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Abstract

Fasting blood glucose level is the primary indicator for the diagnosis of diabetes. We aim to 

conduct a longitudinal study on the association between long-term fine particulate matter (PM2.5) 

exposure and fasting blood glucose concentrations. We recruited and followed up 1449 

participants older than 65 years of age in 2009, 2012, 2014, and 2017 in eight counties in China. 
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Fasting blood glucose was repeatedly measured 3697 times in total among these participants. Data 

on annual ground-level PM2.5 concentrations with a 0.01° spatial resolution from 2005 to 2016 

were used to assess exposures. An increase of 10μg/m3 in 3-year average exposure to PM2.5 was 

associated with an increase of 0.146 mmol/L (95% confidence interval [CI]: 0.045, 0.248) in 

fasting blood glucose in all participants. The association was more pronounced among the 

subgroup with diabetes compared to the subgroup without diabetes (P <0.05). In conclusion, 

Long-term PM2.5 exposure was associated with an increase in fasting blood glucose levels among 

elderly people. Elderly individuals with diabetes are particularly vulnerable to high level 

exposures of PM2.5.

Summary:

Long-term PM2.5 exposure was associated with an increase in fasting blood glucose levels among 

elderly people. Elderly individuals with diabetes are particularly vulnerable to high level 

exposures of PM2.5.
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Introduction

A total of 383 million people were diagnosed with diabetes in 2016, making it one of the 

leading causes of years lived with disability in 2016 (GBD-2016-Disease-and-Injury-

Incidence-and-Prevalence-Collaborators, 2017). Based on data from the International 

Diabetes Federation, the global prevalence of diabetes is expected to increase to 592 million 

by 2035(Guariguata et al., 2014). The elderly population is a vulnerable group that is more 

susceptible to diabetes and diabetic complications(Mordarska and Godziejewska-Zawada, 

2017). According to the sixth population census in China in 2010, there are 176 million 

people that are over 60 years of age, and that number will continue to grow(Gerland et al., 

2014). The prevalence of diabetes in China was 11.6%, and higher in older age groups(Xu et 

al., 2013). Fasting blood glucose levels are traditionally used to diagnose and manage 

diabetes(American-Diabetes-Association, 2012; Internal-Clinical-Guidelines-Team, 2015) 

and is associated with altered risk of other major chronic conditions such as cardiovascular 

disease and cancer(Coutinho et al., 1999; Liao et al., 2015).

In addition to a number of established causes or risk factors for diabetes such as unhealthy 

behavior (drinking alcohol, or smoking, etc.), genetic factors, and chronic diseases(Bellou et 

al., 2018; Kong et al., 2016), ambient air pollution has been also associated with increased 

diabetes prevalence(Liu et al., 2016; Liu et al., 2019; Yang et al., 2020), and especially 

particular matter (PM) exposure(Liang et al., 2019; Meo et al., 2015; Park and Wang, 2014; 

Rao et al., 2015; Yang et al., 2018). Diabetes progresses over time, and even before formal 

diagnosis of diabetes, impaired fasting blood glucose levels alone may be hazardous to 

human health(Kong et al., 2016). There are many studies that have showed significant 

associations between fine particular matter (PM2.5) and fasting blood glucose. However, 

most of these studies only explored the short-term effects of PM2.5 on fasting blood 
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glucose(Brook et al., 2013; Chen et al., 2016; Li et al., 2018b; Lucht et al., 2018; Ma et al., 

2019; Meo et al., 2015; Peng et al., 2016). Studies focusing on long-term exposure of PM2.5 

and fasting blood glucose, on the other hand, are still lacking. Most existing long-term 

studies are cross-sectional studies, which has limited power in verifying causality(Chuang et 

al., 2011; Liu et al., 2016; Lu et al., 2017; Wolf et al., 2017; Yang et al., 2018; Zhang et al., 

2019). Therefore, we conducted this repeated measurement longitudinal study in an elderly 

cohort to examine the association between long-term exposure to ambient PM2.5 and fasting 

blood glucose concentrations.

