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Abstract

Virtual rehabilitation yields outcomes that are at least as good as traditional care for improving 

upper limb function and the capacity to carry out activities of daily living. Due to the advent of 

low-cost gaming systems and patient preference for game-based therapies, video game technology 

will likely be increasingly utilized in physical therapy practice in the coming years. Gaming 

systems that incorporate low-cost motion capture technology often generate large datasets of 

therapeutic movements performed over the course of rehabilitation. An infrastructure has yet to be 

established, however, to enable efficient processing of large quantities of movement data that are 

collected outside of a controlled laboratory setting. In this paper, a methodology is presented for 

extracting and evaluating therapeutic movements from game-based rehabilitation that occurs in 

uncontrolled and unmonitored settings. By overcoming these challenges, meaningful kinematic 

analysis of rehabilitation trajectory within an individual becomes feasible. Moreover, this 

methodological approach provides a vehicle for analyzing large datasets generated in uncontrolled 

clinical settings to enable better predictions of rehabilitation potential and dose-response 

relationships for personalized medicine.
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Introduction

Virtual rehabilitation yields outcomes that are at least as good as traditional care for 

improving upper limb function and the capacity to carry out activities of daily living [1, 2]. 

Furthermore, games are more motivating than conventional therapy [3, 4]. In all likelihood, 

video game technology will be utilized increasingly in physical therapy practice in the 

coming years given the recent national investment in technologies enabling 

telerehabilitation, and patient preference for game-based therapies.

Many of these game-based therapies utilize natural user interfaces that incorporate low-cost 

marker-less motion capture (where movements are inferred based on images of the body 

captured via infrared depth sensors and/or video cameras, without LED/retro-reflective 

markers or other sensors mounted on the person). When movements of the body drive game 

play, it is possible to obtain large datasets of therapeutic movements performed over the 

course of rehabilitation. It has been established that the kinematics of reaching that occur 

when interacting with virtual environments mirror those performed when interacting with 

actual objects [5]. This creates an opportunity to leverage large datasets that are collected 

outside of a controlled experimental setup (i.e., in the home and clinic) to elucidate the time 

course and mechanisms underlying therapeutic improvement. An infrastructure has yet to be 

established, however, to enable efficient processing of large quantities of movement data that 

are collected outside of a controlled laboratory setting. The objective of this research is thus 

to develop computational models that can efficiently process large volumes of motion 

capture data collected in uncontrolled settings for subsequent kinematic analysis.

Motion capture systems advantages and potential

Consumer-based motion capture offers several advantages. It is affordable for clinics and 

can thus be widely adopted. Additionally, user-friendly gaming platforms have been 

developed to enable clinicians/patients with very little technological expertise to acquire 

motion capture data during therapeutic practice, with less than one minute of set-up time [6]. 

A motion capture system such as Microsoft Kinect™ is small and portable, and can thus be 

utilized in the home [7]. These advantages allow for motion capture data to be amassed 

continuously during rehabilitation (with or without direct therapist supervision) for every 

patient. The sheer quantity of data from each individual enables within-patient analysis of 

improvements over time, which can aid in identifying the particular elements of therapy that 

yield the greatest motor improvement. The data could also be examined across individuals to 

yield insights into dose-response relationships, and which elements of motor practice are 

most suited to individual motor presentations. To this end, data mining, machine learning 

[8–11], and computational intelligence approaches [12–14] can be employed to serve as 

lower-cost alternatives to traditional randomized controlled trials that cost millions of dollars 

and potentially isolate the effects of just one or two treatment variables [15].

Though consumer-based systems cannot be expected to yield motion capture performance as 

reliably as professional motion capture (e.g., the Vicon MX [16]), prior work in controlled 

laboratory settings has found it to be sufficient for many applications. For example, 

comparable accuracy (correlation coefficient r values >0.9) of joint angle measurement was 

shown between the Microsoft Kinect™ and professional motion capture systems [17]. Joint 
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positions obtained from the Kinect™ version 1 sensor were within 2–6 cm of those obtained 

using marker-based motion capture systems (where LED or retro-refractive sensors are 

mounted to known parts of the body) [18]. The Kinect™ version 2 fared even better 

compared with Vicon MX, with discrepancies of 1–2 cm [19]. In sum, compared with 

professional motion capture systems, low-cost consumer-based motion capture is more 

accessible and easier to use in healthcare settings without greatly sacrificing accuracy; 

therefore, it provides a more practical solution for quantifying therapy-induced 

improvements in motor performance.

