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Abstract
With agriculture rapidly becoming a data-driven field, it is imperative to extract useful information from large data 
collections to optimize the production systems. We compared the efficacy of regression (linear regression or generalized 
linear regression [GLR] for continuous or categorical outcomes, respectively), random forests (RF) and multilayer neural 
networks (NN) to predict beef carcass weight (CW), age when finished (AS), fat deposition (FD), and carcass quality 
(CQ). The data analyzed contained information on over 4 million beef cattle from 5,204 farms, corresponding to 4.3% of 
Brazil’s national production between 2014 and 2016. Explanatory variables were integrated from different data sources 
and encompassed animal traits, participation in a technical advising program, nutritional products sold to farms, 
economic variables related to beef production, month when finished, soil fertility, and climate in the location in which 
animals were raised. The training set was composed of information collected in 2014 and 2015, while the testing set had 
information recorded in 2016. After parameter tuning for each algorithm, models were used to predict the testing set. 
The best model to predict CW and AS was RF (CW: predicted root mean square error = 0.65, R2 = 0.61, and mean absolute 
error = 0.49; AS: accuracy = 28.7%, Cohen’s kappa coefficient [Kappa] = 0.08). While the best approach for FD and CQ was GLR 
(accuracy = 45.7%, Kappa = 0.05, and accuracy = 58.7%, Kappa = 0.09, respectively). Across all models, there was a tendency 
for better performance with RF and regression and worse with NN. Animal category, nutritional plan, cattle sales price, 
participation in a technical advising program, and climate and soil in which animals were raised were deemed important 
for prediction of meat production and quality with regression and RF. The development of strategies for prediction of 
livestock production using real-world large-scale data will be core to projecting future trends and optimizing the allocation 
of resources at all levels of the production chain, rendering animal production more sustainable. Despite beef cattle 
production being a complex system, this analysis shows that by integrating different sources of data it is possible to 
forecast meat production and quality at the national level with moderate-high levels of accuracy.
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Introduction
In the 21st century, agriculture will have to scale up to feed a 
human population projected to increase 30% by 2050 (FAO, 2009). 
Nonetheless, it cannot happen at the expense of animal welfare, 
or an increase in the environmental footprint, or even at a higher 
cost, which would limit market access for developing countries. 
Therefore, it is imperative to optimize the whole food chain to 
overcome such challenge. In this context, large data collections 
can be a valuable source of information to effectively address 
the current demand faced by agriculture (Kamilaris et al., 2017; 
Liakos et al., 2018 and Morota et al., 2018) with data analytics 
being central to support decision making at the farm level 
(Morota et al., 2018; Pham and Stack, 2018). The emerging fields 
of artificial intelligence and machine learning are core to data 
analytics and present new tools for predicting (i.e., forecasting) 
outcomes such as yield and quality with large-scale data. By 
projecting future trends, we can optimize the allocation of 
resources rendering the whole production chain more efficient 
and sustainable.

Beef production represents an important sector of animal 
agriculture as the third most produced meat in the world, 

after pork and poultry (FAO, 2014). The largest commercial 
cattle population in the world (213.5 million head of cattle) 
is located in Brazil (Oliveira, 2019). The country is also the 
largest exporter in the world with almost 20% of global 
beef exports (2.1 MM metric tons exported from the 9.9 
MM produced) in 2018 (Zia et  al., 2019). USDA predicts that 
Brazilian production will keep increasing in the near future, 
reaching 23% of the world’s total exports by 2028 (Zia et al., 
2019), remaining essential in the international agriculture 
market. Beef cattle production is developed in all Brazilian 
ecosystems (Oliveira, 2018), with the major producing states 
being Mato Grosso, Goiás, Minas Gerais, Mato Grosso do Sul, 
and Pará, which together are responsible for 54.2% of the 
national production (Oliveira, 2019). A  visualization of the 
geopositioning of those states within Brazil is presented 
in Figure  1. Brazil has a mature beef cattle industry based 
on grass-fed cattle (Millen et  al., 2011), and cattle spend 
most of their lives grazing in the pasture. The diversity in 
environments and conditions in which animals are raised 
combined with complex animal physiological mechanisms 
makes the prediction of meat production and quality at a 
national level a challenging task. In addition, historically the 
lack of consistent data collection and availability has made 
forecasting meat production and quality at a national level in 
Brazil a virtually impossible task.

This paper aimed to evaluate the feasibility and compare 
different tools for forecasting future beef cattle production and 
quality, using a large-scale data set integrated from different 
sectors of industry in Brazil. We compared the efficacy of 
traditional methods (linear regression [LR] or generalized linear 
regression [GLR]) and machine learning approaches (random 
forests[RF], and artificial neural networks [NN]) to forecast 
beef cattle production traits (carcass weight [CW], age when 
finished [AS], fat deposition [FD], and carcass quality [CQ]). 
Predictor variables included animal traits, farm participation in 
a technical advising program, nutritional products utilized by 
the farms, economic variables related to beef production, month 
when finished, and soil fertility and climate classification in 
the location in which animals were raised. The data analyzed 
contain information on over 4 million animals, corresponding 
to 4.3% of the Brazilian national beef production between 2014 
and 2016.

