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Introduction: the Erythron

Recently, the red blood cell (RBC) series, from progenitor cells to mature erythrocytes, has, 

collectively, been termed the Erythron. The erythron comprises RBCs at all stages of 

development and is the organ (primarily composed of anucleated cells in suspension) 

responsible for oxygen (O2) transport from lungs to tissue1. This role is newly appreciated to 

include active (by RBCs) vasoregulation that links regional blood flow to O2 availability in 

the lung and to consumption in the periphery2. A considerable portion of our nutritional and 

energy budget is devoted to maintaining a robust RBC population (20–30 trillion cells 

circulate in the average adult - approximately 85% of the cells in the body are RBCs.); 1.4 

million RBCs are released into the circulation per second, replacing ~ 1% of the circulating 

mass per day. Mature RBCs have a life span of ~ 4 months, the majority of which is spent 

traversing the microcirculation. It is estimated that RBCs travel approximately 400 km 

during this interval, having made 170,000 circuits through the vascular tree. Circulating 

RBCs demonstrate unique physiology and are adapted to withstand significant 

biomechanical and biochemical stress. As RBCs age, energy and antioxidant systems fail; 

key proteins (including hemoglobin (Hb) and lipids) suffer oxidative injury, negatively 

impacting performance (rheology, adhesion, gas transport, vascular signaling). Such cells 

acquire marks of senescence and are cleared by the spleen or undergo eryptosis (a process 

unique to RBCs, similar to apoptosis). Of importance, this process may be accelerated in the 

course of critical illness and thereby, by limiting O2 delivery, influence organ failure 

progression and outcome.
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Moreover, it is essential to note that in the setting of insufficient O2 delivery, blood flow 

(rather than content) is the focus of O2 delivery regulation: O2 content is relatively fixed, 

whereas flow is modulated by several orders of magnitude. Thus, blood flow volume and 

distribution are the physiologic parameters most actively regulated to maintain coupling 

between O2 delivery and demand. Specifically, the trapping, processing and delivery of nitric 

oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood 

flow is linked to biochemical cues of perfusion sufficiency. By coordinating vascular 

signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood 

flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array 

of pathophysiologies and may be explanatory in part for the dysoxia frequently encountered 

in the critical care setting.

Capture and Release of Oxygen by RBCs

Hemoglobin (Hb) is formed of 2 α and 2 β polypeptide chains each carrying a heme 

prosthetic group, comprised of a porphyrin ring bearing a ferrous atom that can reversibly 

bind an oxygen (O2) molecule. In the deoxygenated state, the Hb tetramer is electrostatically 

held in a tense (T) conformation. Binding of the first O2 molecule leads to mechanical 

disruption of these bonds, an increase in free energy and transition to the relaxed (R) 

conformation. Each successive O2 captured by T-state Hb shifts the Hb tetramer closer to the 

R state, which has an estimated 500-fold increase in O2 affinity3. This concept of 

thermodynamically coupled “cooperativity” in O2 binding was first described by Bohr4 and 

explains the sigmoidal appearance of the O2-Hb binding curve, also known as the oxy-

Hemoglobin dissociation curve (ODC) (Figure 1). Moreover, understanding of allosteric 

influence of protein function by ‘heterotropic effectors’ (e.g. For Hb, O2, which binds to the 

‘active’ site (heme) is the homotropic ligand and all other molecules influencing the Hb~O2 

binding relationship are termed heterotropic effectors.) was first achieved following 

description of the variation in Hb~O2 affinity5. In addition to the homotropic effects of 

ligand binding on quaternary conformational changes (e.g. cooperativity), primary ligand 

binding affinity (O2) is also affected by multiple heterotropic effectors of significant 

physiologic relevance. The major heterotropic effectors that influence Hb O2 affinity are 

hydrogen ion (H+), chloride ion (Cl−), carbon dioxide (CO2) and 2,3-diphosphoglycerate 

(DPG)3.

P50, the oxygen tension at which 50% of Hb binding sites are saturated, is used as a standard 

means to quantify change in Hb~O2 affinity and is inversely related to the binding affinity of 

Hb for O2
6. Elevated levels of H+, Cl− and CO2 reduce O2 binding affinity (e.g. raise P50). 

This allosteric shift in O2 affinity, called the Bohr effect7, arises from the interactions among 

the above heterotropic effectors bound to different sites on hemoglobin – all of which serve 

to stabilize the low energy, low affinity, T-state Hb conformation8. This effect is achieved by 

complex interactions amongst carbonic anhydrase (CA) and the B3 membrane protein (also 

known as anion exchange protein 1, AE1). Specifically, CA generates H+ and HCO3
− from 

CO2 encountered in the microcirculation; HCO3
− then exchanges for Cl− across the RBC 

membrane through AE1. As a consequence, extra erythrocytic CO2 is converted into intra-

erythrocytic HCl by the CA-AE1 complex, thus acidifying RBC cytoplasm and raising p50 

(lowering affinity, also termed ‘right’ shifting the ODC). Additionally, through the Haldane 
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effect, CO2 more directly lowers O2 affinity (by binding to the N-terminus of the globin 

chains to form a carbamino, further stabilizing T-state Hb); carbamino formation also 

releases another hydrogen ion (further reinforcing the ‘right shift’ in ODC)3 (Figure 2). This 

set of reactions is reversed in the alkaline (and low CO2) milieu in the pulmonary 

circulation, leading to increased Hb~O2 binding affinity (lower P50). In sum, this physiology 

vastly improves O2 transport efficiency by enhancing gas capture in the lung and release to 

tissue – and does so in proportion to perfusion sufficiency (in the setting of perfusion lack, 

acidosis and hypercpanea improve O2 release). Of note, this tightly regulated modulation of 

O2 affinity may become impaired in the setting of critical illness9–12 and may, in part 

explain the dysoxia commonly observed in this setting.