Motion capture systems challenges

There are two substantial challenges to obtaining meaningful motion capture from 

consumer-based motion capture systems, such as Microsoft Kinect™, in clinical settings. 

The first is the relatively low temporal resolution compared with marker-based systems. For 

example, the Microsoft Kinect™ advertises temporal resolution of up to 30 Hz, but 15 Hz or 

less is sometimes observed while users interact naturally with computer games [20, 21]. 

Second, within a naturalistic (i.e., uncontrolled and unmonitored) data capture setting, such 

as a home or clinic, movement data is captured continuously irrespective of whether patients 

are performing the desired therapeutic activities or extraneous movements. For example, 

data is recorded when individuals are walking to/from their seat after turning the game 

on/off or gesturing with their hands while talking. Moreover, other individuals (e.g., 

caregivers, therapists, other patients in an in-home or open-bay therapy setting) may be 

accidentally captured by the software program. Finally, for camera-based motion capture 

systems, inanimate objects like the arm of a chair may be occasionally perceived by the 

system as part of the body. Existing kinematics research has been conducted mostly in 

controlled laboratory settings where these scenarios can be avoided.

Current study

In this paper, a comprehensive methodology is proposed to retrieve and evaluate relevant 

movements from continuous therapeutic game play using consumer-based motion capture. 

The methodology is based on the adroit integration of several technologies: signal 

processing, kinematic analysis, a clustering algorithm, and a probability density function to 

extract and evaluate the task-relevant movements across time. Though developed using 

Microsoft Kinect™ data, the proposed methodology could work for any motion capture 

system producing a time series of either joint angles (e.g., from wearable sensor systems) or 

3D coordinates of joints’ positions, also referred to as skeleton data. The validity of the 

proposed method is illustrated using data collected from 24 individuals employing the 

Microsoft Kinect™ and Recovery Rapids™ gaming system. Recovery Rapids™ is a custom 

video game that captures body movements via the Microsoft Kinect™ version 2 sensor. 

Convergent validity is assessed by relating kinematic composite scores to established 

laboratory-based measures of motor function.

Methodology

Figure 1 presents a flowchart of the 6 main steps of the proposed methodology. The input is 

motion capture data collected by the sensor. It consists of a time-series of joint angles and/or 

the 3D positions of joints (i.e., skeleton data). Figure 2 presents the eleven upper body 
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skeleton joints for whom motion data are collected via the Microsoft Kinect™ sensor. 

Sample captured motions for six of these joints are displayed on the right-hand side of Fig. 

2.

Step 1: Denoising time-series of motion capture data—During preprocessing, 

duplicate motion capture data are first removed by automatically filtering out records that 

are exact duplicates of prior records. Recordings with missing data points (e.g., due to loss 

of power during recording) are also removed automatically. In Step 1, a median filter is then 

used to remove the spikes that represent extraneous records or noise in the data (typically 

less than 1% of total data). A median filter replaces each value with the median of 

neighboring values. To avoid flattening all peaks in the data, the median filter is only applied 

to data in which the difference between the raw data and median filtered time-series exceeds 

a set threshold obtained by trial and error. Figure 3 shows an example of denoising of the 

more affected elbow skeletal joint using the median filter for a 70s epoch of the game play. 

A threshold of 0.1 m removes the majority of spikes in the data without flattening the peaks 

that occur during natural movement. Lower thresholds can have the advantage of a slightly 

smoother data stream at the cost of artificially reducing the magnitude of movement 

excursion when movements are performed quickly. A median filter was selected because of 

its simplicity, efficiency, and potential for use in real-time applications. One can also use a 

more advanced signal processing algorithm, such as synchrosqueezed wavelet transform 

[22–24] if computational efficiency is not a concern.