Abbreviations

AS age when finished
CHTC Center For High Throughput 

Computing
CQ carcass quality
CW carcass weight
FA feedlot premix with additives
FD fat deposition
FP feedlot mineral premix
GLR generalized linear regression
Kappa Cohen’s kappa coefficient
LR linear regression
MAE mean absolute error
mtry number of explanatory variables 

included in the model at a time
NN neural network
PNF mineral premix for non-feedlot cattle
RF random forest
RMSEP predicted root mean square error

Figure 1. Distribution of farms (in the left) and finished animals (in the right) in the data set per state in Brazil. States are represented as Acre (AC), Bahia (BA), Goiás 

(GO), Mato Grosso (MT), Mato Grosso do Sul (MS), Maranhão (MA), Minas Gerais (MG), Pará (PA), Paraná (PR), Rondônia (RO), São Paulo (SP), and Tocantins (TO). 
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Materials and Methods

Data acquisition and integration

The data set utilized in this analysis was integrated from 
different sources to provide a comprehensive view of the 
Brazilian beef cattle production context. The animal information 
utilized was pre-collected by the sources involved, such that 
procedures involving the use of animals in this study did not 
have to be approved. The data contained information on 828,292 
observations (group of animals) from 5,204 farms comprising a 
total of 4,022,394 finished beef cattle between 2014 and 2016. It 
is worth noting that the data analyzed in this study correspond 
to 4.3% of the Brazilian cattle national production of 94.2 million 
head of cattle for the 2014 to 2016 period (IBGE, 2018). 

The data set contained information on 645 municipalities 
located in 12 of the 26 Brazilian states (Acre, Bahia, Goiás, Mato 
Grosso, Mato Grosso do Sul, Maranhão, Minas Gerais, Pará, 
Paraná, Rondônia, São Paulo, and Tocantins). The distribution of 
farms and number of finished animals per state is presented in 
Figure 1.

The integrated data collection included five major sources of 
data encompassing animal traits, utilization of technology and 
nutritional products at the farm, economic variables related to 
beef production, soil fertility, and climate where animals were 
raised. Each data source and the data integration steps are 
described in detail below.

The animal and nutrition/technology data sets used for 
this study were kindly provided by a meatpacking company 
(JBS S.A., Brazil) and an animal nutrition company (DSM 
Nutritional products Brazil S.A.), respectively. A farm matching 
integration procedure, described in detail by Aiken et al. (2019), 
was implemented to identify which farms in both databases 
were the same and to connect the information. In this study, 
results provided by the two best approaches for farm matching 
highlighted by Aiken et  al. (2019), that is, bagged clustering 
and support vector machines, were overlapped. When the 
two algorithms disagreed on a matching status, discrepancies 
were solved by expert clerical review to generate this data set 
containing 5,204 matched farms.

The animal traits obtained from the meatpacking plant were: 
CW—measured in kg; AS—obtained by carcass dental evaluation 
and divided into five categories (up to 20 mo; 20 to 24 mo; 24 
to 36 mo; 36 to 48 mo; and above 48 mo old); FD—obtained 
by visual evaluation of carcass fat coverage, and divided into 
five categories (absent—lower than 1  mm; low—1 to 3mm; 
medium—3 to 6mm; high—6 to 10mm; and excessive—above 
10mm); CQ—which takes into account CW, AS, FD, gender of the 
animal, as well as body condition score, and is divided into three 
major categories (undesirable, acceptable, desirable); and animal 
category—defined as female, steer, and bull. A  distribution of 
the animal categorical traits is presented in Figure  2. For the 
continuous trait CW, the average was 252  kg with a standard 
deviation of 61.6 kg.

The information obtained from the nutritional company 
comprised two major parts. The first one contained information 
on farm participation in a technical advising program for 
improving results, as a binary variable. The second part had 
information on the amount of nutritional products utilized by 
farms where animals were raised in the year of slaughter. The 
amount of product used by farms was divided into three major 
categories: mineral premix for non-feedlot cattle—PNF, feedlot 
mineral premix—FP, and feedlot premix with additives—FA 
(all measured in kilograms). More specifically, PNF contained 

mainly minerals, while FP included feedlot concentrate and 
FA had concentrate with the additives of the following classes: 
essential oils, enzymes, ionophores, buffers, probiotics, and/or 
yeast. For the three nutritional products previously mentioned, 
the total amount used (kilograms—kg) was adjusted by the 
quantity of animals finished per farm in that year, generating a 
per animal value. Regarding the technical advising program, 921 
farms participated in it, 3,835 did not, and the remaining farms 
had missing information for this variable. The average FP per 
animal per year was 1.4 kg (SD = 13.8 kg), while PNF was 61.8 kg 
(SD = 162.4 kg), and FA was 3.1 kg (SD = 28.2 kg).