Less acute modulation of P50 is achieved by DPG, a glycolytic intermediate that binds in an 

electrically charged pocket between the β chains of hemoglobin, which stabilizes the T 

conformation, decreasing O2 affinity and elevating P50. DPG binding also releases protons, 

lowering intracellular pH and further reinforcing the Bohr effect. DPG in RBCs increases 

whenever O2 availability is diminished (as in hypoxia or anemia) or when glycolytic flux is 

stimulated13. Lastly, temperature significantly influences Hb~O2 affinity. As body 

temperature increases, affinity lessens (P50 increases, ODC shifts right); the reverse happens 

in hypothermia. This feature is of physiological importance during heavy exercise, fever or 

induced hypothermia. It should be noted that clinical co-oximetry results and blood gas 

values are reported at 37°C and not at true in vivo temperature and can lead to either under 

or over estimation of true HbSO2% values and blood O2 tension14.

RBC Biophysical factors Influencing tissue perfusion

Blood Rheology

Disease-based variation in blood fluidity has been recognized since the early 20th century15 

and there is substantive evidence that this property strongly influences tissue perfusion16. 

Plasma is a newtonian fluid (viscosity is independent of shear rate); its viscosity is closely 

related to protein content and in critical illness, physiologically significant changes in 

viscosity may vary with concentration of acute phase reactants. Whole blood, however, is 

considered a non-newtonian suspension (fluidity cannot be described by a single viscosity 

value); whole blood fluidity is determined by combined rheological properties of plasma and 

the cellular components.

The cellular components of blood, particularly RBCs, influence blood viscosity as a function 

of both number and deformability. RBC concentration in plasma (hematocrit) has an 

exponential relationship with viscosity and meaningfully diminishing tissue perfusion when 

Hct exceeds ~ 60–65. RBC deformability, or behavior under shear stress, also strongly 

influences blood fluidity. Normal RBCs behave like fluid drops under most conditions, are 

highly deformable under shear and orient with flow streamlines. However, during 

inflammatory stress, RBC tend to aggregate into linear arrays like a stack of coins 

(rouleaux); fibrinogen and other acute phase reactants in plasma stabilize such aggregates, 

significantly increasing blood viscosity. Such a change in viscosity most impacts O2 delivery 

during low flow (e.g. low shear) states (such as in critical illness) in the microcirculation17. 

RBC biomechanics and aggregation impact blood viscosity, strongly influencing the volume 
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and distribution of O2 delivery (again more so, in the low-shear microcirculation, or when 

vessel tone is abnormal)18. This hemorheologic physiology is perturbed by oxidative stress 

(common in critical illness)19 and in sepsis20. This has been attributed to increased 

intracellular 2,3-DPG concentration21, intracellular free Ca2+22 and decreased intra-

erythrocytic ATP with subsequent decreased sialic acid content in RBC membranes23. Both 

increased direct contact between RBCs and WBCs and reactive oxygen species released 

during sepsis have also been shown to alter RBC membrane properties24.

RBC aggregation and adhesion

As noted above, in the absence of shear, RBCs suspended in autologous plasma stack in 

large aggregates, known as rouleaux. Acute phase reactants especially fibrinogen, C-reactive 

protein, serum amyloid A, haptoglobin and ceruloplasmin have been shown to increase RBC 

aggregation25. Pathophysiological conditions as sepsis and ischemia-reperfusion injury have 

been shown to alter RBC surface proteins and increase RBC “aggregability”19. Activated 

white blood cells (WBC) are also thought to cause structural changes in the RBC glycocalyx 

and increase RBC aggregability26.

Under normal conditions, RBC adherence to endothelial cells (EC) is insignificant and RBC 

deformability permits efficient passage through the microcirculation. Again, under normal 

conditions, enhanced EC adherence plays a role in the removal of senescent RBCs in the 

spleen. However, during critical illness, RBC~endothelial interactions are altered by RBC 

injuries associated with sepsis27,28 and/or oxidative stress19. This is more prominent, with 

‘activated’ endothelium, as frequently occurs in critical illness)29,30.

Such RBC~endothelial aggregates create a physiologically significant increase in apparent 

blood viscosity18. Moreover, RBC adhesion directly damages the endothelium31,32 and 

augments leukocyte adhesion33–35 further impairing apparent viscosity and microcirculatory 

flow. This phenomenon is commonly appreciated in the pathophysiology of vaso-occlusive 

crises in sickle cell disease patients, malaria, diabetic vasculopathy, polycythemia vera and 

central retinal vein thrombosis, but may be more widespread than originally appreciated.