Step 2: Session segmentation—In order to remove extraneous data not related to the 

game play (Step 3), isolated sessions of consecutive game play must first be identified. This 

is because the features used to detect extraneous data can change in different sessions of 

game play. For example, the patient may be positioned in a different place when returning to 

game play after an extended absence. An isolated session of consecutive game play is 

defined by the authors as a period in which there is no more than a 5-min lapse in 

therapeutic movements captured by the gaming system. The outcome of this step is a series 

of consecutive therapeutic game sessions.

Step 3: Remove extraneous data within each session employing a clustering 
algorithm—In uncontrolled data capture settings, consumer-based optical motion capture 

systems may record data from other individuals and inanimate objects such as furniture. 

Data that is not task-related (e.g., gesturing with one’s hands while talking) may also 

contaminate the recording in uncontrolled settings, irrespective of sensor type. For example, 

users’ movements are captured by a therapeutic gaming system when they walk towards/

away from the system after turning it on/off or perform other activities (e.g., answering the 

phone) without first pausing the game. During this time, everyday activity may trigger game 

actions and be mistaken for therapy participation.

Clues as to the task-relevance of the data can be obtained from select kinematic features. 

Kinematic features can include joint angles, length of body segments, and speed of 

movement. For example, six kinematic features (such as trunk angles) are known to have 

different profiles for task-relevant and extraneous data captured by the Kinect™ motion 

capture system, and thus are useful features for classifying whether a person is participating 
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in therapy or not. Large angles of the trunk relative to the vertical y-axis (i.e., non-upright 

posture) represent epochs of time in which the Kinect™ either mistakenly records inanimate 

objects for body representations or the patient is reclining (and therefore not engaged in 

therapeutic activity). An individual’s torso position in the XZ plane (top-down view) and the 

rate of change in the X and Z position of the torso are useful features for identifying when 

the participant is unlikely to be engaged in deliberate game-based upper extremity practice 

because upper extremity practice does not involve moving around the room. Finally, various 

body segment lengths (e.g., trunk length and hip width) identify epochs of time in which a 

different person appears to be captured by the sensor or in which the patient is no longer 

directly facing the sensor (smaller X component of hip width).

To remove extraneous data based on several different kinematic features concurrently, a 

clustering algorithm known as DBSCAN (for Density-based spatial clustering of 

applications with noise) is employed in this research [25]. This algorithm clusters data 

points based on their local density and their Euclidean distances to one another. DBSCAN is 

known to be efficient in dealing with big data [26, 27]. However, clustering algorithms such 

as kernel-, quantum theory-, graph theory-, density-based clustering algorithms, and 

unsupervised learning techniques such as deep Boltzmann machine, or other deep neural 

networks [8, 28–30] can also be explored. Figure 4 illustrates data that was retrained for 

further analysis versus data that was tagged as extraneous during an 18-min session of game 

play comprised of about 32,100 skeletal records.

Step 4: Gesture retrieval—For therapeutic game play employing natural user interfaces, 

a person’s movement triggers game actions (e.g., collecting game objects). Specific 

movement patterns, referred to here as therapeutic gestures, are mapped to each game action 

[31], and may consist of either simple (e.g., elbow flexion) or more complex therapeutic 

movements (e.g., shoulder abduction with elbow extension and forearm supination). For 

instance, the Recovery Rapids™ game involves steering a boat down a river and avoiding 

obstacles. To steer the boat towards the hemiparetic side of the body, the patient performs 

shoulder abduction with elbow extension. The gesture recognition framework within 

Recovery Rapids™ requires that the patient achieve several postures in sequence to trigger a 

game action. Figure 5a presents the game action of steering the boat towards the hemiparetic 

side of the body. The gesture is triggered when the patient first produces α degrees of 

shoulder flexion (measured from the vertical) with β degrees of elbow extension (state 1 in 

the Fig. 5 example), followed by α + p degrees of shoulder flexion (p is the increment angle 

between two consecutive states), with β degrees of elbow extension (state 2 in the Fig. 5 

example), then finally α + 3p degrees of shoulder flexion with β degrees of elbow extension 

within 2 s (state 4 in the Fig. 5 example). To ensure appropriate challenge and to enable 

progression of the rehabilitation program, the values of α, p, and β are automatically 

adjusted within the game based on the patient’s ability (the joint angles the patient is able to 

produce 70% of the time). When this sequence of joint angles is detected, the shoulder 

abduction movement is logged as completed within the game log, a text file of movements 

performed along with their time of completion is created, and the patient receives visual 

feedback of the boat moving to the side. Additional details about therapeutic movement 

recognition can be found in this paper [6]. Figure 5b shows that though the game action 