The information on economic variables related to beef 
production was extracted from the Agrolink public database 
(Agrolink, 2019). Two variables were included in this analysis: 
the finished cattle sales price at the state the farm was 
located, for the month and year each animal was harvested, 
and the price for the corn at the state the farm was located 
3 mo before the harvesting date. For example, if an animal 
was harvested in December, the sales price of corn in 
September for the same state was utilized. All prices were in 
the Brazilian currency (R$, Reais). The defined time window 
of 3 mo approximates the average time in Brazil (83 d) that 
beef animals are finished on feedlots before slaughter (Millen 
et al., 2011). The average sales price and corn price per state 
per month are shown in Figure 3.

The soil fertility classification at the farm in which animals 
were raised was accessed utilizing the interactive geographic 
mapping platform, available from the Brazilian Institute of 
Geography and Statistics (Instituto Brasileiro de Geografia e 
Estatística—IBGE, 2019). The national digital atlas of Brazil 
for agricultural potential of soils in terms of fertility and 
characteristics was overlaid to the geopositioning (latitude 
and longitude) of the farm to determine the soil type where 
animals were raised. From the 10 soil classifications defined 
at the atlas, 9 were present in the data set: light green, cream, 
orange, yellow, purple, dark green, pink, light blue, and gray. 
A full description of the classification for those soils is presented 
in Table  1. The number of observations per soil type was as 
follows: light green = 59,686, cream = 27,206, orange = 527,431, 
yellow = 370, purple = 10,269, dark green = 9,795, pink = 13,154, 
light blue = 12,790, and gray = 167,591.

Lastly, we considered the climate at the municipality where 
cattle were raised. The Köppen’s climate classification for Brazil 
(Álvares et  al., 2014) was chosen as it is considered the most 
widely used classification method across geographical and 
climatologic societies in the world. This classification utilized 
historical information on monthly temperature and rainfall 
to produce a climate map with a high spatial resolution that 
allows the detection of climatic variations at the landscape 
level. From the 12 climate classifications identified in Brazil 
(Álvares et al., 2014), 9 were present at the locations in this data 
set: Af—tropical zone, without dry season; Am—tropical zone, 
monsoon; Aw—tropical zone, with dry winter; As—tropical 
zone, with dry summer; BSh—dry zone, semi-arid, low latitude 
and longitude; Cfa—humid subtropical zone, oceanic climate 
without dry season, with hot summer; Cfb—humid subtropical 
zone, oceanic climate without dry season, with temperate 
summer; Cwa—humid subtropical zone, with dry winter, and 
hot summer; and Cwb—humid subtropical zone, with dry 
winter, and temperate summer. The number of observations 
for each climate was: Af—29,551; Am—392,180; As—659; 
Aw—362,603; BSh—417; Cfa—35,349; Cfb—253; Cwa—5,899, and 
Cwb—1,381.
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Data analysis

After comprehensive data integration of the previously 
mentioned sources, the data were preprocessed for the 
prediction of CW, AS, FD, and CQ. From all variables considered 

in the models, only the binary variable for participation in the 
technical advising program had missing information. More 
specifically, 27% of the farms had missing information (in at 
least 1 yr). This variable was imputed using bagged trees with 

Figure 2. Distribution of animals finished according to AS, FD, CQ, animal category, and CW.
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the R package “missForest” (Stekhoven, 2013). Bagged trees were 
created using all other variables in the training set, such that 
when a sample had a missing value for a predictor, the bagged 

model was used to predict this value. The estimated error of the 
imputation (out-of-bag proportion of falsely classified samples) 
was very low (0.0074%). The data set presented no major issues 

Figure 3. Average cattle sales price per state (top) in Brazilian currency (R$, Reais) and corn sales price per state per month (bottom). Points represent states that 

contained information on single months. Source: adapted from Agrolink.

Table 1. Classification of soil agricultural potential of Directory of Geosciences, Coordination of natural resources and environmental studies 
(IBGE, 2019) for the nine soil types in this data 

Soil class Fertility Attributes Relief Major limitations

Light green High Good Flat and slightly undulating No major limitations
Cream Mean Good Flat and slightly undulating Medium to low availability of nutrients
Orange Low Good Flat and slightly undulating Low availability of nutrients, excess of aluminum
Yellow Low Regular Flat and slightly undulating Low availability of nutrients
Purple Mean-high Regular Flat to undulating Steep slopes, shallow depth, rough texture
Dark green Mean-high Good Highly undulating Steep slopes
Pink Low Regular Undulating to mountainous Steep slopes, restricted drainage, aluminum excess
Light blue Low Regular Flat and slightly undulating Sodium excess, restricted drainage, flooding risk
Gray Not recommended to the agricultural activity
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with near-zero variance and there was no high correlation 
among predictors (all correlations below 0.5). All continuous 
variables were centered and scaled (mean = 0; SD = 1) prior to 
the analysis.