Methods

Study population

We investigated 1449 participants older than 65 years of age in eight Chinese counties 

(Chengmai, Hainan Province; Sanshui, Guangzhou Province; Yongfu, Guangxi Province; 

Mayang, Hunan Province; Rudong, Jiangsu Province; Zhongxiang, Hubei Province; Xiayi, 

Henan Province; Laizhou, Shandong Province) (Figure 1). Some participants (542) were 

recruited in 2009, and were followed up three times, in 2012, 2014 and 2017. In 2012, new 

participants (907) were also recruited and followed up two times, in 2014 and 2017. All 

individuals older than 100 were included; their neighbors younger than 100 were invited to 

participate in the study. Additional details regarding the participants are described in the 

previously published articles(Ma et al., 2017; Yin et al., 2012). Written consent forms were 

provided by each participant, and the ethics committee of Peking University approved this 

study.

FBG assessment

Participants were asked not to eat for at least 8 hours prior to the morning of blood 

collection day to accurately determine fasting glucose. Among the 1449 participants, two, 

three and four serial fasting blood glucose measurements were available for 769, 561 and 

119 participants, respectively. We defined diabetes using the data from the baseline survey. 

Self-reported physician-diagnosed diabetes or fasting glucose levels greater than 7.0 mmol/L 

were defined as diabetes. In total, we analyzed 3697 fasting blood glucose measurements 

and questionnaire data acquired over an 8-year timespan.

Assignment of exposure data

Ambient annual PM2.5 data from 2005–2016 were obtained from the Atmospheric 

Composition Analysis Group, Dalhousie University (Nova Scotia, Canada). Ground-level 

PM2.5 concentrations with a 0.01° spatial resolution were estimated by applying 

geographically weighted regression using information from satellite-, simulation- and 

monitor-based sources. The R2 of the satellite-based estimation and PM2.5 concentrations 

from monitors is 0.81(van Donkelaar et al., 2016). PM2.5 concentrations were assigned to 

each participant by home address. Because the cohort was followed up in 3 years averages, 

PM2.5 concentrations were assigned to the previous year (lag1), and we then calculated the 

previous year to 2-year (lag1-2) and the previous year to 3-year (lag1-3) moving averages, 

based on the year of survey.
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Meteorological data were obtained from the European Centre for Medium-Range Weather 

Forecasts (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). Annual 

temperature and humidity data were matched by the home address of the participant and the 

investigation year.

Assessment of potential confounders

Potential confounders related to PM2.5 exposure and fasting blood glucose were collected by 

questionnaire from face to face interviews, including sociodemographic characteristics (such 

as sex, age, education years, marital status, and home address), smoking and drinking status, 

exercise habits, and dietary intake. We defined former and current smokers as ever smokers, 

and similarly defined former and current drinkers as ever drinkers.

Statistical analysis

Linear mixed models in the package “lme4” were used for the analysis between PM2.5 and 

fasting blood glucose concentrations using the statistical software R, version 3.4.2. First, we 

conducted a nonlinear analysis. We introduced a basis matrix generated by “dlnm” package 

for PM2.5 concentration (lag1-3), modeled using a natural spline with 2 degrees of freedom. 

The model adjusted for age, years of education, body mass index (BMI), family income, 

staple food intake linearly; sex, marital status, residence, smoking and drinking status as 

indicator/categorical variables; exercise status as fixed effects; and participant and county as 

random effects. We found that the shape of the curve was almost linear (Figure 2.). We then 

remodeled PM2.5 concentration as a linear variable, and adjusted for the same covariates 

mentioned above as with our non-linear model. We also tested various lag effects of PM2.5 

concentrations. The correlations of independent variables are shown in Table S1.

We then conducted stratified analyses by sex, age groups, smoking status, and drinking 

status. We used the following formula(Di et al., 2017) to determine whether the risk 

estimates of PM2.5 in subgroup a versus subgroup b were statistically different (H0: βa = 

βb):

Z =
βa − βb

se βa
2 + se βb

2

As sensitivity analyses, we removed the covariates one-by-one from the main analysis model 

to determine the stability of our model. Furthermore, we replaced smoking and drinking 

status (ever vs never) in the main analysis model with current smoking and drinking status. 