RBC Deformability

Tissue deformation can be defined as the relative displacement of specific points within a 

cell or structure. Mature RBCs are biconcave disks ranging from 2–8 μm in thickness, which 

act like droplets that deform reversibly under the shear encountered during circulatory 

transit18. Unique RBC geometry and deformability arises from (a) cytoplasmic viscosity and 

(b) specific interactions between the plasma membrane and underlying protein skeleton23 

(Figure 3). Cytoplasmic viscosity is mainly determined by hemoglobin concentration, which 

varies with intra-erythrocytic hydration, which is actively regulated by ATP-dependent 

cation pumps36. The integral transmembrane membrane proteins AE-1 (AKA B3) and 

glycophorins are reversibly anchored to a submembrane filamentous protein mesh 

comprised of spectrin, actin, and protein 4.1. Linear extensibility of this mesh defines the 

limits of RBC deformability37. Maintenance of membrane-mesh interactions and robust 

RBC mechanical behavior is dependent on ATP-dependent ion pumps as well as support 

from NADPH-dependent antioxidant systems36. The sole energy source in RBCs is 
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anaerobic glycolysis, which is discussed in detail below. RBC geometric and mechanical 

alterations secondary to impaired metabolism (leading to RBC dehydration, elevated intra-

erythrocytic calcium and ATP/NADPH depletion) is a well-described consequence in blood 

stored for prolonged periods38 and in RBCs subjected to significant metabolic stress during 

critical illness39,40.

Regulation of Blood Flow Distribution by RBCs

Microcirculatory blood flow is physiologically regulated to instantaneously match O2 

delivery to metabolic demand. This extraordinarily sensitive programmed response to tissue 

hypo-perfusion is termed hypoxic vasodilation (HVD)41. This process involves the detection 

of point-to-point variations in arteriolar O2 content42 with the subsequent initiation of 

signaling mechanism(s) capable of immediate modulation of vascular tone (Figure 4).

Over 30 years ago, intracellular RBC Hb was identified as a potential circulating O2 sensor, 

following identification that in severe hypoxia, O2 content was more important than partial 

pressure of O2 (PO2) in the maintenance of regional O2 supply43. It was later demonstrated 

in vivo that Hb O2 saturation (HbSO2) was independent of plasma or tissue PO2, but was 

directly correlated with blood flow44. These findings implicated a role for RBCs in the 

regulation of O2 supply, given the following evidence: (1) the Hb molecule within the RBC 

is the only component in the O2 transport pathway directly influenced by O2 content, and (2) 

the level of O2 content of the RBC at a particular point in the circulation is linked to the 

level of O2 utilization45.

With the vascular O2 sensor identified, the mechanism involved in mediating the vasoactive 

response has remained in debate. To date, three HbSO2 dependent RBC derived signaling 

mechanisms have been proposed, the first two linked to the vasoactive effector NO, and the 

third to RBC adenosine triphosphate (ATP) : (1) formation and export of S-nitrosothiols, 

‘catalyzed’ by Hb (SNOHb hypothesis)46–48; (2) reduction of nitrite (NO2
−) to NO by 

deoxygenated Hb (nitrite hypothesis)49; and (3) hypoxia responsive release of ATP (ATP 

hypothesis)45,50. Each of these hypotheses will be addressed further, below.

Role of RBC~NO interactions in vasoregulation

Interest in the free radical NO began with the identification of EDRF (endothelium derived 

relaxing factor), first reported in 198051, which resolved the apparent paradox as to why 

acetylcholine, an agent known to be a vasodilator in vivo often caused vasoconstriction in 
vitro. Experiments performed with dissected segments of rabbit thoracic aorta mounted on a 

force transducer, demonstrated that handling of the tissue in a fashion that preserved 

endothelium always resulted in acetylcholine having relaxant properties. However, removal 

of the endothelium eradicated this action51,52. Identification of EDRF consequently led to a 

race to discover its chemical identity. It was not until seven years later that two groups 

simultaneously published definitive studies characterizing and identifying EDRF as NO53,54. 

However, the means by which NO exerted its physiological effects remained unknown and 

effort focused upon identifying the “NO receptor(s)”. This effort characterized the ‘classical’ 

signaling pathway for NO via soluble guanylate cyclase (sGC) and cyclic guanosine 3’,5’-

monophosphate (cGMP) that appeared to clarify the means by which NO achieves its 
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myriad effects55. Over time, however, it is now appreciated that this pathway has little to do 

with the vasoregulation that governs regional blood flow distribution.

In terms of the HVD response (which underlies blood flow regulation) it is essential to 

appreciate that endothelium-derived NO plays no direct role in this reflex44,56. Because of 

O2 substrate limitation, NO production by eNOS is most likely attenuated by hypoxia57,58. 

In fact, NO derived from eNOS46 (and perhaps other NOS isoforms59 and/or nitrite60) is 

taken up by RBCs, transported, and subsequently dispensed in proportion to regional O2 

gradients to effect HVD at a time and place remote from the original site of NO synthesis. 

