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Abstract

Background: With the rapid development of single-cell RNA sequencing
technology, it is possible to dissect cell-type composition at high resolution. A
number of methods have been developed with the purpose to identify rare cell
types. However, existing methods are still not scalable to large datasets, limiting their
utility. To overcome this limitation, we present a new software package, called
GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-
efficient than previous versions.

Results: Using GiniClust3, it only takes about 7 h to identify both common and rare cell
clusters from a dataset that contains more than one million cells. Cell type mapping and
perturbation analyses show that GiniClust3 could robustly identify cell clusters.

Conclusions: Taken together, these results suggest that GiniClust3 is a powerful tool to
identify both common and rare cell population and can handle large dataset.
GiniCluster3 is implemented in the open-source python package and available at https://
github.com/rdong08/GiniClust3.
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Background
The rapid development of single cell technologies has greatly enabled biologists to sys-

tematically characterize cellular heterogeneity (see reviews [1–4]). While many

methods have been developed to identify cell types from single cell transcriptomic data

[5–7], most are designed to identify common cell types. As the throughput becomes

much higher, it is also of considerable interest to specifically identify rare cell types.

Several methods have been developed [8–13]; however, existing methods are not scal-

able to very large datasets. Considering the fact that atlas-scale datasets may contain

hundreds of thousands or even millions of cells [5, 14–16], there is an urgent need to

develop faster method for rare cell type detection.

In previous work, we developed GiniClust to identify rare cell clusters, using a Gini-

index based approach to select rare cell-type associated genes [11]. Recently, we

extended the method to identify both common and rare cell clusters, using a cluster-

aware, weighted ensemble clustering approach [12]. These methods have been used to
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analyze datasets containing up to 68,000 cells. Here we have further optimized the algo-

rithm so that it can be efficiently used to analyze dataset containing over one million

cells. By using a real single-cell RNA-seq dataset as an example, we show that this new

extension, which we call GiniClust3, can efficiently and accurately identify both com-

mon and rare cell types.

Implementation
Details of GiniClust3 pipeline

The overall strategy is similar to GiniClust2 [12]. The implementation of each step

is optimized to improve computation and memory efficiency (Fig. 1a). Compare

with GiniClust2, there are two major changes. First, we used Leiden, which were

suitable for large datasets, to replace DBSCAN for the clustering step. Second, we

generated consensus matrix based on cluster level of Gini and Fano cluster results,

instead of cell level. Both changes could highly increase the computational effi-

ciency. The details of the GiniClust3 pipeline are as follows.

Step 1: clustering cells using Gini index-based features

a. Gini index calculation and normalization. After data pre-processing, the Gini index

for each gene is calculated as twice of the area between the diagonal and Lorenz

curve, as described before [11]. The range of Gini index values is between 0 to 1.

Then, Gini index values are normalized by using a two-step LOESS regression pro-

cedure as described before. Genes with Gini index value ≥0.6 and p value < 0.0001

are labeled as high Gini genes and selected for further analysis.

b. Cell cluster identification by Leiden algorithm. In previous versions [11, 12],

DBSCAN was used for clustering. While DBSCAN is effective for identify rare cell

clusters, this method is both time and memory consuming. In GiniClust3, we

replace DBSCAN with the Leiden clustering algorithm [17], which is known for

improved numerical efficiency. Alternatively, users can also select the Louvain

clustering algorithm [18] by setting “method = louvain”. The neighbor size we set

in Gini index-based clustering of mouse brain single-cell dataset is 15 (neighbors =

15). Lower threshold for neighbor size to efficiently identify rare clusters in smaller

datasets is recommended (default value = 5).

Step 2: clustering cells using Fano factor-based features

Highly variable genes are identified by using Scanpy. These genes are used to identify

common cell clusters by using principal component analysis (PCA) followed by Leiden

or Louvain clustering, using the default settings in Scanpy [7]. The neighbor size we set

in Fano factor-based clustering of mouse brain single-cell dataset is 15 (neighbors = 15).
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Step 3: combining the clusters from steps 1 and 2 via a cluster-aware, weighted consensus

clustering approach effectively

The weighted consensus clustering method is described before [12] with modifications.