Three algorithms were contrasted for forecasting CW, AS, 
FD, and CQ. Those algorithms were: 1)  LR for the continuous 
trait CW or GLR for ordered categorical traits AS, FD, and CQ, 
2) RF, and 3) multilayer perceptron NN. The choice of algorithms 
to analyze the data covers different types of algorithms from 
methods more traditionally used in animal sciences, such as 
regression, along with modern machine learning methods, 
which have been successfully used for the task of forecasting 
in other fields (Biau and Scornet, 2016; Kuhn and Johnson, 2016). 
Also, the specific machine learning algorithms were chosen 
to explore the strengths of the methods for the prediction 
task. For example, RF is known to be robust to noise in the 
predictor variables (Biau and Scornet, 2016; Kuhn and Johnson, 
2016), which is a likely occurrence with data collected in 
nonexperimental settings such as the farm data analyzed here. 
On the other hand, NN is known for its ability to properly model 
complex nonlinear relationships (Kuhn and Johnson, 2016). The 
data set utilized in this study aims to use complex relationships 
between environmental and physiological variables for the task 
of prediction of meat production and quality. For this reason, NN 
could be a good algorithm to model such complex relationships. 
All methods were implemented in the R environment using 
the “caret” package (Kuhn, 2019). All analyses were performed 
utilizing the capabilities of the Center for High Throughput 
Computing (CHTC) at the University of Wisconsin, Madison.

The explanatory variables used to predict each outcome 
(CW, AS, FD, and CQ) with regression, RF, and NN are detailed in 
Table 2. The training sets had 542,935 observations obtained in 
2014 and 2015, while the remaining 285,357 observations from 
2016 were used as an independent testing set. A 10-fold cross-
validation scheme within the training set was implemented in 
which for each cross-validation run, the model was trained in 
9-folds and the 10th fold was used to validate tuning parameters 
(for models that required parameter tuning). The model that 
produced the best results across the 10-fold cross validation was 
selected and further utilized in the testing set. For GLR, different 
link functions were tested (logistic, probit, cloglog, loglog, and 
cauchit) and the one that provided the highest accuracy was 
chosen. For RF, the only parameter requiring tuning was the 
number of explanatory variables included in the model at a 
time (mtry), which was done using exhaustive search (testing 
1 to all available explanatory variables) in each model. For NN, 

three parameters were tuned with a grid search: the number of 
hidden layers (1 to 3), the number of units per hidden layer (1, 
5, 10, 50, or 100), and the rate of weight decay utilized in the 
training backpropagation procedure (0, 0.0001, or 0.1). A  grid 
search was chosen as a reasonable tuning method due to 
major constrains of run time and memory related to large size 
of the data set analyzed and the complexity of analyses. The 
activation function utilized at each hidden layer was the logistic 
(i.e., sigmoidal) function. The maximum number of iterations 
allowed to train the model was 100 (with early stopping criteria), 
and one hot encoding was applied to all categorical explanatory 
variables.

The predictive ability of each model (regression, RF, and 
NN) was calculated for each outcome variable. For continuous 
traits (CW), the predictive ability was assessed in terms of 
predicted root mean square error (RMSEp) of the testing set, 
coefficient of determination (R2), and mean absolute error (MAE). 
For categorical traits (AS, FD, and CQ), the predictive ability 
was evaluated in terms of accuracy and the Cohen’s kappa 
coefficient (Kappa). For all outcomes, the respective predictive 
ability metric is presented with the standard deviation of the 
resamples.

Among all methodologies tested, two produce a simple and 
intuitive metric for variable importance: regression and RF. For 
regression, variable importance was assessed using the absolute 
value of the t-statistic for each explanatory variable used in the 
best training set. For RF, variable importance was determined by 
recording the prediction accuracy of the out-of-bag sample when 
each tree was formed. This was repeated after permuting each 
of the explanatory variables. The difference between the two 
accuracies was then averaged across all trees and normalized by 
the standard error. All measures of importance were scaled to 
have a maximum value of 100.

Results
Results for the choice of GLR link function for the categorical 
variables AS, FD, and CQ are presented in Table  3. More 
specifically, 10-fold cross-validation results (out-of-bag accuracy 
average and SD) for the training set using different link functions 
are presented. For each categorical variable, the link function 
that provided the highest accuracy was chosen and later fitted 
to the independent test set. The link function that provided the 
highest accuracy for AS (30.6%) was cloglog, for FD was loglog 
(45.0%), and for CQ was the cauchit (57.7%). However, the choice 
of link function seemed largely unimportant.