Yang et al. Page 5

J Med Syst. Author manuscript; available in PMC 2020 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



triggers at α + 3p degrees of shoulder flexion, the patient may produce a movement that is 

larger than this (because the difficulty level of the game is set at the 30th percentile for the 

patient’s movement). Hence the timestamps in the game log can only serve as 

approximations of the end point of the therapeutic gesture.

Various therapeutic gestures from Recovery Rapids™ are shown in Fig. 6. Table 1 presents 

therapeutic gestures utilized by Recovery Rapids™ and the corresponding kinematic 

features that are robust in identifying the start and end points of each movement. For 

example, to detect shoulder abduction, the hand minus shoulder distance along the X-axis 

can be utilized to identify the local minima on either side of the gesture trigger, which 

represent the actual start and end of each gesture (Fig. 5b and Fig. 6c).

Though conceptually simple, identifying the correct local minima that precede and follow 

the relevant peaks is quite challenging on a patient population with abnormal movement 

patterns. For example, a person may have difficulty lifting the arm against gravity and may 

produce a movement that is not fluid and punctuated by local minima (e.g., involuntary 

extension of the elbow with gravity during elbow flexion, as shown in Fig. 6b).

To address this concern, two strategies are employed. To remove local minima near the 

relevant peak, thresholds are established such that local minima above a predefined 

percentage of the maximum range (e.g., above 50% of the height of the peak) are excluded. 

To remove local minima that occur below 50% of the height of the peak (near the correct 

minima), preceding/subsequent minima are also examined. If the slope between the 

minimum nearest to the peak and the next nearest minimum is above a certain threshold, it is 

concluded that the minimum nearest to the peak is actually a local minimum and is thus 

excluded as a potential start/end point (Fig. 5b). There are also records in which the onset of 

a gesture does not co-occur with a local minimum. For example, as shown in Fig. 5b, there is 

relatively little vertical displacement of the hand relative to the shoulder at the start of the 

gesture; thus, the start of the gesture was determined to be the point at which the slope 

exceeded a threshold. In order to find flat (minimal slope) regions within the relevant 

kinematic feature, the average of the absolute values of the slope between consecutive 

recordings within a sliding window (e.g., 0.4 s) is calculated. If the magnitude of the mean 

slope is below a certain threshold when a local minimum occurs, the “location” of the local 

minimum within the time-series is concluded to be the subthreshold value that is nearest to 

the peak.

The proposed strategies are robust in the majority of cases; however, partial movements are 

still sometimes captured (e.g., the algorithm gets “stuck” in a local minimum) or combined 

movements are detected. For example, in the case of Recovery Rapids™ upper extremity 

game play, movements are sometimes performed in such rapid successions that the patient 

doesn’t fully return to the resting position of their arm at their side, creating a scenario 

where two movements may blend together. To avoid including improperly parsed or 

combined movements in the analysis, the shape of the parsed movement is referenced 

against an ideal/expected movement trajectory, explained further in Step 5, and movements 

of an unexpected shape are excluded. Fig. 6 presents an example of actual movements 
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performed versus the ideal trajectories of 5 different gestures (Table 1) within Recovery 

Rapids™.

Step 5: Normalcy shape index—In order to evaluate how well each therapeutic 

movement matches the expected reference, an ideal movement trajectory for each movement 

is first generated. Ideal trajectories are obtained by fitting an exponential function to data 

from control participants without motor impairment (an exponential function was 

determined to be superior to a polynomial function). The ideal movement corresponding to 

the overhead reaching gesture (bats in Table 1, top image in Fig. 6a) follows a sigmoidal 

function with the same time duration as the feature vector of the produced movement (the 

ideal curve in the bottom part of Fig. 6a). For the other therapeutic gestures, the ideal 

movement mirrors a symmetrical function over time with the peak close to the peak of the 

recorded curve (dashed curves in Fig. 6b to e), but within 30% horizontal distance of the 

start and end points. In this research, the ideal curve is modeled using a 5th degree 

polynomial function that best fits 7 points: start, peak, end, 2 points equidistant between 

start/end and the peak, and 2 points at 5% horizontal distance from the start and end points.