Connectivity of cells in different cluster results (PG and PF) are calculated. To improve

computational efficiency, we kept one cell to represent cells with same Gini and Fano

cluster results. Thus, the computational efficiency is associated with Gini and Fano

cluster numbers rather than cell numbers. Then, we calculate the consensus matrix

based on these n cells from different Gini and Fano clusters. If two cells are clustered

in the same group, the connectivity is 1, otherwise the connectivity is 0 (formula (a)).

We set the cell-specific weights for the Fano factor-based clusters wF as a constant

Fig. 1 Analysis of mouse brain dataset with more than one million cells. a An overview of the GiniClust3
pipeline. Input single-cell expression matrix is clustered based on features selected by Gini index
(GiniIndexClust) and by Fano factor (FanoFactorClust), respectively. The results are then integrated using a
cluster-aware, weighted consensus clustering algorithm (ConsensusClust). b UMAP visualization of the gene
expression patterns based on Fano-factor (top) and Gini index (bottom) selected features, respectively.
Consensus clustering results are indicated by different colors. c The proportion of rare cell cluster in entire
population. d Heatmap of cell type mapping of common and rare clusters from scMCA analysis. Bar plot in
the top indicates the cell number for each cluster
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value f’ while the cell-specific GiniIndexClust weight wG are determined as a logistic

function of the size of cluster containing the particular cell (formula (b)), where xi is

the proportion of the GiniClust cluster for cell i, μ’ is the rare cell type proportion at

which GiniClust and Fano factor-based clustering methods have approximately the

same ability to detect rare cell types, and s’ represents how quickly GiniClust loses its

ability to detect rare cell types above μ’.

MijðPGÞ ¼ f
1; ði; jÞ∈CkðPGÞ

0; otherwise
; i; j∈ð1;⋯;nÞ: andMi jðPFÞ ¼ f

1; ði; jÞ∈CkðPFÞ

0; otherwise
; i; j∈ð1;⋯;nÞ

~wG
i ¼ 1−

1

1þ e−
xi−μ

′

s′

ðbÞ

The cell pair-specific weights were firstly defined as formula (c). Then, after

normalization of the wF and wG (formula (d)), the consensus value was calculated based

on the weight (wG
ij and wF

ij ) and connection (Mij(P
G) and Mij(P

F)) (formula (e)).
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k-means clustering is applied to the consensus matrix Mij , then the results are easily

converted back to single-cell level clustering. Finally, clusters with cell population < 1%

are considered as rare clusters.

Data source and pre-processing of the data

A mouse brain single-cell RNA-seq dataset was downloaded from 10X genomics web-

site: (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_

neurons). This dataset contains 1.3 million cells obtained from cortex, hippocampus

and ventricular zones of E18 mice. Raw data was pre-processed by using Scrublet [19]

(version 0.2.1) to remove doublets with default setting. The resulting data was further

filtered to remove genes expressed in fewer than ten cells and cells expressed fewer

than 500 genes. A total number of 1,244,774 cells and 21,493 genes passed this filter

were retained for further analysis. Raw UMI counts were normalized by Scanpy [7] with

the following parameter setting: sc.pp.normalize_per_cell (counts_per_cell_after = 1e4).

Results
Compared with GiniClust2, we did two major modifications to optimize the perform-

ance. First, clustering method which consumes time and memory is replaced with

method suitable for large scale dataset. Second, we speed up GiniClust3 by generating

consensus matrix in cluster level rather than cell level. Both the modifications could

highly increase the speed and reduce the memory consumption of GiniClust3.

To test the utility of GiniClust3, we applied the method to analyze a public single-cell

RNA-seq dataset containing 1.3 million single cells obtained from three regions in the
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mouse brain (see Implementation for details). After filtering out lowly-expressed genes

and poor-quality cells (such as those likely to be doublets), a 1,244,774 cell-by-21,494

gene count matrix was left for further analysis. We next sought to characterize the

identities of cell populations by using GiniClust3. A total number of 16 common and

17 rare cell clusters (cell population < 1%) were identified (Fig. 1b, S1a), with the smal-

lest cluster containing only 21 cells (cell population = 0.002%) (Fig. 1c and Table S1).