This key process enables RBCs to instantaneously modulate vascular tone in concert with 

cues of perfusion insufficiency, including hypoxia, hypercarbia, and acidosis46,47.

Metabolism of endothelium derived NO by RBCs – Historical view

In the original NO paradigm, NO derived from endothelial nitric oxide synthase (eNOS) was 

felt to play a purely paracrine role in the circulation, acting within the vicinity of its 

release61. Its metabolic fate was explained by the diffusion of the “gas” in solution and its 

terminal reactions (1) in vascular smooth muscle cells with the ferrous heme iron (Fe2+) of 

soluble guanylate cyclase (sGC)62, and (2) in the vessel lumen, with the heme group (Fe2+) 

of oxyHb (the resultant oxidation reaction forming MetHb and nitrate), or deoxyHb (the 

resultant addition reaction forming iron nitrosyl Hb; HbNO), or in plasma with dissolved O2 

(the resultant autoxidation reaction)63, and/or O2 derived free radicals including superoxide 

(O2
−), hydrogen peroxide (H2O2), or hydroxyl radicals (OH−). Several “barriers” were 

presumed to retard NO diffusing into the blood vessel lumen to react avidly with the 

abundance of Hb, including the RBC membrane, the submembrane protein matrix, an 

unstirred layer around the RBC64,65, in addition to laminar blood flow66. These barriers 

were thought to limit these luminal reactions, thus allowing the local concentration of NO 

adjacent to endothelial cells to increase sufficiently to provide a diffusional gradient for NO 

to activate the underlying vascular smooth muscle sGC. Reactions of NO in the bloodstream 

were assumed only to scavenge/inactivate NO via the formation of metabolites unable to 

activate sGC62.

Metabolism of endothelium derived NO by RBCs – Modern view

A much broader biological chemistry of endothelial NO has been elucidated67–69. Most 

notable is the covalent binding of NO+ to cysteine thiols, forming S-nitrosothiols (SNO). 

This paradigm developed following the discovery that endogenously produced NO 

circulated in human plasma primarily complexed to the protein albumin (S-

nitrosoalbumin70), which transformed the understanding of blood borne NO signaling. SNO 

proteins thus offered a means to conserve NO bioactivity, allowing the storage, transport, 

and potential release of NO remote from its location of synthesis71. The SNO hypothesis 

was extended to include a reactive thiol of Hb (Cysß93) that was demonstrated to undergo S-

nitrosylation and sustain bioactivity under oxygenated conditions and NO release under low 

O2 conditions (see HbSNO hypothesis)46.

In this SNO paradigm, the NO radical must be oxidized to an NO+ (nitrosonium) equivalent, 

which can then be passed between thiols in peptides and proteins preserving NO 
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bioactivity67,68. S-nitrosylation then is akin to protein phosphorylation in terms of regulating 

protein function. SNO biochemistry offers NO a far broader signaling repertoire and has 

enabled awareness that the heme in sGC is not the sole, or even the principal, target of NO 

generated by endothelium. A wide array of alternative sGC (cyclic guanosine 

monophosphate)-independent reactions following endothelial NOS (eNOS) activation have 

been identified69,72.

Processing and export of S-nitrosothiols by RBCs

Hb S-nitrosylation (HbSNO), which has been characterized by both mass spectrometry73 

and X-ray crystallography74, provides an explanation as to how NO circumvents terminal 

reactions with Hb, enabling RBCs to conserve NO bioactivity and transport it throughout the 

circulation46,47 (Figure 5). The formation and export of NO groups by Hb is governed by the 

transition in Hb conformation that occurs in the course of O2 loading/unloading during 

arterio-venous (A-V) transit. This is due to conformational dependent change in reactivity of 

the Cysβ93 residue toward NO, which is higher in the R (oxygenated) Hb state and lower in 

the T (deoxygenated) Hb state46,47.

In a tightly regulated fashion, Hb captures and binds NO at its β-hemes and then passes the 

NO group from the heme to a thiol (Cys-ß93-SNO)60,75. Transfer of NO between heme and 

thiol requires heme-redox coupled activation of the NO group, which is controlled by its 

allosteric transition across the lung76. Once in R state the Cys-ß93-SNO is protected through 

confinement to a hydrophobic pocket74. NO group export from Cys-β93-SNO occurs when 

steep O2 gradients are encountered in the periphery (HVD). The R to T state conformational 

transition that occurs on Cys-β93-SNO deoxygenation (or oxidation) results in a shift in the 

location of the β-chain from its hydrophobic niche toward the aqueous cytoplasmic 

solvent74. This allows the Cys-β93-SNO to be “chemically available” for transfer to target 

thiol containing proteins, including those associated with the RBC membrane protein AE-1 

(Band 3)77 and extra-erythrocytic thiols78,79. Resultant plasma or other cellular SNOs, then 

become vasoactive at low nM concentrations)46,47. Importantly all NO transfers in this 

process involve NO+ 46,48, which protects bioactivity from Fe2+ heme recapture and/or 

inactivation. S-nitrosothiols are the only known endogenous NO compounds that retain 

bioactivity in the presence of Hb46,79,80.

