Skip to main content
West China Journal of Stomatology logoLink to West China Journal of Stomatology
. 2020 Apr;38(2):211–217. [Article in Chinese] doi: 10.7518/hxkq.2020.02.017

系统性药物对种植体骨结合影响的动物实验研究进展

Overview of animal researches about the effects of systemic drugs on implant osseointegration

王 亚楠 1,2, 贾 婷婷 1,2, 徐 欣 1,2,3, 张 东姣 1,2,3,
Editor: 吴 爱华
PMCID: PMC7184276  PMID: 32314897

Abstract

种植体周围骨结合是口腔种植重要的生物学基础。影响种植体骨结合的因素繁多,包括手术因素、种植体因素、患者自身因素等,其中应用系统性药物以改善种植体骨结合的相关研究已经成为当今的研究热点。本文基于动物实验研究,对系统性药物影响种植体骨结合的作用进行综述,以期为改善种植体骨结合提供可供选择的高效安全的系统性药物,为后期临床试验的开展奠定基础。

Keywords: 种植体, 骨结合, 系统性药物, 动物实验


种植义齿因其美观、舒适度高、不磨损邻牙、固位优良等优势成为各种牙列缺损或缺失的常用修复手段,其中骨结合是口腔种植重要的生物学基础。这一概念由瑞典科学家Brånemark教授于20世纪60年代创建,即正常改建骨和种植体直接接触结合,其中不存在除骨外的其他组织,使种植体负荷能通过这种直接接触持续不断地分散传导至牙槽骨中[1]

不断地改善种植体骨结合是口腔医生一直追求的目标,主要手段包括种植体表面改性、表面修饰以及应用系统性药物等,其中应用系统性药物以改善种植体骨结合的相关研究已成为当今的研究热点。目前可用于改善骨结合的系统性药物主要包括骨矿化促进剂、骨吸收抑制剂或具有双重效果的药物。

种类繁多的系统性药物对骨代谢呈现出复杂的作用机制和效果,因此了解系统性药物对种植体骨结合的影响具有十分重要的意义。本文旨在阐述系统性药物对种植体骨结合的影响,以期为改善种植体骨结合提供高效安全的系统性药物,为后期临床试验的开展奠定良好的基础,进而优化种植术后的药物治疗方案,延长种植体寿命,提高患者满意度。

1. 骨矿化促进剂

骨矿化促进剂是通过增强成骨细胞活性来增加骨量的药物,包括甲状旁腺激素(parathyroid hormone,PTH)或重组人甲状旁腺激素(recombinant human parathyroid hormone,rhPTH)、维生素D、前列腺素受体(E-prostanoid 4 receptors,EP4)激动剂和一些新的治疗药物,如Dickkopf-1(Dkk1)抗体和硬化蛋白(sclerostin,Scl)抗体等。

1.1. PTH及rhPTH

PTH是甲状旁腺主细胞分泌的单链多肽类激素,由84个氨基酸残基组成;其中PTH1-34是PTH的活性片段,包含PTH受体激活所引发一系列反应必需的关键氨基酸残基。PTH是维持血钙稳态的重要激素,在骨改建过程中发挥重要作用。PTH既可增加破骨细胞数目,促进骨吸收,升高血钙,也可调节骨髓基质干细胞的成骨和成脂分化,增加成骨细胞数目,促进骨形成[2][3]。动物随机对照试验[4]证实,小剂量间断注射PTH能增加骨质疏松大鼠的骨小梁密度和矿化程度,加快骨组织重建。Yang等[5]证明,种植术前皮下间歇性注射PTH(每天40 µg·kg−1)6周,术后继续以相同的方式持续注射4周后,健康小鼠股骨种植体周围的成骨细胞密度、骨体积分数和骨小梁密度均明显增加。Dayer等[6]也发现,PTH能显著增加低蛋白质饮食大鼠胫骨钛植入体的拔出力度、骨-种植体接触面积和植入体周围骨小梁密度。除此之外,PTH也可改善老年大鼠的血管再生状况,增强老年大鼠的种植体骨结合[7]

目前用于治疗骨质疏松的PTH类药物是rhPTH,主要包括rhPTH1-84(preotact)和rhPTH1-34(teriparatide)。在卵巢切除术和糖皮质激素双重诱导的兔骨质疏松症模型中,间歇给予rhPTH1-34可增强胫骨钛种植体周围的骨矿化密度[8]。Tao等[9]应用14周的低蛋白饮食建立骨质疏松大鼠模型,成功后于大鼠股骨植入种植体,随机分为空白组、rhPTH1-34组(40 µg·kg−1,每周3次)、辛伐他汀组(25 mg·kg−1,每天注射)、rhPTH1-34加辛伐他汀组;12周后,放射学、组织学和生物力学检测结果均显示,rhPTH1-34和辛伐他汀联合应用对促进种植体骨结合有协同效应。