To determine whether fruit intake is a potential confounder, we added the intake of fruit to 

the main analysis model (Du et al., 2017). In addition, we introduced temperature and 

humidity into the main analysis model. Finally, we used a linear regression model instead of 

a linear mixed model to determine the change in the effect estimate without adjusting for the 

random effects. In the linear regression model, we removed the random effect of participants 

from the main analysis model, and changed the random effect of the county to a fixed effect, 

keeping all other covariates identical to that of the main analysis model.
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Results

The ages of the participants ranged from 65 to 112 years. Almost half of the participants 

were women (52.6%), and more than half had not received education in school (53.1%). 

Most of the participants lived in rural areas (82.9%) (Table 1). The 3-year average PM2.5 

concentration ranged from 11 to 82 μg/m3 with a median concentration of 56 μg/m3; the 

interquartile range of PM2.5 exposure was 27 μg/m3. The PM2.5 exposure of participants in 

the baseline survey in each county is shown in Figure 1. The participants with the highest 

exposure resided in Laizhou County, Shandong Province, and the lowest exposure was in 

Chengmai, Hainan Province.

Table 2 shows the variation in estimated fasting blood glucose levels with each 10 μg/m3 

increase in annual PM2.5 exposure. An increase of 10 μg/m3 in previous 3 years average 

exposure to PM2.5 was associated with a blood glucose increase of 0.146 mmol/L (95% 

confidence interval [CI]: 0.045, 0.248) in the main analysis for all participants. For 

participants with an increase in annual exposure of PM2.5, subgroups analyses showed 

significant differences among those with and without diabetes, age ≥ 85, without regular 

exercise, never smoking or never drinking. The subgroup with diabetes had a higher 

estimated increase in fasting blood glucose levels than the subgroup without diabetes 

(Z=1.99, P=0.047). Details comparing estimated value between subgroups are shown in 

Table S3. After conducting relevant sensitivity analyses (changing the covariates and 

estimation approach), the estimated effects were stable (Table 3), suggesting that our models 

were robust.

Discussion

To the best of our knowledge, this is the first multi-center longitudinal study focused on the 

association between fasting blood glucose levels and long-term PM2.5 exposure. We 

observed an increase in fasting blood glucose level in the elderly population exposed long-

term to PM2.5. Furthermore, elderly participants with diabetes were more likely to have 

increased fasting blood glucose levels under high exposure to PM2.5.

A few studies have explored the relationship between long-term PM2.5 exposure and fasting 

blood glucose concentrations, and most of the studies have been cross-sectional. In a survey 

conducted in southern Germany with 2944 participants. Wolf et al.(Wolf et al., 2017) found 

no statistically significant association of PM2.5 exposure and fasting blood glucose 

concentrations in the entire population (β=0.308 mmol/L; 95%CI: 0, 0.634). Studies have 

also been conducted in China. For example, Lu et al.(Lu et al., 2017) observed a significant 

association (β=0.305mmol/L; 95%CI: 0.22, 0.39) between blood glucose level and PM2.5 

exposure in 3288 pregnant women with an increment of 10 μg/m3. Chuang et al.(Chuang et 

al., 2011) found positive results in 1023 elderly individuals, and estimated an increase of 

0.994 mmol/L (95%CI: 0.522, 1.466) in glucose per 10 μg/m3 PM2.5. In mainland China, 

Liu et al. (Liu et al., 2016) performed a nation-wide baseline survey with 11847 participants, 

revealing an increase of 0.063 mmol/L (95%CI: 0.049, 0.078) in glucose in type 2 diabetes 

patients exposed to PM2.5. A cross-sectional study with 15477 participants in 33 

communities in Liaoning province in Northeastern China by Yang et al. (Yang et al., 2018) 
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revealed an increase of 0.031 mmol/L (95%CI: 0.015, 0.046) in glucose per 10 μg/m3 PM2.5 

exposure in participants aged 18–74(Yang et al., 2018). Our results differed from those of 

cross-sectional studies. In addition to different study designs, the differences may have been 

due to the different study populations; Wolf et al.(Wolf et al., 2017) focused on the entire 

population, Lu et al.(Lu et al., 2017) focused on women at midterm pregnancy, and Yang et 
al.(Yang et al., 2018) studied adults 50 years or older. In addition, because with the eight 

study counties spread in China our study evaluated a wider range of annual PM2.5 exposure 

than previous studies, the dose-response relationship derived from our study has wider 

applicability, and yielded results related to high concentration exposure levels not seen in 

previous studies.(Lu et al., 2017; Wolf et al., 2017)

Fasting blood glucose of the elderly with diabetes were increased more than that of the 

elderly without diabetes. It may be caused by the weaker glycemic regulation of diabetics, 

and it is potentially more difficult to resist the harmful effects of PM2.5 pollution. The 

increase in fasting glucose level in the oldest population may be caused by oxidative stress, 

systemic inflammation, alterations in insulin signaling and β-cell function deficiency (Liu et 

al., 2019), and oxidative stress was suggested as the key factor among the mechanisms(Lim 

and Thurston, 2019).