Extensive evidence supports SNO-Hb biology, whereby RBCs exert graded vasodilator and 

vasoconstrictor responses across the physiological microcirculatory O2 gradient. RBCs 

dilate pre-constricted aortic rings at low PO2 (1% O2), while constricting at high PO2 (95% 

O2)47,80–82. The vasodilatory response at low O2 is enhanced following the addition of NO 

(or SNO) to RBCs, commensurate with SNO-Hb formation46,77,80,83. Additionally, the 

vasodilatory response is enhanced in the presence of extra cellular free thiol80, occurs in the 

absence of endothelium48,80 (which is consistent with in vivo observation that HVD is 

endothelium independent84), and transpires in the time frame of circulatory transit, as 

confirmed by measurements of A-V gradients in SNO-Hb46,78,81,82.

In addition to these ex vivo experiments, numerous groups have also demonstrated 

bioactivity of inhaled NO, commensurate with SNO-Hb formation85–89.
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Metabolism of Nitrite by RBCs

Nitrite (NO2
−), formed mainly via hydration reactions involving N-oxides, was long viewed 

as an inactive oxidation product of NO metabolism. More recently it has been proposed as 

circulating pool of bioactive NO90. Some have suggested that the reduction of nitrite by 

deoxyHb may serve as the RBC derived signaling mechanism regulating HVD91. However, 

this hypothesis has two major shortcomings in terms of known NO chemistry/biochemistry 

and HVD physiology. Firstly, to influence vascular tone, the NO radical produced from 

NO2
− must escape RBCs at low O2 tension in order to elicit a vasodilatory response. 

Experimental evidence, however, unambiguously refutes the possibility of NO escaping 

RBCs as an authentic radical, especially given the proximity, high concentration, and rapid 

reaction kinetics (107M−1s−1) of authentic NO with deoxyHb. The only plausible 

reconciliation of this would be that bioactivity from this reaction may derive from heme 

captured NO (HbFe2+NO) being further converted into SNO-Hb60,75, as HbFe2+NO itself 

acts as a vasoconstrictor rather than vasodilator92. The second shortcoming relates to the fact 

that the NO2
− reductase activity of deoxyHb is purportedly symmetrical across the 

physiological O2 gradient93,94, with maximal activity occurring at the P50 of Hb (~ 27 

mmHg)93,95. This reaction profile does not match the HVD response, which increases in a 

steadily graded fashion as PO2 falls in the physiological range from 100 mmHg down to 

approximately 5 mmHg (HbSO2 ~ 1–2%)41,44. If RBC based vasoactivity were maximal at 

Hb’s P50, then blood flow would be diverted away from regions with PO2 below 27 mmHg, 

where it would be needed most. Additionally, based upon the symmetry of Hb nitrite 

reductase activity at the P50, RBCs traversing vascular beds with PO2 at 25 or 75 would 

generate equal NO-based activity91, where different blood flow demands are required.

Vasoregulation by RBC-derived Adenosine Triphosphate (ATP)

ATP has long been known to act as an endothelium dependent vasodilator in humans45, 

binding to P2Y purinergic receptors to induce local and conducted vasodilation via 

stimulation of vasoactive signals including endothelial NO, prostaglandins, and endothelial-

derived hyperpolarization factors (EDHFs). More recently, RBCs have been identified as 

sources of vascular ATP45,96, with release stimulated by conditions associated with 

diminished O2 supply relative to demand,, hypoxia, hypercapnia, and low pH45,97. O2 

offloading from membrane associated Hb is thought to initiate RBC ATP release96, 

stimulating heterotrimeric G protein98, as a result of membrane deformation. This leads to 

activation of adenylyl cyclase and an increase in cAMP99, which activates protein kinase A 

(PKA)99. PKA stimulates cystic fibrosis transmembrane conductance regulator (CFTR)100, 

which activates release of ATP from the RBC via pannexin 1101. Release of ATP via this 

pathway requires an increase in intracellular cAMP, which is controlled by the relative 

activities of adenylyl cyclase and phosphodiesterase 3 (PDE3B)50.

Despite potential as a HVD mediator, RBC derived ATP falls short on two fronts. Firstly, 

HVD is unaltered by both endothelial denudation and eNOS deletion48, however ATP 

vasoactivity is endothelial dependent. Secondly, blood levels of ATP rise and fall over a 

period of minutes, which is not commensurate with the HVD response that occurs in the 

course of A-V transit over a couple of seconds. Despite its shortcomings in terms of acting 
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as a primary mediator of HVD, it is likely that Hb and ATP serve complementary vasoactive 

roles, in acute local and prolonged systemic hypoxia respectively48.