PTH药物并不是所有情况下对种植体骨结合都能起到积极作用。Rybaczek等[10]发现,PTH并不能改善糖尿病大鼠或胰岛素治疗后糖尿病大鼠的种植体骨结合情况,这也许与糖尿病改变了PTH发挥作用的代谢环境有关。另外,PTH治疗可能引起以头晕和腿部痉挛为临床表现的高钙血症[11],应用在啮齿动物中也存在引发骨恶性肿瘤的风险[12],因此后续研究应进一步探讨PTH的给药途径、剂量、用药时间等,以规避药物的不良反应。

1.2. 维生素D

维生素D既可以通过刺激肠中钙的摄取和肾脏中钙的再吸收,间接影响机体的骨代谢,也可以通过上调成骨细胞中成骨相关基因的表达,改善成骨细胞的成骨能力[13]。病例报告[14]表明,缺乏维生素D的患者出现种植体失败,而补充维生素D后的二次种植实现种植体良好的骨结合。除此之外,Nakamura等[15]比较了阿仑膦酸钠组、维生素D组、阿仑膦酸钠加维生素D组对骨质疏松大鼠股骨种植体植入后4周骨结合情况的影响,结果显示,仅用阿仑膦酸盐或维生素D治疗不能改善种植体的稳定性, 但应用阿仑膦酸盐和维生素D联合治疗可以显著改善种植体的稳定性。

维生素D在肝脏中完成25α-羟基化,在肾脏中完成1α-羟基化,从而生成生物活性维生素D,即1,25-(OH)2D3[16]。Zhou等[17]在卵巢切除术后12周的大鼠胫骨近心端植入钛钉,实验组进行1,25-(OH)2D3的灌喂,剂量为每天0.1 µg·kg−1。8周后通过影像学、组织学和生物力学的检测发现,1,25-(OH)2D3组钛钉周围骨结合率增加94.4%,平均骨小梁数增加112.5%,平均骨小梁厚度增加51.8%,骨组织密度增加1.2倍,最大拔除力增加2.0倍。

临床试验[18]表明,每天长期摄入250 µg的维生素D几乎不会对健康人群造成不良影响,但大量摄入可能出现由血钙过高导致的肾脏损害等不良反应;因此临床应用维生素D时应严格控制使用剂量。

1.3. EP4激动剂

前列腺素E2(prostaglandin E2,PGE2)是一种重要的细胞生长和调节因子,PGE2的作用优先由其受体EP4介导。有学者[19]利用化学方法联合双膦酸盐和EP4激动剂建立了一种特殊的骨组织靶向药物,可以增强骨合成代谢。Onishi等[20]将经过化学和热处理后的具有生物活性的钛钉植入兔胫骨中,实验组术后每2周全身给予EP4激动剂,分为低剂量组(10 µg·kg−1)和高剂量组(100 µg·kg−1),于术后4、8和16周进行组织学和生物力学检查,结果显示在4周和8周时,EP4激动剂组中钛钉-骨结合强度明显高于对照组。动物实验[21]表明,EP4激动剂ONO-4819可以增加PGE2对大鼠的骨改建作用,并显著改善骨质疏松大鼠模型中植入体-骨结合的稳定性。据报道[22],给予兔皮下注射30 µg·kg−1 EP4激动剂没有出现明显不良反应,但剂量增加至100 µg·kg−1时可导致兔腹泻。EP4激动剂的其他不良作用尚未完全明确,仍需进一步探讨。

1.4. Dkk1抗体

Dkk1是经典Wnt信号通路的拮抗剂,Dkk1抗体是目前治疗骨质疏松症较新的疗法之一。Olivares-Navarrete等[23]通过细胞实验证实,Dkk1通过经典Wnt信号通路对钛表面的成骨细胞早期分化起到抑制作用,并提出了Dkk1抗体可能在种植体骨结合中起到积极的意义。动物实验[24]证明,Dkk1抗体对年轻啮齿类动物的骨代谢具有积极的调控作用。Agholme等[25]证实,Dkk1抗体可刺激骨形成,特别是在种植体初期结合、骨折修复或愈合期间。