The covariate selection methods used in air pollution and health not only include traditional 

criteria such as Akaike’s Information Criteria (AIC), Bayesian information criterion (BIC)

(Jones, 2011) and least absolute shrinkage and selection operator (LASSO) (Zhang et al., 

2017), but also references existing literature(Li et al., 2018a). Covariate selection is often 

done by the reviewing of relevant published studies, such as a study of long-term PM2.5 

exposure and diabetes(Liang et al., 2019), and a study using mixed effects models in 

exploring the association between PM2.5 exposure and fasting blood glucose(Lucht et al., 

2018).

This study had several strengths. First, our longitudinal design provides stronger causal 

validation than cross-sectional studies. Second, we conducted subgroup analyses to assess 

vulnerable populations such as participants with diabetes. These analyses facilitate 

development of more targeted preventative measures. However, this study had several 

limitations. First, information on medication intake was not collected in the cohort. Since 

only 32 participants reported suffering from diabetes, the awareness of diabetes was 

extremely low (about one fifth) in our study; it is reasonable to assume that most diabetic 

participants did not take prescribed drugs to regulate blood glucose, possibly because the 

study area was remote and almost all of the participants were illiterate. Furthermore, we 

have conducted subgroup analysis about participants with or without diabetes, and the 

results showed both significant association between PM2.5 and fasting blood glucose in the 

two subgroups. Second, we used the estimated ambient PM2.5 concentration instead of 

individual exposure to PM2.5; thus, actual PM2.5 exposure may have differed from the 

ambient concentration(Zhou et al., 2018). Third, due to the low education status of our old 

age participants and most of them living in the rural areas, the generalization of our study 

participants is limited. Fourth, without controlling for district-level social economic status 

(SES), it may result the potential residual confounding. Nonetheless, we have controlled for 
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county as a random effect in our main model, which controls for a portion of potential 

spatial confounding.

Conclusions

This study adds significant evidence on the increase of fasting blood glucose level with long-

term PM2.5 exposure within the elderly population. Elderly individuals with diabetes are 

more likely to experience an increase in fasting blood glucose levels with high PM2.5 

exposure. The results suggested that elderly individuals, especially those with diabetes, 

should take protection measures during high PM2.5 polluted periods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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High Lights

• A longitudinal study was conducted in eight Chinese counties.

• Long-term PM2.5 exposure was associated with an increase in fasting blood 

glucose.

• Elderly individuals with diabetes were more vulnerable to high exposure of 

PM2.5.
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Figure 1. 
Map of the median of PM2.5 concentration in eight counties
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Figure 2. 
Increase of glucose concentration (mmol/L) associated with increase of previous 3 years 

average PM2.5 exposure (compared with the minimum concentration of PM2.5 exposure)
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Table 1.

Characteristics of the study population and PM2.5 concentration

Variables Value

Total 1449

Age (mean±SD) 83±12

Sex

  Men (n) 687

  Women (n) 762

Education in Years (n, median(Q1-Q3)) 0(0-4)

BMI(kg/m2, mean±SD) 21.4±13.2

County

  Chengmai, Hainan Province (n) 84

  Sanshui, Guangdong Province (n) 123

  Yongfu, Guangxi Province (n) 98

  Mayang, Hunan Province (n) 97

  Rudong, Jiangsu Province (n) 177

  Zhongxiang, Hubei Province (n) 214

  Xiayi, Henan Province (n) 417

  Laizhou, Shandong Province (n) 239

Smoking status

  Current smoker (n) 296

  Former smoker (n) 413

Drinking status

  Current drinker(n) 285

  Former drinker (n) 350

Residence

  Rural (n) 1201

Exercise status

  Exercises regularly (n) 279

Diabetes

  Prevalence (%) 10.1

  Fasting glucose (mmol/L, mean±SD) 5.11±1.82

PM2·5 (μg/L, median (Q1-Q3)) 56 (43-70)
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Table 2.