Results for the parameter tuning of RF using exhaustive 
search (with number of variables included in the model at a time 
from 1 to all explanatory variables) are presented in Figure  4. 
The best results for the 10-fold cross validation performed in 
the training set, in terms of maximum accuracy for categorical 
variables and minimum RMSEp for continuous variables were 
chosen. For the variables CW, AS, FD, and CQ, the best results 
were with the number of variables included in the model equal 
to 11, 10, 5, and 9, respectively.

NN results for parameter tuning of number of layers (1 to 
3), number of nodes per layer (1, 5, 10, 50, and 100), and rate of 
decay (0, 0.0001, and 0.1) for the four explanatory variables CW, 
AS, FD, and CQ are presented in Supplementary Figures S1–S4. 
Best results for CW (Supplementary Figure S1) were: layer = 3, 
nodes per layer = 100 in the first, 100 in the second and 100 in 
the third, and decay = 0. For AS (Supplementary Figure S2) were: 
layer = 3, nodes per layer = 100 in the first, 100 in the second and 
100 in the third, and decay = 0. For FD (Supplementary Figure S3) 

Table 2. Models for forecasting CW, AS, FD, and CQ1

Outcome Predictors

CW AS; animal category; PTAP; PNF, FP, FA; FCSP; CP3B; SOIL; 
CLIM; and MO

AS animal category; PTAP; PNF, FP, FA; FCSP; CP3B; SOIL; CLIM; 
and MO

FD AS; animal category; PTAP; PNF, FP, FA; FCSP; CP3B; SOIL; 
CLIM; and MO

CQ animal category; PTAP; PNF, FP, FA; FCSP; CP3B; SOIL; CLIM; 
and MO

1Explanatory variables to models included: animal category, 
participation in a technical advising program (PTAP); kg of PNF 
per beef animal; kg of FP per beef animal; kg of FA products per 
beef animal; finished cattle sales price (FCSP); corn price 3 mo 
before finished (CP3B); soil fertility classification (SOIL); climate 
classification (CLIM); and month when finished (MO). 

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
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were: layer = 3, nodes per layer = 50 in the first, 50 in the second 
and 50 in the third, and decay = 0. Lastly for CQ (Supplementary 
Figure S4) were: layer = 3, nodes per layer = 100 in the first, 100 in 
the second and 100 in the third, and decay = 0.

After parameter tuning of all models using 10-fold cross 
validation in the training set, the best results in terms of 
maximum accuracy for categorical variables and minimum 
RMSEp for continuous variables were chosen to be fitted to 
the independent test set for each outcome variable. Results for 
testing set predictive ability in terms of RMSEp, R2, and MAE, for 
continuous variables, and accuracy and Kappa for categorical 
variables are presented in Table  4. The testing set predictive 
ability measure and respective standard deviation (estimated 
with 10-fold cross-validation procedure performed in the 
training set) are presented for CW, AS, FD, and CQ.

The best model for CW was RF (RMSEp  =  0.66, R2  =  0.59, 
and MAE  =  0.50), with results very similar to regression 
(RMSEp  =  0.67, R2  =  0.60, and MAE  =  0.51). The best model for 
AS was also RF (accuracy  =  28.7%, Kappa  =  0.08) with very 
similar performance presented by regression (accuracy = 28.7%, 
Kappa = 0.07) and slightly lower performance presented by NN 

(accuracy = 25.3%, Kappa = 0.02). The same pattern was observed 
for FD (RF: accuracy  =  45.7%, Kappa  =  0.05 and regression: 
accuracy = 44.9%, Kappa = 0.05); however, the lower performance 
of NN (Accuracy = 37.4%, Kappa = 0.05) was more pronounced for 
this variable. Regarding CQ, the best predictions were obtained 
using regression (accuracy = 58.7%, Kappa = 0.09), followed by 
RF (accuracy = 53.9%, Kappa = 0.09) and NN (accuracy = 46.4%, 
Kappa = 0.07), with a considerable drop in performance of the 
two models, compared with regression.

Variable importance results (for regression and RF) for CW, 
AS, FD, and CQ are presented in Figures 5–8, respectively.  For 
CW (Figure 5), sales price for cattle and corn, as well as technical 
consulting, were important for both RF and regression. However, 
regression assigned heavier weights to animal category while 
RF deemed the nutrition given to the animal, month, climate, 
and soil as important variables. For AS (Figure  6), variable 
importance was consistent between regression and RF. The most 
important predictors were animal category, animal nutrition, 
cattle sales price, and use of technical consulting. Corn price, 
climate, and soil at the location animals were raised had smaller 
importance. For FD (Figure 7), results were somewhat consistent 

Table 3.  Accuracy results from 10-fold cross validation for the training set of GLR1