1.5. Scl抗体

Scl通过抑制Wnt/β-catenin信号传导途径下调成骨细胞分化,起到类似于Dkk1的作用;Scl抗体则抵消了Scl对Wnt信号通路的抑制作用,可以促进成骨细胞分化。Romosozumab是一种Scl单克隆抗体,临床试验[26]表明,给予绝经后妇女(年龄为55~85岁)每月210 mg Romosozumab皮下注射12个月后,受试者腰椎骨密度相对空白组明显增加。Virdi等[27]发现,皮下注射Scl抗体(25 mg·kg−1,每周2次)2周后,大鼠股骨钛种植体周围骨皮质厚度增加,4周和8周时大鼠植入物周围骨小梁数量和密度增加。Yu等[28]的研究也得出了相同的结论。Virdi等[29]的另外一项研究显示,在严重骨质疏松症大鼠模型中,Scl抗体对种植体的机械结合也可以起到促进作用。

1.6. 生长因子类药物

1.6.1. 碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)

bFGF可显著促进创伤愈合过程中血管的再生[30],也可促进成骨细胞骨形态发生蛋白(bone morphogenetic protein,BMP)-2的表达,从而增强成骨细胞功能[31]。研究[32]证实,局部使用bFGF-2可以促进比格犬下颌骨种植体周围的新骨形成和骨结合。针对卵巢切除术后大鼠的相似研究[33]也证实,bFGF对种植体骨结合具有积极作用。

1.6.2. 神经生长因子(nerve growth factor,NGF)

NGF可以促进间充质干细胞的成骨分化,促进钛表面血管内皮细胞的增殖,对种植体骨结合有积极作用[34]。姚洋等[35]发现,皮下注射NGF(1.4 µg·mL−1,每次0.1 mL)能加速小鼠股骨内种植体周围新生骨胶原的早期成熟。另有研究[36]表明,局部肌肉注射NGF对改善糖尿病大鼠的种植体骨结合有积极意义。

2. 骨吸收抑制剂

骨吸收抑制剂可降低破骨细胞活性,抑制骨吸收过程,包括降钙素(calcitonin)、双膦酸盐、核因子κB受体活化因子(receptor activator of nuclear factor-κB,RANK)/核因子κB受体活化因子配体(receptor activator of nuclear factor-κB ligand, RANKL)/骨保护素(osteoprotegerin,OPG)系统调节剂、选择性雌激素受体调节剂(selective estrogen receptor modulator,SERM)等。

2.1. 降钙素

降钙素是一种主要由甲状腺滤泡旁细胞分泌的激素,靶向作用于破骨细胞上的降钙素受体,发挥其抑制骨吸收作用[37]。有报道[38]指出,健康人长期服用降钙素是安全的,目前尚没有发现较为严重的不良反应。Huang等[39]将含有BMP-2和降钙素的壳聚糖/明胶涂层通过静电技术沉积在Ti6Al4V种植体上,并植入骨质疏松兔的股骨中,结果发现,上述表面处理方式显著增强了种植体的骨结合。但还有研究[40]表明,皮下注射降钙素并不能明显增加大鼠的骨-种植体接触面积。由此可见,降钙素对种植体骨结合是否具有积极意义仍需要进一步研究。

2.2. 双膦酸盐

双膦酸盐是治疗骨质疏松症的常用药物,主要通过抑制破骨细胞的骨吸收起作用,包括阿仑膦酸盐(alendronate)、伊班膦酸盐(ibandronate)、唑来膦酸(zoledronic acid)等。

Duarte等[41]发现,骨质疏松大鼠皮下注射阿仑膦酸钠(5 mg·kg−1)连续40 d,种植体-骨接触面积增加。Verzola等[42]的研究也发现,皮下注射阿仑膦酸钠对种植体骨结合的影响相似。Oh等[43]则发现了相反的结果,SD大鼠颌骨种植4周后,每周两次皮下注射阿仑膦酸盐,发现阿仑膦酸盐对种植体周围的骨改建产生负面影响。除去皮下注射途径,口服阿仑磷酸盐也是可选择的给药途径之一。Jensen等[44]的实验结果显示,给予健康成年比格犬口服阿仑磷酸盐(每日0.5 mg·kg−1)10周后,种植体极限剪切强度和周围骨量增加,因此作者认为,全身应用阿仑膦酸盐可能是改善植入体早期骨结合的积极疗法。Chacon等[45]发现,给予正常新西兰白兔口服阿仑膦酸盐5周后,股骨种植体的最大扭力消除值与对照组相比没有明显差异。除此之外,局部给药也是改善种植体骨结合的可行方法之一。Karlsson等[46]发现,给予种植体阿仑磷酸钠涂层处理后,可以显著增强种植体周围的骨矿化。