To measure the goodness of fit between a produced movement and the ideal movement, a 

normalcy index is proposed that calculates the Euclidian distances between the movement 

that is produced relative to a) an ideal movement shape and b) the least compatible 

movement shape. To accomplish this, a vector of residuals, M, is computed as the absolute 

difference between the relevant recorded kinematic metric (the dashed line in Fig. 6) from 

Table 1 and the ideal curve (the solid line in Fig. 6). Next, two vectors, B and W, each with 

the same dimension as M, are defined for residuals vector M that represent the best possible 

correspondence (zero residuals when solid and dashed lines in Fig. 6 are superimposed) and 

maximum residuals, respectively. A normalcy index for the shape of the kinematic metric is 

defined as follows:

Nsℎape = M − W
M − W + M − B (1)

where ‖.‖ is the norm operator and the ith element of W is computed as follows:

W i = max Si − min(S) , Si − max(S) (2)

where Si is the ith element of the vector of ideal movement S. The movement approaches the 

ideal shape when Nshape approaches 1. Conversely, as Nshape approaches 0, the movement 

approaches the worst shape in terms of usefulness for rehabilitation.

Movements with a normalcy shape index less than a predefined threshold value are assumed 

to be improperly parsed or have been executed in combination with another movement 

without returning to the rest position between subsequent gestures. Using Microsoft 

Kinect™ skeletal data captured through Recovery Rapids™, an Nshape threshold of 0.73, 

0.77, 0.70, 0.72, and 0.67 were found to work well for bats, bottle, raise-arm, parachute, and 

row movements, respectively (Table 1). These values were obtained by random visual 

inspection of the graphical depiction of hundreds of movements for each of the 5 different 

therapeutic gestures described in Table 1 and portrayed in Fig. 6.
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Step 6: Kinematic normalcy indices—In step 6, the quality of movement is calculated 

for those movements whose Nshape is greater than the predefined threshold. The normalcy 

index is utilized in this step for a second time, but vectors M, B, and W now consist of 

features relevant to movement quality. For this application of the normalcy index, M consists 

of the relevant kinematic features described in the first column of Table 2. The vectors B and 

W are the best and worst possible values of the relevant features summarized in Table 2, 

respectively. The theoretical best performance in Table 2 was validated by examining 

kinematic records from 5 control participants without motor impairment.

The proposed normalcy index is a more powerful tool and superior to physically examining 

kinematic features individually because it incorporates the multidimensional nature of 

movement quality (i.e., speed, range of motion, compensatory movement, etc). The 

normalcy index encapsulates all relevant metrics into a single index of overall movement 

quality, Nquality of movement. Figure 7 presents the values of Nquality of movement for 

consecutive shoulder abduction (raise-arm) gestures, as an example.

Validation of methodology

Data collection—The performance of the proposed methodology is illustrated utilizing a 

retrospective database of skeletal data obtained from 24 individuals with chronic stroke and 

mild to moderate upper extremity impairment (Table 3 presents the minimum motor 

criteria). Participants were enrolled in a clinical trial utilizing the Recovery Rapids™ upper 

extremity rehabilitation game in their homes [7]; it can be played either seated or standing. 

Participants had agreed to play Recovery Rapids™ independently at home for 15 h over a 

period of 3 weeks between periodic in-person therapist consultations. Informed consent was 

obtained from all participants prior to study participation; the study was approved by The 

Ohio State University’s Institutional Review Board. Table 4 presents the demographic 

information of the cohort.

Recovery Rapids™ requires users to perform movements (gestures) to control an Avatar to 

accomplish game objectives (Table 1). It was designed to trigger game actions after 

detecting a series of body positions that make up each therapeutic gesture [6]. The data log 

from Recovery Rapids™ consists of the skeletal data with millisecond-precision timestamps 

as well as a log of completed gestures with their associated timestamps. The data were 

stored locally in an SQL database on the gaming system located within the person’s home. 