Variable

Generalized linear model link function

Logistic Probit Cloglog Loglog Cauchit

AS 0.2924 (±0.0019) 0.2906 (±0.0017) 0.3056 (±0.0011) 0.2704 (±0.0011) 0.2991 (±0.0016)
FD 0.4477 (±0.0013) 0.4479 (±0.0013) 0.4301 (±0.0017) 0.4500 (±0.0022) 0.4478 (±0.0017)
CQ 0.5768 (±0.0017) 0.5761 (±0.0019) 0.5617 (±0.0012) 0.5735 (±0.0018) 0.5772 (±0.0037)

1Results are presented as the average accuracy (converted to original scale) across the 10 out-of-bag folds, followed by the ±SD (in 
parenthesis) for the three categorical variables: AS, carcass FD, and CQ. The highest accuracy across different link functions is highlighted 
(bold values) for each trait.

Figure 4. Results for exhaustive grid search, performed with 10-fold cross validation to test for different numbers of explanatory variables included in the RF model 

at a time. Mean predictive accuracy and SD (vertical line for each point) across the 10 folds are presented for the categorical variables: AS, FD, and CQ in panel A. Mean 

RMSEp and SD (horizontal line for each point) across the 10 folds are presented for the continuous variable CW in panel B.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
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Figure 5. Variable importance results for the prediction of CW with regression and RF. For regression, variable importance was assessed using the T-test value of the 

regression fitted to the test set while for RF it was estimated as the out-of-bag accuracy of permuting each explanatory variable.

Table 4. Models predictive ability for CW, AS, FD, and quality (CQ)1

Model Measure 

Outcome variable

Categorical 

AS FD CQ

GLR Accuracy 0.2867 (±0.0011) 0.4576 (±0.0022) 0.5867 (±0.0019)
Kappa 0.0666 (±0.0015) 0.0476 (±0.0037) 0.0862 (±0.0037)

RF Accuracy 0.2871 (±0.0019) 0.4494 (±0.0020) 0.5390 (±0.0016)
Kappa 0.0759 (±0.0026) 0.0523 (±0.0032) 0.0930 (±0.0032)

Multilayer perceptron NN Accuracy 0.2536 (±0.0028) 0.3742 (±0.0019) 0.4640 (±0.1999)
Kappa 0.0237 (±0.0034) 0.0501 (±0.0160) 0.0670 (±0.0017)

  Continuous

  CW (centered and scaled) CW (original scale) 

LR RMSEp 0.6765 (±0.0027) 41.2697 kg 
R2 0.6017 (±0.0017) 0.6017 
MAE 0.5097 (±0.0017) 31.0941 kg 

RF RMSEp 0.6626 (±0.0025) 40.4217 kg 
R2 0.5920 (±0.0024) 0.5920 
MAE 0.5018 (±0.0013) 30.6122 kg 

Multilayer perceptron NN RMSEp 0.8073 (±0.0030) 49.2491 kg 
R2 0.4657 (±0.0037) 0.4657 
MAE 0.5905 (±0.0045) 36.0233 kg 

1For continuous traits (CW), testing set predictive ability was measured in terms of RMSEp, R2, and MAE. For categorical traits (AS, FD, and CQ), 
it was assessed in terms of accuracy and Kappa. The testing set predictive ability is presented along with ±SD (in parenthesis) obtained in the 
training set 10-fold cross validation. Best results for each model are in bold face. 
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Figure 6. Variable importance results for the prediction of AS with regression and RF. For regression, variable importance was assessed using the T-test value of the 

regression fitted to the test set while for RF it was estimated as the out-of-bag accuracy of permuting each explanatory variable.

Figure 7. Variable importance results for the prediction of FD with regression and RF. For regression, variable importance was assessed using the T-test value of the 

regression fitted to the test set while for RF it was estimated as the out-of-bag accuracy of permuting each explanatory variable.
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between regression and RF models. Animal category was the 
most important predictor, followed by cattle sales price and 
use of technical consulting. However, when compared with 
regression, RF assigned higher importance to corn price, use of 
additives in the nutrition, climate, and soil in which the animal 
was raised. Unlike RF, the regression model assigned higher 
importance to AS as a predictor of FD. Lastly, for CQ (Figure 8), 
results were mostly consistent between regression and RF. The 
most important predictors across models were: animal category, 
sales price, and use of technology. However, RF assigned higher 
importance to the nutrition, corn sales price, soil, and climate 
in which animals were raised, as well as the month of the year.

The run-time and disk space required by all models varied 
greatly. Regression models were considerably less demanding 
than the other methods (i.e., RF and NN) with 6 computing 
hours on 4 CPUs, requiring a total of 40 GB of memory for all 
outcome variables. For RF analysis, a total of 2,370.5 computing 
hours on 109 CPUs, and 8 TB total memory were needed, while 
the NN analysis required 15,482.02 computing hours on 5,580 
CPUs, requiring 223.2 TB total memory. 