Skoglund等[47]于2004年提出全身或局部应用伊班膦酸盐是改善种植体早期骨结合的有效途径。Kurth等[48]发现,伊班膦酸盐可以逆转骨质疏松症对种植体骨结合的负面影响;而Eberhardt等[49]的研究则指出了伊班膦酸盐的剂量在对种植体骨结合中的重要性,高剂量伊班膦酸盐(每日25 µg·kg−1,肿瘤治疗剂量)可改善种植体的骨结合,而低剂量伊班膦酸盐(每日1 µg·kg−1,骨质疏松治疗剂量)对改善种植体骨结合没有明显影响。系统性评价[50]显示,伊班膦酸盐局部或涂覆在种植体表面可以改善种植体骨结合,但从临床角度来看,仍然需要进一步的实验研究来评估其对改善种植体周围骨结合的有效性。

动物实验表明,每周给予雌激素缺乏大鼠静脉注射唑来膦酸(每周0.04 mg·kg−1,6周)可以显著改善胫骨钛种植体的骨结合[51];在雌激素缺乏兔中也得到相似的实验结果[52]。但仍有研究[53]显示,唑来膦酸静脉给药会干扰兔拔牙后的正常骨重建和颌骨种植体周围的长期愈合。

不容忽视的是,双膦酸盐口服吸收率低,可见胃肠道不耐受、短暂性低钙血症、急性肾功能衰竭、肌肉骨骼疼痛等不良反应[54]。此外,长期高剂量应用双膦酸盐,特别是在癌症患者的治疗过程中[55],可能增加非典型股骨骨折和颌骨坏死的风险,这与骨重塑过度抑制、修复微骨折能力受损及骨骼脆性增加有关。因此,对双膦酸盐安全使用剂量和时间的探究是其应用于改善种植体骨结合的关键。

2.3. RANK/RANKL/OPG系统调节剂

RANK/RANKL/OPG系统是改善种植体骨结合的新型治疗靶点。RANKL和RANK结合后,破骨细胞前体可分化为成熟的破骨细胞,发挥破骨功能。理论上任何可以抑制RANKL和RANK结合的因素都可减少骨吸收,在一定程度上改善种植体骨结合,该系统中较为重要的一个因子是OPG。动物实验[56]表明,卵巢切除大鼠皮下注射OPG后,种植体周围骨量和骨密度均增加,股骨种植体的骨结合得以改善。Aspenberg等[57]的研究显示,OPG-免疫球蛋白Fc片段复合物可抑制骨吸收,降低破骨细胞密度。按照Bernhardsson等[58]的方法,皮下注射OPG-免疫球蛋白Fc片段复合物可以增加大鼠种植体的最大拔出力和周围骨密度。另外,抗RANKL抗体,如Denosumab,也是RANK/RANKL系统抑制剂的选择之一。Sköldenberg等[59]发现,皮下注射Denosumab可减少患者髋部钛种植体周围溶骨性病变的发生率,但对颌骨种植体骨结合的影响仍需进一步研究。

2.4. SERM

SERM是一种可用于改善种植体骨结合的潜在药物。这类药物选择性地作用于不同组织的雌激素受体,在不同的靶组织分别产生类雌激素或抗雌激素作用。目前被批准用于治疗骨质疏松症的SERM主要是雷洛昔芬。雷洛昔芬对骨组织发挥雌激素受体激动作用,抑制破骨细胞活性,对骨代谢和再生发挥积极作用;对子宫和乳腺发挥雌激素受体拮抗作用,有效避免雌激素对子宫和乳腺的负面影响。Faverani等[60]的研究证实,口服雷洛昔芬可增加骨质疏松大鼠种植体周围的骨量。另外还有研究[61]发现,二氧化钛纳米管阵列/雷洛昔芬/阿仑膦酸盐涂层种植体可有效增强种植体周围新骨的形成,促进骨质疏松种植体的骨结合。雷洛昔芬可能会引起静脉血栓、热潮红等不良反应[62],因此合理规避这些不良反应,最大程度发挥药物对骨代谢的改善作用是后续研究的切入点之一。

3. 骨矿化促进和骨吸收抑制剂

除上述2类影响种植体骨结合的系统性药物外,还有部分药物呈现出促合成代谢和抗分解代谢的双重机制,对改善种植体骨结合具有重要意义,主要包括辛伐他汀和雷奈酸锶(strontium ranelate,SR)。