Data were transferred to researchers upon completion of the study via a HIPAA-compliant 

USB drive. Though real-time transfer of the motion capture data to a cloud-based database is 

feasible for individuals with high-speed internet connections, the majority of participants did 

not have sufficient high-speed internet in their homes to transfer upwards of 40,000 data-

points per minute of game play. More details about Recovery Rapids™ can be found in prior 

publications [6, 7, 32]. It should be noted that, unlike in-laboratory motion capture 

experiments usually based on reinforcing maximal effort over relatively few repetitions, 

Recovery Rapids™ captures spontaneous movements made during sustained practice. It can 

thus be assumed that movements performed do not necessarily represent a person’s maximal 

level of ability, but rather how a person spontaneously performs during sustained use. All 
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steps of the proposed methodology have been implemented using the skeleton data collected 

from all 24 individuals.

Establishing convergent and divergent validity

To determine the convergent validity of the normalcy index, Nquality of movement was 

compared to scores on established measures of motor function (Wolf Motor Function Test 

[WMFT]) and arm use (Motor Activity Log [MAL]). Divergent validity was established by 

correlating Nquality of movement with the Montreal Cognitive Assessment.

Given that performance during initial game play is influenced by the process of learning the 

correct motions, and therefore not likely representative of a person’s true motor ability, only 

the post-treatment time period was utilized for the assessment of convergent validity. 

Nquality of movement for a particular movement was assumed to be the final Y value of the 

negative exponential best-fit line when plotting Nquality of movement versus consecutive 

movements of the same type (e.g., shoulder abduction with elbow extension; Figure 8). The 

negative exponential fit was the most ideal for capturing rehabilitation-related improvements 

because it accounts for the relatively rapid rate of improvement during earlier sessions and 

allows for an eventual plateau in recovery potential. Nquality of movement was averaged across 

all 5 movements to create a mean normalcy index score at post-treatment.

The WMFT measures how fast an individual can perform 15 standardized tasks/movements; 

its validity has been established [33, 34]. The WMFT performance time scale measures a 

slightly different construct than the normalcy index. Its focus is on speed of single 

movements irrespective of how the movement is performed, whereas the normalcy index 

takes into account speed, range of motion, and use of compensatory movement patterns 

concurrently over the course of hundreds of movement repetitions. To increase the 

functional similarity between the normalcy index and the WMFT validation measure, only 

gross motor items from the WMFT were examined (gross motor items shared the most 

similarity in movement patterns compared with the movements prompted by Recovery 

Rapids). A gross motor composite score for the WMFT was calculated by averaging the 

natural log transformed performance times of the 7 items that loaded to a gross motor factor 

following Factor Analysis of the WMFT (extend elbow, extend elbow with weight, forearm 

to box, forearm to table, hand to box, hand to table, and reach/retrieve).

The Motor Activity Log Quality of Movement scale (MAL) assesses a person’s perceived 

quality of arm use for 28 tasks of daily living; its reliability and validity have been 

established [35–37]. Whereas the WMFT captures maximal performance in a laboratory-

based setting, the MAL measures spontaneous use of the hemiparetic arm for daily activities 

[35]. The MAL does not necessarily reflect patients’ motor ability, but rather captures the 

patient’s perception of movement quality for several tasks of daily living. A key difference 

between Nquality of movement and the MAL is that the former is an objective measure which is 

sensitive to kinematic performance, whereas the MAL scores reflect both use of the 

hemiparetic arm and its perceived utility during daily tasks.
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The convergent validity of the normalcy index with both the MAL and the WMFT was 

established using linear regression. Figure 9a and b show WMFT gross motor composite 

score and MAL score versus Nquality of movement, respectively.

Establishing reliability

The test-retest reliability of the mean Nquality of movement for each movement class between 

sessions was calculated using intraclass correlation. To remove confounding treatment effect 

from reliability calculations, only those treatment sessions that followed a plateau in 

performance were utilized in the reliability calculation.