The total time of cluster identification for both common and rare cell took ~ 7-h time,

and 103G memory on a Xeon E5–2683 with 56 threads and 640GB memory server, in-

dicating GiniClust3 is suitable for analyzing very large datasets.

To annotate these cell clusters, we mapped each cluster to mouse cell atlas (MCA)

[14] by using the scMCA algorithm [20]. Ten of the sixteen common clusters (cluster

0, 1, 4, 5, 6, 9, 12, 13, 14 and 15) were mapped to specific cell types in MCA with ex-

pected abundance. These include glutamatergic neurons, astrocytes, GABAergic

neuron, ependymal, cell cycle neuron, cajal-retzius neuron and endothelial (Fig. 1d).

For example, cluster 0 is mapped to glutamatergic neurons, which are known to be the

most abundant neuronal cell type [21, 22]. Eight of the seventeen rare clusters (cluster

16, 17, 18, 19, 20, 26, 30 and 32) can be mapped to previously annotated cell types.

These include stromal, glutamatergic, macrophage/microglia, radial glia, dopaminergic,

granulocyte and GABAergic neuron. Of note, GiniClust3 was able to identify granulo-

cyte cells (cluster 30), even though they represent a tiny fraction (55 out of 1,244,774

cells, 0.004%) of the cell population, indicating the sensitivity of GiniClust3 is very high.

We then systematically evaluate the time and memory consumption in different

scales, we randomly subsampled 1.3 million mouse brain scRNA-seq dataset, range

from 5 K to 1M cells. The time and memory consumption scale almost linearly with

cell number, as the regression slope is close to 1 in both cases (Fig. S1b, slope = 1.08

for running time; Fig. S1c, slope = 0.92, for memory usage). To evaluate the robustness

of GiniClust3, we repeated the analysis using randomly subsampled data. To this end,

50% of the cells were randomly selected from common clusters (≥1%). Since our main

focus was to identify rare cell clusters, the cells assigned to these rare clusters (< 1%)

identified above were all retained. By repeating this subsampling method for 10 times

and applying GiniClust3 to the subsampled datasets, we found most of the clusters in

subsampled datasets are consistent with the original ones, the median Normalized Mu-

tual Information (NMI) is 0.81 (Fig. S1d). Taken together, these analyses show that

GiniClust3 is a sensitive, accurate and efficient clustering method that can be used in

many applications.

Conclusions
With the technological development and protocol improvement, the scaling of single-

cell RNA-seq is increasing in an exponential way [23], providing a great opportunity to

identify previously unrecognized rare cell types. We have shown that GiniClust3 is an

accurate and highly scalable method for detecting rare cell types from large single-cell

RNA-seq datasets. GiniClust3 could identify both common and rare cell population

and handle large dataset containing more than one million cells in an effective way.

This property is important to comprehensively identify cell types in large datasets and

may be particularly useful for atlas datasets in future.
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Availability and requirements

Project name: GiniClust3

Project home page: https://github.com/rdong08/GiniClust3

Operating system: Platform independent

Programming language: python

Other requirements: python 3.0 or higher

License: GPL

Any restrictions to use by non-academics: License needed

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3482-1.

Additional file 1: Figure S1. a A gene expression heatmap showing the top differentially expressed genes for
each cell cluster identified from the mouse brain single-cell RNA-seq dataset. b Time consumption of GiniClust3 in
subsampled data with varying cell numbers. c Memory consumption of GiniClust3 in subsampled data with varying
cell numbers. d Normalized mutual information (NMI) values quantifying the agreement between GiniClust3 clus-
tering results from randomly selected subsamples of the mouse brain dataset. 10 random subsamples were gener-
ated for which the results are compared here.

Additional file 2: Table S1. Clusters, marker genes and cell mapping results using scMCA in mouse brain
dataset.
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