3.1. 辛伐他汀

辛伐他汀可通过刺激骨形态发生蛋白基因表达和蛋白质分泌,促进成骨细胞分化[63];也可以通过抑制甲羟戊酸途径中的3羟基-3甲基-戊二酰辅酶A还原酶发挥抑制破骨细胞的作用[64]。Ayukawa等[65]发现,经腹腔注射给予辛伐他汀的大鼠种植体周围的骨密度以及骨-种植体接触面积增加。该课题组[66]随后发现,5 mg·kg−1或更多剂量的辛伐他汀可以促进兔胫骨种植体周围的骨结合。实验证明,辛伐他汀的口服给药对改善种植体骨结合也是有效的[67]。加载辛伐他汀至种植体表面,可以改善骨质疏松大鼠中的种植体骨结合[68]。辛伐他汀存在胃肠道功能紊乱、肌毒性、肝损害、肾功能损害、记忆丧失、脱发等不良反应[69],因此需要综合考虑给药途径、剂量、联合用药及生理状况等多种因素。

3.2. SR

SR是治疗骨质疏松症的常用药物,不仅可通过增加成骨细胞分化和活性来促进成骨,而且可以通过下调破骨细胞激活相关的系列蛋白,抑制破骨细胞前体向破骨细胞分化,起到抑制破骨的作用[70]。通过电化学沉积的方法在羟磷灰石种植体表面加入10%的锶元素可以显著改善骨质疏松大鼠种植体的骨结合[71]。Li等[72]发现,口服SR可以剂量依赖性地改善卵巢切除术后大鼠的羟磷灰石涂层种植体的骨结合。与上述结果不同的是,Linderback等[73]的研究表明,SR对增强兔胫骨种植体早期骨结合并没有明显效果。SR相对较为安全,不良反应包括腹泻、呕吐等胃肠道反应,潜在的血管和神经副作用还需要进一步探索[74]

目前,应用系统性药物以改善种植体骨结合的理论已被广泛接受,这些药物的临床应用将带来口腔种植领域的巨大进步。通过成骨细胞和破骨细胞的分子和遗传学机制研究可以发现系统性药物的新靶点,而选择具有高效能改善种植体骨结合和低不良反应率的系统性药物是未来的研究方向。另外,系统性药物改善种植体骨结合的分子机制尚未完全明确,药物的给药途径、使用剂量以及使用时间等均有待于进一步研究。

Funding Statement

[基金项目]  泰山学者建设工程专项经费(TS201511106);中国博士后科学基金第61批面上资助项目(21350077311085);博士后日常经费资助项目(10000087962028)

Supported by: Special Funds for Taishan Scholars (TS201511106); The 61st Batch of China Postdoctoral Science Foundation (21350077311085); Postdoctoral Daily Funds (10000087962028).