Results

Table 5 presents the percentages of the retained data after steps 1–5 of the proposed 

algorithm for every individual. Between 46% and 92% of the original raw data were retained 

for final analysis, with an average of about 71%. This shows the feasibility of capturing 

ample data suitable for analysis, given the large volume of data being generated by the 

system. The relative quantity of data retained appeared to be most influenced by the play 

style (i.e., some participants completed more partial or combined movements than others). 

Some participants with higher data loss following processing also had more contamination 

within the data capture itself (e.g., they appeared to have left the system on when performing 

other non-therapeutic activities).

Referring to Figure 9, significant correlations were observed between Nquality of movement and 

established motor measures (r = − .62 for WMFT and r = 0.27 for MAL), suggesting that 

they measure at least partially overlapping constructs. Conversely, the absence of a 

significant relationship between Nquality of movement and cognition established divergent 

validity. Cronbach’s alpha was .82, supporting good test-retest reliability of 

Nquality of movement.

Figure 8 presents the Nquality of movement dose-response trajectories of 5 therapeutic gestures 

for every individual. Examination of dose-response plots (which illustrate the best-fit curve 

for Nquality of movement over consecutive movements; see Figure 7) yields two important 

observations. First, the majority of patients continued to show improvement on at least one 

movement through the end of treatment, suggesting that existing rehabilitation trials may be 

under-dosing participants, capturing only a fraction of potential recovery. Second, patterns 

of recovery appear to be specific to each individual, demonstrating the value of this data-

driven approach to inform personalized treatment planning.

Discussion

Arguably the greatest barrier for collecting and utilizing large datasets of low-cost motion 

capture data, such as those collected by the Microsoft Kinect™, is a framework to remove 

the substantial error that occurs during capture in uncontrolled settings, such as a home or 

clinic. This paper provides the first ever framework for addressing the major challenges in 

analyzing kinematic data captured in a home or clinic setting. As such, it will facilitate 
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analysis of very large datasets captured during rehabilitation, yielding data-driven insights 

that will accelerate understanding of motor recovery.

This approach to analyzing movement data that is captured in naturally occurring settings 

can generalize to all rehabilitation applications, though the particular metrics selected for 

determining task-relevant practice and optimal performance may differ. Additionally, with 

improved sensor systems on the horizon, these computational techniques could be useful in 

the future for quantifying athletic performance. The normalcy index is a particularly useful 

construct because it allows any combination of relevant performance metrics to be tracked 

concurrently across time. By fitting a negative exponential function to consecutively 

calculated normalcy index data points, the precise time at which performance plateaus can 

also be calculated. This has particular relevance for informing personalized adjustments to 

rehabilitation/training programs and capturing dose-response to motor interventions.

Conclusions

In this paper, a methodology was presented for isolating the relevant movements and 

removing extraneous movements from motion capture data obtained via a consumer-based 

motion capture system such as Microsoft Kinect™ during therapeutic game play. It 

overcomes the challenges of low temporal resolution in an uncontrolled data capture 

environment. The resulting kinematic data can be utilized to quantify individual dose-

response for each movement trained. This research provides the foundation to generate 

personalized data-driven insights from game play data obtained from any individual 

engaging in therapeutic game play within home and community settings.

Limitations

The methods presented here may not be sufficient for measuring a person’s maximal motor 

ability over time. This is because it is unlikely that a person will continue to exert maximal 

effort over the sustained period of rehabilitation being captured, particularly when 

unprompted to do so in an unsupervised setting. This limitation is supported by only a 

moderate correlation between WMFT performance time and the recorded kinematic metrics. 

Rather, the element of motor ability that appears to be captured by the game-based kinematic 

metrics is spontaneous and sustained motor performance during an engaging task.
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Highlights

• Method for extracting and evaluating therapeutic movements from 

rehabilitation gaming

• Convergent validity with other metrics of motor ability is established.