Discussion
When applying statistical and machine learning approaches, a 
very important step is to choose optimal model hyperparameters. 
For the GLR, when predicting the class of multi-class ordered 
variables, the model could be suboptimal if the chosen link 
function is not appropriate. The selection of a link function 
usually depends on knowledge of the response distribution (in 
terms of type and parameters). In cases where the distribution is 
not known, as in this study, empirical tests can be implemented 
with the Kuhn (2019) approach to make an educated guess on 

the best fit available to a data set. As explained in the Materials 
and Methods section, we compared five different link functions 
(logistic, probit, cloglog, loglog, and cauchit) to choose the most 
appropriate one for each of the outcome variables. The best 
link function was different for each of the categorical variables 
tested (i.e., cloglog for AS, loglog for FD, and cauchit for CQ). 
However, the difference in performance across link functions 
was very small (below 4% accuracy difference for all variables).

Regarding the results for hyperparameter tuning of RF, the 
best number of explanatory variables available for splitting 
at each tree node (i.e., mtry) ranged from half of the available 
number (5 for FD) to all explanatory variables (10 for AS and 
11 for CW) (Figure 4). As reviewed by Biau and Scornet (2016), 
there is no consensus in the literature on the effect of adopting 
different values of mtry (i.e., number of variables included in the 
model at a time). Some authors claim that this tuning parameter 
has little impact on the performance of the method while others 
recommend using values as large as possible (if possible equal 
to the number of all explanatory variables). In this analysis, 
the small number of available explanatory variables allowed 
us to perform an exhaustive search on mtry. In other words, 
all possible values of mtry were tested to choose the best one. 
Results across the analysis of all outcome variables indicate that 
the model performance benefits from having larger values of 
mtry, in some cases equal to all available explanatory variables.

For the hyperparameter tuning of NN, the grid search 
method was used. Grid search is a general approach in which 
a set of candidate values is defined, then reliable estimates of 
model performance across candidate values are produced to 
determine the optimal setting (Kuhn and Johnson, 2016). The 
candidate values were chosen to span a wide search range, while 
exploiting the computing capabilities available at a CHTC where 
the analysis was performed. The NN grid search results tended 

Figure 8. Variable importance results for the prediction of CQ with regression and RF. For regression, variable importance was assessed using the T-test value of the 

regression fitted to the test set while for RF it was estimated as the out-of-bag accuracy of permuting each explanatory variable.
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to favor higher number of hidden layers with higher number 
of nodes per layer and smaller values of decay (Supplementary 
Figures S1–S4). Both higher number of hidden units and layers 
enable expressing more complicated nonlinear functions, 
extending the classification capability (Liakos et  al., 2018). 
Results may suggest that the saturation of the networks was 
not yet reached, meaning that fitting more complex networks 
(in terms of larger number of layers and nodes per layer) could 
yield better performance. However, due to the large scale of the 
data set in this study, the effort conduced in the NN analysis 
already exceeded 15,000 computing hours. Therefore, it would be 
unfeasible to make further tests for increased complexity (and 
consequently run-time) with the computational capabilities 
available. Lastly, it is relevant to understand that even when 
broader search spaces for the grid are utilized, solutions for best 
tuning parameters are not guaranteed to be the “global” solution 
(Kuhn and Johnson, 2016).

Regarding model quality assessment, across all variables, 
there was a tendency of superior performance of regression 
and RF methods, while NN tended to present the poorest 
performance. Results suggest that methods that intrinsically 
model nonlinear relationships (such as RF and NN) did not 
perform better for the outcome variables studied (CW, AS, 
FD, and CQ). It is important to mention that linear models 
can be adapted to nonlinear trends in the data by manually 
adding higher-order model terms. However, to do this, one 
must know the specific nature of the nonlinearity in the data 
(Kuhn and Johnson, 2016), for example, interaction among 
specific variables or quadratic effects. The knowledge on such 
nonlinear relationships was not available for this data set. 
Inherently nonlinear in nature, models have the advantage 
that the exact form of the nonlinearity does not need to be 
known explicitly or specified prior to model training (Kuhn 
and Johnson, 2016). Lastly, it could be argued that the better 
performance of RF for CW and AS could be related to the fact 
of the method being robust to noise in the predictor variables 
(Biau and Scornet, 2016).