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

  • 1.张 志愿. 口腔颌面外科学[M] 北京: 人民卫生出版社; 2012. pp. 152–153. [Google Scholar]; Zhang ZY. Oral and maxillofacial surgery[M] Beijing: People's Medical Publishing House; 2012. pp. 152–153. [Google Scholar]
  • 2.Fan Y, Hanai JI, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate[J] Cell Metab. 2017;25(3):661–672. doi: 10.1016/j.cmet.2017.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton[J] Curr Opin Pharmacol. 2015;22:41–50. doi: 10.1016/j.coph.2015.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brouwers JE, van Rietbergen B, Huiskes R, et al. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT[J] Osteoporos Int. 2009;20(11):1823–1835. doi: 10.1007/s00198-009-0882-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Yang X, Ricciardi BF, Dvorzhinskiy A, et al. Intermittent parathyroid hormone enhances cancellous osseointegration of a novel murine tibial implant[J] J Bone Joint Surg Am. 2015;97(13):1074–1083. doi: 10.2106/JBJS.N.01052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dayer R, Badoud I, Rizzoli R, et al. Defective implant osseointegration under protein undernutrition: prevention by PTH or pamidronate[J] J Bone Miner Res. 2007;22(10):1526–1533. doi: 10.1359/jbmr.070610. [DOI] [PubMed] [Google Scholar]
  • 7.Jiang L, Zhang W, Wei L, et al. Early effects of parathyroid hormone on vascularized bone regeneration and implant osseointegration in aged rats[J] Biomaterials. 2018;179:15–28. doi: 10.1016/j.biomaterials.2018.06.035. [DOI] [PubMed] [Google Scholar]
  • 8.Almagro MI, Roman-Blas JA, Bellido M, et al. PTH [1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis[J] Clin Oral Implants Res. 2013;24(9):1027–1034. doi: 10.1111/j.1600-0501.2012.02495.x. [DOI] [PubMed] [Google Scholar]
  • 9.Tao ZS, Zhou WS, Tu KK, et al. The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats[J] Injury. 2015;46(11):2164–2169. doi: 10.1016/j.injury.2015.08.034. [DOI] [PubMed] [Google Scholar]
  • 10.Rybaczek T, Tangl S, Dobsak T, et al. The effect of parathyroid hormone on osseointegration in insulin-treated diabetic rats[J] Implant Dent. 2015;24(4):392–396. doi: 10.1097/ID.0000000000000288. [DOI] [PubMed] [Google Scholar]
  • 11.Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis[J] New Eng J Med. 2001;344(19):1434–1441. doi: 10.1056/NEJM200105103441904. [DOI] [PubMed] [Google Scholar]
  • 12.Miller PD. Safety of parathyroid hormone for the treatment of osteoporosis[J] Curr Osteoporos Rep. 2008;6(1):12–16. doi: 10.1007/s11914-008-0003-y. [DOI] [PubMed] [Google Scholar]
  • 13.van de Peppel J, van Leeuwen JP. Vitamin D and gene networks in human osteoblasts[J] Front Physiol. 2014;5:137. doi: 10.3389/fphys.2014.00137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fretwurst T, Grunert S, Woelber JP, et al. Vitamin D deficiency in early implant failure: two case reports[J] Int J Implant Dent. 2016;2(1):24. doi: 10.1186/s40729-016-0056-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Nakamura Y, Hayashi K, Abu-Ali S, et al. Effect of preoperative combined treatment with alendronate and calcitriol on fixation of hydroxyapatite-coated implants in ovariectomized rats[J] J Bone Joint Surg Am. 2008;90(4):824–832. doi: 10.2106/JBJS.G.00635. [DOI] [PubMed] [Google Scholar]
  • 16.Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications[J] Chem Biol. 2014;21(3):319–329. doi: 10.1016/j.chembiol.2013.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhou C, Li Y, Wang X, et al. 1,25Dihydroxy vitamin D(3) improves titanium implant osseointegration in osteoporotic rats[J] Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(5 Suppl):S174–S178. doi: 10.1016/j.oooo.2011.09.030. [DOI] [PubMed] [Google Scholar]
  • 18.Vieth R. Vitamin D toxicity, policy, and science[J] J Bone Miner Res. 2007;22(Suppl 2):V64–V68. doi: 10.1359/jbmr.07s221. [DOI] [PubMed] [Google Scholar]
  • 19.Young RN, Grynpas MD. Targeting therapeutics to bone by conjugation with bisphosphonates[J] Curr Opin Pharmacol. 2018;40:87–94. doi: 10.1016/j.coph.2018.03.010. [DOI] [PubMed] [Google Scholar]
  • 20.Onishi E, Fujibayashi S, Takemoto M, et al. Enhancement of bone-bonding ability of bioactive titanium by prostaglandin E2 receptor selective agonist[J] Biomaterials. 2008;29(7):877–883. doi: 10.1016/j.biomaterials.2007.10.028. [DOI] [PubMed] [Google Scholar]