RBC Energetics and Consequences of Antioxidant System Failure

RBCs produce ATP by glycolysis only, with two branches:102 the Embden Meyerhof 

Pathway (EMP) and the Hexose Monophosphate Pathway (HMP).103 Importantly, the HMP 

is the sole means for recycling NADPH,104 which powers the thiol-based antioxidant 

system.104 HMP flux is gated by protein complex assembly upon the cytoplasmic domain of 

the Band 3 membrane protein (cdB3 ‘metabolon’).105–112 HMP flux oscillates with pO2, as 

a function of Hb conformation and cdB3 phosphorylation (Figure 6 A–B).113–119 Of note, 

RBC antioxidant systems fail when HMP flux is blunted by altered cdB3 protein assembly/

phosphorylation caused by aberrant Hbs or hypoxia.120,121 Strikingly similar perturbations 

to cdB3 are reported in sepsis,122,123 possibly arising from caspase 3 activation124–126 

and/or direct endotoxin or complement membrane binding127–134 (altering metabolon 

assembly, glycolysis and ROS clearance, Figure 2c).135–137 As such, it appears that that 

sepsis (particularly, in the setting of hypoxic and/or uremic/oxidative138–145 environments) 

disturbs cdB3-based metabolic control (Figure 6c), leading to: 1) EMP activation, 2) limited 

glucose-6-phosphate availability, 3) HMP flux constraint, 4) depowered NADPH/GSH 

recycling, 4) antioxidant system failure, and 5) injury to proteins/lipids that are key to O2 

delivery homeostasis (SiRD). This full pattern has been reported in other settings impacting 

protein assembly at cdB3;120,121 further, such HMP constraint has functional similarity to 

G6PD deficiency,120 which amplifies vulnerability to sepsis.146–148 Moreover, hypoxia 

critically limits RBC energetics and depowers RBC antioxidant systems149,150. In health, 

O2• abundance is tightly regulated by the superoxide dismutase (SOD) family;151 however, 

overwhelming O2• genesis152 is implicated in sepsis-associated injury cascades153,154 Of 

note, sepsis-associated O2• excess injures RBCs, impairing O2-delivery by altering: control 

of O2 affinity,9–12 NO processing,155–157 rheology,20,23,130,131,158–160 and adhesion.161,162 

O2• excess also disrupts vasoregulation via NO consumption and catecholamine inactivation 

in plasma.163–169 Specifically, ROS sourced directly to RBCs170–173 injure vessels.174,175 

Such reciprocal injuries mutually escalate and as such, the dysoxia characteristic of septic 

shock (ischemia despite adequate blood O2 content and cardiac output),176–179 may arise 

from SiRD ~ vascular interactions.27,28 Notably, ROS excess is also a common consequence 

of uremia/kidney injury138–145, particularly during sepsis180–186. As such, the combination 

of lung injury (hypoxia) and kidney injury (uremia) simultaneously constrain RBC 

energetics and antioxidant systems and present substantive oxidant loading conditions, 

meaningfully increasing RBC injury risk.

Acquired RBC Injury, Eryptosis and Clearance

After maturation to an anucleated cell furnished with the metabolic systems described 

above, the estimated normal life span of a mature RBC is 110–120 days187. To date, 

clearance of normal senescent RBC has not been clearly understood. Two mechanisms have 

been proposed, clustering of the band 3 (B3) membrane protein188–191 and externalization of 

membrane phosphatidyl serine (PS)192–195, both of these processes may be accelerated in 

the setting of critical illness, impairing oxygen transport capacity. Oxidatively modified 
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hemoglobin (Hb) forms hemichrome aggregates, which associate with the cytoplasmic 

domain of the abundant membrane protein B3. Subsequent clustering of B3 exofascial 

domains increases affinity of naturally occurring anti-B3 autoantibodies, which activate the 

complement system leading to RBC uptake and destruction by macrophages196. Normally, 

PS is asymmetrically distributed in the plasma membrane (a process regulated by flippases). 

Disruption of this pattern is a well-documented mark of RBC senescence192–195, signaling 

RBC removal by the reticulo-endothelial system195. Alternatively, RBCs may proceed 

through a form of ‘stimulated suicide’ similar to apoptosis (termed eryptosis), which is 

characterized by cell shrinkage and cell membrane scrambling, that is stimulated by Ca2+ 

entry through Ca2+−permeable, PGE2-activated cation channels, by ceramide, caspases, 

calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged 

activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). 

Eryptosis has been described in the setting of ethanol intoxication, malignancy, hepatic 

failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, 

phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle 

cell anemia, thalassemia, G6PD deficiency, and Wilson’s disease195,197,198.

Influence of RBCs on hemostasis

The principle impact of RBCs in clot formation in vivo is rheological, since RBC laminar 

shearing promotes platelet margination199, as well as RBC aggregation and deformability of 

RBCs, which also support clot assembly/retraction200. In addition, RBCs interact directly 

and indirectly with endothelial cells and platelets during thrombosis201. Both the stiffness of 

RBCs and the extent to which they form a procoagulant surface to generate thrombin 

through exposure of phosphatidylserine appear to play an important role, both in clot 

initiation and completion202,203. Moreover, RBC-derived MPs transfused with stored RBCs 

or formed in various pathological conditions associated with hemolysis have strong 

procoagulant potential along with prothrombotic effects of the extracellular hemoglobin and 

heme204. Additionally, RBCs directly interact with fibrin(ogen) and affect the structure, 

mechanical properties, and lytic resistance of clots and thrombi205. Finally, tessellated 

polyhedral RBCs (polyhedrocytes) are recognized to be a significant structural component 

of contracted clots, enabling the impermeable barrier important for hemostasis and wound 

healing206.