Results for explanatory variable importance for the 
prediction of CW, AS, FD, and CQ highlighted patterns that 
interestingly were mostly in agreement with conclusions 
reached in experimental settings and field observations. One 
of those patterns is the importance of nutrition used by the 
farm, and the price of corn 3 mo before animals were finished, 
followed by soil quality and climate to predict AS. As described 
by Millen et  al. (2011), production cycles carried out solely on 
grazing systems with only mineral supplementation lead to 
older animals at the market. This is due to animals putting 
on weight during the rainy season when the grass quality is 
higher but losing body weight in the dry season. A big reduction 
of AS can be achieved when animals are finished in feedlots 
(Millen et al., 2009). The same nutritional variables also showed 
importance as predictors of FD, which is in agreement with the 
observation that feedlot operations are oftentimes utilized just 
to finish animals and achieve a minimum of 4 mm fat cover as 
demanded by the Brazilian market (Millen et  al., 2009, 2011). 
Lastly, nutritional variables ranged from moderate to important 
(for regression and RF) to predict CQ. Even though the effects 
of nutrition on specific quality parameters, such as FD and CW, 
are well studied this can be due to the fact that CQ takes into 
account several other variables, such as AS, gender, and body 
condition scores.

Participation in a technical advising program showed 
moderate to high importance for the prediction of all beef 
production and quality variables. This indicates that expert 

knowledge is important to aid farmers making management and 
production decisions that can improve production outcomes. 
Another variable that showed moderate to high relevance across 
all outcome variables was the finished cattle sales price. This 
implies that to a certain degree, the beef market conditions 
are also relevant for the prediction of meat traits. Lastly, the 
previously mentioned variable importance results point to an 
important feature to predict carcass production and quality 
at the national level: not only physiological variables (such 
as animal category and AS) are important predictors but also 
environmental and external variables play an important role as 
well. Our results highlight that for real-world prediction these 
factors should not be ignored.

Machine learning approaches are currently being applied for 
prediction with the objective of optimizing economic efficiency 
of farm systems in many livestock species (Liakos et al., 2018; 
Passafaro et al., 2019). Common algorithms in such applications 
are decision trees and NN. In fact, the use of machine learning 
techniques to predict beef cattle traits is not new. For example, 
Alonso et al. (2007) used machine learning to predict beef cattle 
conformity scores and growth with 91 animals. Additionally, 
Alonso et al. (2013) applied support vector machines to predict 
CW in advance to slaughter for the Asturiana de los Valles cattle 
breed based on zoometric measurement features with 144 
animals. The novelty of the application presented here is not 
only the utilization of machine learning methods to predict beef 
production and quality but also, more importantly, the capability 
of utilizing real-world large-scale integrated data, representative 
of a diverse national context, to do so. Knowledge on which 
methods and variables are necessary to forecast beef production 
and quality at the national level can be a valuable tool to predict 
the future of the Brazilian market. Such projections can be 
useful in the following years to better allocate resources, with 
the hope of improving the sustainability of beef production. 
Lastly, forecasting can also be a tool to aid decision-making, 
allowing farmers to prepare for changes ahead of time.

It is arguable that the analysis performed here could be 
improved. For instance, the accuracy of prediction obtained 
with AS and FD was rather low and even the moderate-high 
predictive accuracy for CQ could be enhanced. Similarly, the 
size of the MAE obtained for CW could be decreased. This 
could have happened for different reasons. For example, the 
data set might be missing important explanatory variables 
for the prediction of meat production and quality, such as 
the genetic merit, breed composition, and health of the 
animals. Additionally, higher accuracies would likely be 
achieved if different or even more phenotypes were available 
for animals. Unfortunately, no other variables were available 
from the sources used. Recording those variables in different 
sectors of the market, such that they can be included in 
future applications, could increase the accuracy of prediction 
models. With the advent of drones and sensors, we expect 
that collections of such phenotypes become more feasible. 
Another important point is that despite the fact that this 
analysis aims to provide a national snapshot of the Brazilian 
production, the production system is quite heterogeneous 
(Millen et al., 2009; Oliveira, 2018). This means that regional 
variations not accounted for in this analysis are possible, 
and this could be explored in future studies. Lastly, we 
acknowledge that the objective of this analysis was solely 
prediction of future trends, in other words, accurately 
projecting the chances that something will (or not) happen. 
The focus of this type of method is to optimize prediction 
accuracy (Kuhn and Johnson, 2016). Therefore, no causal 

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skaa089#supplementary-data
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claim can be made from these results (Rosa and Valente, 
2013; Bello et al., 2018).

In the years to come, it will be essential to address the current 
challenge of augmenting production to nourish a growing 
human population without increasing the environmental 
footprint. With greater awareness of the need to preserve natural 
resources, methods with sustainable perspectives become more 
appealing (Millen et  al., 2011). Understanding how to predict 
the future of livestock production using large-scale data will be 
core to projecting future trends and optimizing the allocation 
of resources at all levels of the production chain, rendering 
animal production more sustainable. In this analysis, we were 
capable of predicting future beef production and quality with 
information on over 4 million head of cattle, corresponding to 
4.3% of the Brazilian national production. Despite beef cattle 
production being a complex system, many times influenced by 
the farmer’s personal interests, meat market regulators, and 
sanitary issues (such as spread of diseases), this analysis shows 
that by integrating different sources of data, it is possible to 
forecast meat production and quality at the national level with 
moderate-high levels of accuracy.
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