  • 21.Hayashi K, Fotovati A, Ali SA, et al. Prostaglandin EP4 receptor agonist augments fixation of hydroxyapatite-coated implants in a rat model of osteoporosis[J] J Bone Joint Surg Br. 2005;87(8):1150–1156. doi: 10.1302/0301-620X.87B8.15886. [DOI] [PubMed] [Google Scholar]
  • 22.Masuzawa M, Beppu M, Ishii S, et al. Experimental study of bone formation around a titanium rod with β-tricalcium phosphate and prostaglandin E2 receptor agonists[J] J Orthopaed Sci. 2005;10(3):308–314. doi: 10.1007/s00776-005-0890-z. [DOI] [PubMed] [Google Scholar]
  • 23.Olivares-Navarrete R, Hyzy S, Wieland M, et al. The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces[J] Biomaterials. 2010;31(8):2015–2024. doi: 10.1016/j.biomaterials.2009.11.071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Li X, Grisanti M, Fan W, et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury[J] J Bone Miner Res. 2011;26(11):2610–2621. doi: 10.1002/jbmr.472. [DOI] [PubMed] [Google Scholar]
  • 25.Agholme F, Isaksson H, Kuhstoss S, et al. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions[J] Bone. 2011;48(5):988–996. doi: 10.1016/j.bone.2011.02.008. [DOI] [PubMed] [Google Scholar]
  • 26.McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density[J] N Engl J Med. 2014;370(5):412–420. doi: 10.1056/NEJMoa1305224. [DOI] [PubMed] [Google Scholar]
  • 27.Virdi AS, Liu M, Sena K, et al. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model[J] J Bone Joint Surg Am. 2012;94(18):1670–1680. doi: 10.2106/JBJS.K.00344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Yu SH, Hao J, Fretwurst T, et al. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants[J] Tissue Eng Part A. 2018;24(21/22):1672–1679. doi: 10.1089/ten.tea.2018.0013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Virdi AS, Irish J, Sena K, et al. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis[J] J Bone Joint Surg Am. 2015;97(2):133–140. doi: 10.2106/JBJS.N.00654. [DOI] [PubMed] [Google Scholar]
  • 30.Nakamichi M, Akishima-Fukasawa Y, Fujisawa C, et al. Basic fibroblast growth factor induces angiogenic properties of fibrocytes to stimulate vascular formation during wound healing[J] Am J Pathol. 2016;186(12):3203–3216. doi: 10.1016/j.ajpath.2016.08.015. [DOI] [PubMed] [Google Scholar]
  • 31.Gronowicz G, Hurley MM, Kuhn LT. Optimizing BMP-2-induced bone repair with FGF-2[J] J Am Acad Orthop Surg. 2014;22(10):677–679. doi: 10.5435/JAAOS-22-10-677. [DOI] [PubMed] [Google Scholar]
  • 32.Nagayasu-Tanaka T, Nozaki T, Miki K, et al. FGF-2 promotes initial osseointegration and enhances stability of implants with low primary stability[J] Clin Oral Implants Res. 2017;28(3):291–297. doi: 10.1111/clr.12797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gao Y, Luo E, Hu J, et al. Effect of combined local treatment with zoledronic acid and basic fibroblast growth factor on implant fixation in ovariectomized rats[J] Bone. 2009;44(2):225–232. doi: 10.1016/j.bone.2008.10.054. [DOI] [PubMed] [Google Scholar]
  • 34.Guang M, Yao Y, Zhang L, et al. The effects of nerve growth factor on endothelial cells seeded on different titanium surfaces[J] Int J Oral Maxillofac Surg. 2015;44(12):1506–1513. doi: 10.1016/j.ijom.2015.06.016. [DOI] [PubMed] [Google Scholar]
  • 35.姚 洋, 杜 宇, 古 霞, et al. 局部注射外源性神经生长因子促进小鼠钛种植体周骨胶原早期成熟的研究[J] 华西口腔医学杂志. 2018;36(2):128–132. doi: 10.7518/hxkq.2018.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]; Yao Y, Du Y, Gu X, et al. Local injection of exogenous nerve growth factor improves early bone maturation of implants[J] West China J Stomatol. 2018;36(2):128–132. doi: 10.7518/hxkq.2018.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zhang J, Shirai M, Yamamoto R, et al. Effect of nerve growth factor on osseointegration of titanium implants in type 2 diabetic rats[J] Int J Oral Maxillofac Implants. 2016;31(5):1189–1194. doi: 10.11607/jomi.4455. [DOI] [PubMed] [Google Scholar]
  • 37.Sexton PM, Findlay DM, Martin TJ. Calcitonin[J] Curr Med Chem. 1999;6(11):1067–1093. [PubMed] [Google Scholar]
  • 38.Wimalawansa SJ. Long- and short-term side effects and safety of calcitonin in man: a prospective study[J] Calcif Tissue Int. 1993;52(2):90–93. doi: 10.1007/BF00308314. [DOI] [PubMed] [Google Scholar]
  • 39.Huang L, Luo Z, Hu Y, et al. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants[J] J Biomed Mater Res A. 2016;104(6):1437–1451. doi: 10.1002/jbm.a.35667. [DOI] [PubMed] [Google Scholar]