• Treatment customization can be achieved by quantifying individual’s dose-

response.
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Fig. 1. 
Macro-flowchart of the proposed methodology

Yang et al. Page 15

J Med Syst. Author manuscript; available in PMC 2020 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Eleven upper body skeleton joints captured by Microsoft Kinect™ optical motion capture 

system: 1) head, 2) neck, 3) spine-shoulder, 4) spine-mid, 5) spine-base, 6) shoulder, 7) 

elbow, 8) wrist, 9) thumb, 10) hand, and 11) hand-tip
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Fig. 3. 
Denoising of the more affected elbow skeletal joint via median filter for a 70 s epoch of 

game play. The solid black line reflects the raw X skeletal coordinates obtained via the 

Microsoft Kinect™ sensor from the elbow joint (joint 7 in Figure 2). The reference point for 

the X coordinate is the Kinect device. The dashed blue line reflects the denoised record that 

is included in subsequent analysis. The solid and dashed lines coincide except at some peaks 

identified by dashed ovals highlighting the locations of spikes in the noisy records
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Fig. 4. 
Top-down view of the Spine Base skeletal coordinates (XZ plane) for joint 5 in Figure 2 for 

an 18-min session of game play comprised of about 32,100 skeletal records. The small black 

dots show the extraneous data not related to game play. Data represented by the larger plus 

(+) signs represent therapeutic game play (rehabilitation-related movement) records retained 

for subsequent analysis. The figure is tagged with extraneous events that were manually 

logged by an observer
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Fig. 5. 
a In the case of shoulder abduction for a person with near normal ability; the angle between 

the shoulder and torso must increase from position 1 through position 4 while the elbow 

angle is at least 170 degrees. Though the movement is recorded as completed within the 

Game Log at position 4, position 5 represents the range of motion that the person actually 

displays when performing the movement; this recorded range of motion is utilized by 

Recovery Rapids™ to appropriately establish the difficulty level for each patient. b The 

distance (m) between the hand and shoulder in the x plane is utilized to determine the actual 

start and end points of the movement for subsequent kinematic analysis. Gesture states 

(positions) 1–4 are indicated on the plot, the trigger occurs at gesture state 4, illustrated by a 

black circle. Position 5 reflects the maximum range of motion exerted by the participant
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Fig. 6. 
Graphical depiction of how the normalcy shape index is determined for the 5 different 

movements described in Table 1. The red dashed lines represent the relevant kinematic 

metric (Table 1) extracted from individual movements over time. The solid blue lines 

represent ideal movement traces
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Fig. 7. 
Plot of the kinematic normalcy index across about 2500 consecutive gestures enables 

calculation of dose-response curves for each movement for each individual. Blue dots 

represent the normalcy index for consecutive shoulder abduction (raise-arm) gestures. The 

vertical dashed lines demarcate each session of the game play. The solid red line is the 

negative exponential best fit across all gestures
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Fig. 8. 
Trajectories of normalcy indices of 5 therapeutic gestures for 24 individuals. “Bats” 

corresponds to overhead reaching, “Bottles” to elbow flexion/extension, “Raise arm” to 

shoulder abduction, “Parachute” to shoulder flexion with elbow extension/supination, and 

“Row” to shoulder flexion (see Table 1 for more detail). Each trajectory (colored curve) 

represents the nonlinear (negative exponential) best fit line across consecutive gestures, as 

shown in Figure 7. The numbers in the boxes refer to the participants described in Table 4
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Fig. 9. 
a WMFT gross motor composite score and b) MAL versus Normalcy Index 

(Nquality of movement)
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Table 4

Demographic and baseline clinical characteristics of stroke

Participant # Age (Years) Gender Affected Side Chronicity (Years)*

1 44.4 Female Right 6.4

2 64.2 Male Right 1.6

3 42.4 Female Right 2.3

4 23.6 Female Right 3.4

5 34.2 Female Right 2.7

6 81.4 Female Right 8.3

7 47.1 Male Left 5.0

8 74.6 Female Right 3.5

9 56.9 Male Left 2.2

10 79.8 Male Left 2.1

11 53.8 Male Left 1.9

12 59.9 Female Right 1.9

13 73.5 Female Right 1.9

14 66.6 Male Left 0.6

15 64.1 Female Right 0.8

16 65.2 Female Right 2.0

17 71.3 Female Right 0.5

18 62.0 Male Left 3.2

19 25.6 Male Left 1.8

20 29.7 Male Left 28.0

21 51.9 Male Left 9.9

22 63.5 Male Left 11.3

23 67.7 Male Left 2.3

24 73.7 Male Left 7.8

*
Number of years post-stroke at study participation
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