence data from large data sets 
yielded mixed results. Some studies have found no improvement 
(Erbe et  al., 2012) and some showed a small improvement, in 
particular Moghaddar et al. (2019) who found an increase in the 
accuracy of “distant” animals of ~0.10 using selected sequence 
variants. In a study that yielded up to 5% improvement in 
reliability across traits, VanRaden et al. (2017) partly used a bin 
concept, where they eliminated most of the SNP close to SNP 
with the largest effects. The bin concept, popular in plants, 
recognizes that QTLs are nested in chromosome segments and 
attempts to locate at most a few SNP per segment (Xu, 2013); 
fewer SNP reduce the impact of priors and reduce shrinkage 
of causative SNP. Fragomeni et al. (2017) showed that ssGBLUP 
can account for causative SNP if they have a large weight in 
a weighted G. In a study on stature in U.S. Holstein using the 
potential causative SNP identified by VanRaden et  al. (2017), 
Fragomeni et  al. (2019) found that the addition of potential 
causative SNP to the current SNP panel increased reliabilities in 
GBLUP but not in ssGBLUP, and reliabilities from ssGBLUP were 
the highest. Similar results were found in Belgian Blue cattle 
(J.L. Gualdrón-Duarte, University of Liege, Belgium, personal 
communication) and for health traits in dairy cattle (S. DeNise, 
Zoetis, Kalamazoo MO, personal communication). A  few real, 
validated major genes (as identified by molecular genetics) 
explaining up to 10% of the genetic variance have been found 
and included in ssGBLUP evaluations, either as correlated 
traits (Legarra and Vitezica, 2015) or as weighting the G matrix 
appropriately. In general, any of these two strategies work 
and result in small, but less than expected, improvements on 
accuracy (Carillier-Jacquin et al., 2016; Teissier et al., 2018; Oget 
et al., 2019). Possibly, the causative SNP are already accounted 
for by the values of chromosome segments with large data. 
Some improvement with the causative SNP could be due to 
imperfect modeling by GBLUP with pseudo-data such as DRP or 
DYD instead of records.

There is a dilemma whether causative SNP with large effect, 
if found, should be used in selection programs for strongly 
selected traits. With long-term selection, most likely genes 
with positive effect for most traits are fixed or close to fixation, 
and genes that still have a large effect but are not fixed are 
likely to show undesirable pleiotropy. A chromosomal deletion 
in pigs increased growth but decreased fertility (Derks et  al., 
2018). Manhattan plots for mortality and milk yield, using a 
two-trait analysis, in U.S. Holstein showed the same peaks on 
chromosome 14 (Tsuruta et al., 2017). Georges et al. (2019) cite 
many studies indicating pleiotropy as a result of balancing 

https://www.dairynz.co.nz/animal/animal-evaluation/bull-team/
https://www.dairynz.co.nz/animal/animal-evaluation/bull-team/
http://www.1000bullgenomes.com/
http://www.1000bullgenomes.com/


10  |  Journal of Animal Science, 2020, Vol. 98, No. 4

Copyedited by: SU

selection, for example, where disruptive variants in genes 
increase muscularity but affect the viability of fitness. Negative 
effects of pleiotropy on low heritability traits may be hard to 
identify but can be important in the long run.

Balancing selection resulting in intermediate gene 
frequencies may be unlikely in cases where selection indices are 
utilized even with pleiotropy. While causative SNPs with large 
effects are not likely to be fixed after years of pedigree BLUP, the 
trend toward fixation will be faster with genomic selection. In 
the extreme, the fixation will negatively affect low heritability or 
sparsely recorded traits.

Genome-wide association studies 

A standard tool for traditional genome-wide association studies 
(GWAS) is a model where one marker is analyzed at a time 
as fixed effect (Kennedy et al., 1992), for example, an efficient 
mixed-model association expedited—EMMAX (Kang et  al., 
2010). To reduce spurious signals due to a population structure, 
an animal effect using a pedigree or G is added to the model 
(Kennedy et al., 1992). Alternatively, many studies use Bayesian 
methods such as BayesB or BayesR with all SNP considered 
jointly, interpreting large signals as markers to nearby QTLs. 
While the former studies determine SNP significance using 
P-values, the latter usually estimate fractions of explained 
variance per segment of the genome, for example, 1 Mb.

Many studies, especially using small data, detect a large 
number of “large” markers, interpreting those as close to a 
QTL; however, the overlap of those markers across multiple 
populations or generations in a population under selection is 
minimal. This suggests that many detected associations are 
spurious (Fragomeni et al., 2014; Liu et al., 2017a). Studies using 
BayesB often show very high peaks, sometimes explaining 
>10% of the additive variance, especially with small data sets. 
As genomic selection with small data works on large clusters of 
chromosome segments (Pocrnic et al., 2019a), it is possible that 
some peaks may be tags to those clusters.

Many of these signals in GWAS are, therefore, probably false 
positives and can probably be explained by small data sets. 
If pedigree relationships are incomplete (e.g., ancestors not 
included), they would not account for population structure. In 
addition, P-values or False Discovery Rate are rarely reported.

 Classical GWAS in EMMAX is conceived for a set of individuals 
that are genotyped and phenotyped. When genotyped animals 
have only records from progeny or other relatives, this method 
is only applicable in a multiple-step manner, that is, creating 
pseudo-phenotypes such as DRP or DYD as it was typically the 
case in dairy cattle (Boichard et al., 2003), but this is difficult to 
generalize to other species, where progeny sizes are smaller 
and many genotyped have phenotypes (e.g., weights) but not 
genotypes. However, Gualdrón-Duarte et  al. (2014) and Bernal 
Rubio et al. (2016) showed the equivalence of P-values in GBLUP-
based models with P-values in single-marker fixed regressions 
with a polygenic effect. Lu et  al. (2018) extended the theory 
to ssGBLUP, and Aguilar et  al. (2019) added this concept to 
the BLUPF90 package (Misztal et  al., 2014b), with a successful 
implementation using 1 million birth weight phenotypes for 
American Angus, almost 2 million animals in the pedigrees, and 
1,424 genotyped sires. The GWAS with P-values from ssGBLUP 
accounts for population structure, considers phenotypes from 
both genotyped and non-genotyped animals without additional 
steps, and allows for arbitrarily complex models. At this time, 
the method is limited to models where the left-hand side of the 
mixed model equations can be inverted, which sets a soft limit 
of perhaps ~100K genotyped animals.

Conclusions
Genomic selection methodology has been widely embraced 
by the animal breeding industry as evidenced by the scale 
of genotyping. The evaluation in most species except dairy 
cattle is by single-step methods, which consider all sources of 
information jointly, with methodology refined sufficiently to 
provide relatively unbiased evaluation for any data size, and 
easily accommodating causal genes. The dairy industry plans 
to move to single step are hampered by distributed ownership 
of phenotypic and genomic data. Most evaluations use <100K 
SNP chips without SNP selection or weighting, indirectly 
acknowledging that the prediction acts mostly on chromosome 
segments and less on markers of QTLs. Whether accurate 
determination of causative SNPs will lead to substantially 
increased accuracy of selection also across breeds is unclear. 
While the validations methods are less than perfect, they 
illustrate higher accuracy of evaluation with the genomic 
information. An important concern in long-term genomic 
selection may be a serious reduction of the additive variance 
that may limit future gains, especially given that the parameter 
estimation with the genomic information is difficult.
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