Summary: RBC Dysfunction disrupts of O2 delivery during critical illness

Evidence is mounting in support of a causal relationship between acquired RBC dysfunction 

and a host of perfusion-related morbidities that complicate critical illness82,171,207–221. 

Recently, it has been observed that levels of SNO-Hb are altered in several disease states 

characterized by disordered tissue oxygenation82,83,155,156,222–227. In addition, where 

examined, RBCs from such patients exhibit impaired vasodilatory 

capacity78,82,83,224,226–228. These data suggest that altered RBC-derived NO bioactivity may 

contribute to human pathophysiology. Specifically, alterations in thiol-based RBC NO 

metabolism have been reported in congestive heart failure82, diabetes83,223, pulmonary 

hypertension81,222 and sickle cell disease224,229, all of which are conditions characterized by 

inflammation, oxidative stress and dysfunctional vascular control. Moreover, known cross-
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talk between SNO signaling and cellular communication via carbon monoxide, serotonin, 

prostanoids, catecholamines and endothelin may permit broad dispersal of signals generated 

by dysfunctional RBCs. Precise understanding of the roles of dysregulated RBC-based NO 

transport in the spread of vasomotor dysfunction from stressed vascular beds may open 

novel therapeutic approaches to a range of pathologies.
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Synopsis

Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with 

critical illness, is a function of blood O2 content and flow. Here, we review red blood cell 

(RBC) physiology and dysfunction relevant to disordered O2 delivery in the critically ill. 

Flow (rather than content) is the focus of O2 delivery regulation: O2 content is relatively 

fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume 

and distribution vary to maintain coupling between O2 delivery and demand. The 

trapping, processing and delivery of vasoactive effectors (NO and ATP) by RBCs has 

emerged as a conserved mechanism through which regional blood flow is linked to 

biochemical cues of perfusion sufficiency. We will review conventional RBC physiology 

influencing O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 

delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. 

By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple 

vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling 

system is implicated in a wide array of pathophysiologies and may be explanatory for the 

dysoxia frequently encountered in the critical care setting.

Rogers and Doctor Page 23

Crit Care Clin. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key Points

• Together, all red blood cells (RBC) at each stage of development, may be 

considered an organ (termed the erythron) now appreciated to participate in 

active regulation of regional blood flow distribution as well as O2 and CO2 

transport.

• RBCs are subject to intense biochemical, biomechanical and physiologic 

stress during repeated circulatory transit and as such, possess unique 

properties and robust energetic and antioxidant systems to maintain 

functionality for a 3–4-month lifetime.

• RBCs actively regulate blood flow volume and distribution to maintain 

coupling between O2 delivery and demand. The trapping, processing and 

delivery of nitric oxide (NO) by RBCs has emerged as a conserved 

mechanism through which regional blood flow is linked to biochemical cues 

of perfusion sufficiency.

• A new paradigm for O2 delivery homeostasis has emerged, based on 

coordinated gas transport and vascular signaling by RBCs. By coordinating 

vascular signaling in a fashion that links O2 and nitric oxide (NO) flux, RBCs 

couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction 

of this signaling system is implicated in a wide array of pathophysiologies 

and may be in part explanatory for the dysoxia frequently encountered in the 

critical care setting.
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Figure 1. 
The normal whole blood oxygen equilibrium curve (OEC). P50 is the pO2 at which 

hemoglobin is half-saturated with O2. The principal effectors that alter the position and 

shape of the curve under physiological conditions are indicated.

From Winslow RM. The role of hemoglobin oxygen affinity in oxygen transport at high 

altitude. Respir Physiol Neurobiol 2007; 158:121–127; with permission.
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Figure 2. 
The quantitative behavior of the Carbaminohemoglobin (HbCO2) dissociation curves at 

various oxygen tension levels.

From Dash RK, Bassingthwaighte JB. Erratum to: Blood HbO2 and HbCO2 dissociation 

curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Annals of biomedical 

engineering 2010; 38:1683–1701; with permission.
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Figure 3. 
The RBC membrane is composed of a phospholipid membrane bilayer and transmembrane 

proteins including glycophorin A and Band 3 proteins. Glycophorin A is the major 

sialoglycoprotein of the RBC. Sialic acid (SA) bound to glycophorin A is responsible for the 

negative charge of the RBC membrane. The intracellular compartment (IC) is constituted by 

spectrin (α and β subunits), actin, protein 4.1, and ankyrin.

From: Piagnerelli M, et al. Red blood cell rheology in sepsis. Intensive Care Med. 2003; 

29(7):1052–1061; with permission.
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Figure 4. 
Local vascular reflexes support maintenance of O2 delivery to tissue in the setting of 

progressive hypoxia. In a classic paper41, Guyton demonstrated regional autoregulation of 

systemic blood flow in normal dogs (following spinal anesthesia) by observing variation in 

blood flow during constant pressure blood perfusion of the femoral artery, while reducing 

the hemoglobin oxygen saturation (Hb SO2%) from 100% to 0% in the perfusing blood. (A) 

Stepwise reduction in Hb SO2% caused a progressive increase in blood flow through the leg. 