Changes in fasting blood glucose levels (mmol/L) associated with a 10μg/m3 increase of PM2.5; exposure

Groups Lag1
a

Lag1-2
a

Lag1-3
a

Total 0.096(0.027,0.164) * 0.109(0.023,0.195) * 0.146(0.045,0.248) *

Diabetes Status Non-diabetic 0.064(0.022,0.107) * 0.079(0.028,0.130) * 0.111(0.052,0.170) *

Diabetic 0.437(0.121,0.753) * 0.494(0.123,0.865) * 0.542(0.121,0.962) *

Sex Men 0.073(−0.022,0.167) 0.095(−0.022,0.212) 0.127(−0.009,0.262)

Women 0.074(−0.013,0.161) 0.046(−0.055,0.148) 0.060(−0.057,0.177)

Age <75 0.010(−0.084,0.103) 0.010(−0.102,0.122) 0.006(−0.120,0.132)

75 to 84 0.033(−0.130,0.196) 0.085(−0.122,0.292) 0.196(−0.057,0.448)

≥85 0.041(−0.052,0.134) 0.082(−0.038,0.203) 0.147(0.000,0.294) *

Exercise status Exercise −0.018(−0.208,0.173) −0.039(−0.259,0.182) −0.018(−0.269,0.234)

No-exercise 0.086(0.022,0.149) * 0.096(0.017,0.174) * 0.128(0.036,0.220) *

Smoking status Never-smoke 0.127(0.045,0.209) * 0.156(0.055,0.258) * 0.191(0.073,0.310) *

Smoker 0.064(−0.043,0.171) 0.049(−0.081,0.18) 0.070(−0.079,0.218)

Drinking status Never-drink 0.109(0.025,0.193) * 0.134(0.029,0.240) * 0.176(0.050,0.301) *

Drinker 0.024(−0.062,0.109) 0.005(−0.092,0.103) 0.011(−0.096,0.119)

a:
Lag 1 is previous year average of PM2.5 exposure; Lag 1-2 is previous year to 2-year average of PM2.5 exposure; Lag 1-3 is previous year to 3-

year average of PM2.5 exposure;

*:
P<0.05

Sci Total Environ. Author manuscript; available in PMC 2021 May 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 15

Table 3.

Results of the sensitivity analyses for a 10μg/m3 increase in previous 3 years average of PM2.5 exposure 

(lag1-3)

No. Model* B (95%CI)[mmol/L]

Model 1 Main analysis 0.146 (0.045,0.248)

Model 2 Main analysis excluding age variable 0.148 (0.047,0.250)

Model 3 Main analysis excluding sex variable 0.151 (0.049,0.253)

Model 4 Main analysis excluding smoking status 0.148 (0.047,0.250)

Model 5 Main analysis excluding drinking status 0.146 (0.044,0.248)

Model 6 Main analysis excluding marital status 0.148 (0.047,0.249)

Model 7 Main analysis excluding income 0.141 (0.040,0.242)

Model 8 Main analysis excluding education years −0.053 (−0.136,0.030)

Model 9 Main analysis excluding exercise status 0.149 (0.046,0.252)

Model 10 Main analysis excluding staple food intake 0.151 (0.050,0.252)

Model 11 Main analysis excluding residence 0.135 (0.037,0.233)

Model 12 Main analysis excluding BMI 0.146 (0.045,0.247)

Model 13 Current smoking and drinking status 0.144 (0.042,0.246)

Model 14 Adding the intake of fruit 0.144 (0.043,0.246)

Model 15 Adding temperature and humidity 0.260(0.144,0.375)

Model 16 Linear regression model 0.216 (0.112,0.319)

*
In the main analysis we controlled for age, sex, marital status, education years, family income, residence, smoking and drinking status, exercise 

status, staple food intake, and BMI as the fixed effect. In the linear regression model, we excluded the random effects of individual from the main 
analysis, and changed the county as the fixed effect; other covariates were as the same as the main analysis.
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