(B) These data demonstrate that autoregulation of blood flow occurs at a local level and this 

regulation serves to improve oxygen supply when blood oxygen content falls. In addition, 

effects on blood flow were replicated by injecting partially deoxygenated versus oxygenated 

red blood cells into the artery, demonstrating that effects could be elicited during 

arteriovenous transit (<1 s).

From Ross JM, Fairchild HM, Weldy J, Guyton AC. Autoregulation of blood flow by 

oxygen lack. Am J Physiol. 1962;202:21–24; with permission.
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Figure 5. 
RBCs transduce regional O2 gradients in tissue to control nitric oxide (NO) bioactivity in 

plasma by trapping or delivering NO groups as a function of hemoglobin (Hb) O2 saturation. 

(A) In this fashion, circulating NO groups are processed by Hb into the highly vasoactive 

(thiol-based) NO congener, S-nitrosothiol (SNO). By exporting SNOs as a function of Hb 

deoxygenation, RBCs precisely dispense vasodilator bioactivity in direct proportion to 

regional blood flow lack. (B) O2 delivery homeostasis requires biochemical coupling of 

vessel tone to environmental cues that matches perfusion sufficiency to metabolic demand. 

Because oxy- and deoxy-Hb process NO differently (see text), allosteric transitions in Hb 

conformation afford context-responsive (O2-coupled) control of NO bioavailability, thereby 

linking the sensor and effector arms of this system. Specifically, Hb conformation governs 

the equilibria among deoxy-HbFeNO (A; NO sink), SNO-oxy-Hb (B; NO store), and 

acceptor thiols including the membrane protein SNO-AE-1 (C; bioactive NO source). Direct 

SNO export from RBCs or S-transnitrosylation from RBCs to plasma thiols (D) or to 

endothelial cells directly (not shown) yields vasoactive SNOs, which influence resistance 

vessel caliber and close this signaling loop. Thus, RBCs either trap (A) or export (D) NO 

groups to optimize blood flow. (C) NO processing in RBCs (A and B) couples vessel tone to 

tissue PO2; this system subserves hypoxic vasodilation in the arterial periphery and thereby 

calibrates blood flow to regional tissue hypoxia.
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From Doctor A, Stamler JS. NO Transport in Blood: A third gas in the respiratory cycle. In: 

Comprehensive Physiology: Respiratory Physiology. Wagner P and Hlastala M, Ed’s. 

American Physiological Society. Compr Physiol 1:541–568, 2011; with permission.
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Figure 6. 
Simplified scheme of cdB3-based control of RBC metabolism and proposed causal path for 

sepsis induced red cell dysfunction: (A) Energy metabolism in RBCs proceeds through 

either the Embden-Meyerhof pathway (EMP, orange arrows), or the hexose monophosphate 

pathway (HMP, blue arrows, AKA ‘pentose shunt’). Both share glucose-6 phosphate (G6P) 

as initial substrate. The HMP is the sole source of NADPH in RBCs and generates 

fructose-6-phosphate (F6P) or glyceraldehyde-3-phosphate (G3P), which rejoin the EMP 

prior to glyceraldehyde-3-phosphate dehydrogenase (G3PD/GAPDH), a key regulatory 

point. The EMP generates NADH (utilized by metHb reductase), as well as ATP (to drive 

ion pumps) and 2,3-DPG (to modulate hemoglobin P50). Hydrogen peroxide (H2O2) and 

superoxide anion (O2
−) are the principal endogenous reactive O2 species (ROS) that are 

generated / encountered by RBCs. Both ROS are generated internally in the course of HbO2 

cycling.230–232 Notably, only H2O2 can cross the membrane directly. O2
− enters/departs 

RBCs via the Band 3 channel (anion exchange protein 1, or AE-1). O2
− and H2O2 are 
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ultimately reduced to water by catalase (CAT) or glutathione peroxidase (GPx). (B) O2 

content modulates EMP/HMP balance via reciprocal binding for cdB3 between deoxyHb 

and key EMP enzymes (PFK, Aldo, G3PD, PK, and LDH). In oxygenated RBCs (right half 

of stylized O2 dissociation plot), EMP enzyme sequestration to cdB3 inactivates this 

pathway, resulting in HMP dominance and maximal NADPH (and thus GSH) recycling 

capacity. In deoxygenated RBCs (left half of O2 dissociation plot), deoxyHb binding to 

cdB3 disperses bound EMP enzymes, activating the EMP, creating G6P substrate 

competition, constraining HMP flux, limiting NADPH and GSH recycling capacity and 

weakening resilience to ROS, such as O2
−. (C) In sepsis, data suggest cdB3-complex 

assembly may be prevented (particularly, with coincident hypoxia, see text). As in settings 

similarly impacting the cdB3 complex, it appears that this disturbs normal EMP/HMP 

balance (disfavoring HMP), depowering antioxidant systems and rendering RBCs vulnerable 

to oxidant attack. GSH, glutathione; GR, glutathione reductase; NADPH, nicotinamide 

adenine dinucleotide phosphate; PFK, phosphofructokinase; Aldo, aldolase; PK, pyruvate 

kinase; LDH, lactate dehydrogenase
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