  • 40.Nociti FH, Jr, Sallum AW, Sallum EA, et al. Effect of estrogen replacement and calcitonin therapies on bone around titanium implants placed in ovariectomized rats: a histometric study[J] Int J Oral Maxillofac Implants. 2002;17(6):786–792. [PubMed] [Google Scholar]
  • 41.Duarte PM, de Vasconcelos Gurgel BC, Sallum AW, et al. Alendronate therapy may be effective in the prevention of bone loss around titanium implants inserted in estrogen-deficient rats[J] J Periodontol. 2005;76(1):107–114. doi: 10.1902/jop.2005.76.1.107. [DOI] [PubMed] [Google Scholar]
  • 42.Verzola MH, Frizzera F, de Oliveira GJ, et al. Effects of the long-term administration of alendronate on the mechanical properties of the basal bone and on osseointegration[J] Clin Oral Implants Res. 2015;26(12):1466–1475. doi: 10.1111/clr.12492. [DOI] [PubMed] [Google Scholar]
  • 43.Oh KC, Hwang W, Park YB, et al. Effects of alendronate on bone remodeling around osseointegrated implants in rats[J] Implant Dent. 2017;26(1):46–53. doi: 10.1097/ID.0000000000000497. [DOI] [PubMed] [Google Scholar]
  • 44.Jensen TB, Bechtold JE, Chen X, et al. Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants[J] J Orthop Res. 2007;25(6):772–778. doi: 10.1002/jor.20272. [DOI] [PubMed] [Google Scholar]
  • 45.Chacon GE, Stine EA, Larsen PE, et al. Effect of alendronate on endosseous implant integration: an in vivo study in rabbits[J] J Oral Maxillofac Surg. 2006;64(7):1005–1009. doi: 10.1016/j.joms.2006.01.007. [DOI] [PubMed] [Google Scholar]
  • 46.Karlsson J, Martinelli A, Fathali HM, et al. The effect of alendronate on biomineralization at the bone/implant interface[J] J Biomed Mater Res A. 2016;104(3):620–629. doi: 10.1002/jbm.a.35602. [DOI] [PubMed] [Google Scholar]
  • 47.Skoglund B, Holmertz J, Aspenberg P. Systemic and local ibandronate enhance screw fixation[J] J Orthop Res. 2004;22(5):1108–1113. doi: 10.1016/j.orthres.2003.12.015. [DOI] [PubMed] [Google Scholar]
  • 48.Kurth AH, Eberhardt C, Muller S, et al. The bisphosphonate ibandronate improves implant integration in osteopenic ovariectomized rats[J] Bone. 2005;37(2):204–210. doi: 10.1016/j.bone.2004.12.017. [DOI] [PubMed] [Google Scholar]
  • 49.Eberhardt C, Schwarz M, Kurth AH. High dosage treatment of nitrogen-containing bisphosphonate ibandronate is required for osseointegration of cementless metal implants[J] J Orthop Sci. 2005;10(6):622–626. doi: 10.1007/s00776-005-0955-z. [DOI] [PubMed] [Google Scholar]
  • 50.Kellesarian SV, Abduljabbar T, Vohra F, et al. Does local ibandronate and/or pamidronate delivery enhance osseointegration? a systematic review[J] J Prosthodont. 2018;27(3):240–249. doi: 10.1111/jopr.12571. [DOI] [PubMed] [Google Scholar]
  • 51.Dikicier E, Karacayli U, Dikicier S, et al. Effect of systemic administered zoledronic acid on osseointegration of a titanium implant in ovariectomized rats[J] J Craniomaxillofac Surg. 2014;42(7):1106–1111. doi: 10.1016/j.jcms.2014.01.039. [DOI] [PubMed] [Google Scholar]
  • 52.Li JP, Li P, Hu J, et al. Early healing of hydroxyapatite-coated implants in grafted bone of zoledronic acid-treated osteoporotic rabbits[J] J Periodontol. 2014;85(2):308–316. doi: 10.1902/jop.2013.130046. [DOI] [PubMed] [Google Scholar]
  • 53.Kim I, Ki H, Lee W, et al. The effect of systemically administered bisphosphonates on bony healing after tooth extraction and osseointegration of dental implants in the rabbit maxilla[J] Int J Oral Maxillofac Implants. 2013;28(5):1194–1200. doi: 10.11607/jomi.2685. [DOI] [PubMed] [Google Scholar]
  • 54.Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis[J] J Steroid Biochem Mol Biol. 2014;142:155–170. doi: 10.1016/j.jsbmb.2013.09.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the american society for bone and mineral research[J] J Bone Miner Res. 2007;22(10):1479–1491. doi: 10.1359/jbmr.0707onj. [DOI] [PubMed] [Google Scholar]
  • 56.Liu Y, Hu J, Liu B, et al. The effect of osteoprotegerin on implant osseointegration in ovariectomized rats[J] Arch Med Sci. 2017;13(2):489–495. doi: 10.5114/aoms.2017.65468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Aspenberg P, Agholme F, Magnusson P, et al. Targeting RANKL for reduction of bone loss around unstable implants: OPG-Fc compared to alendronate in a model for mechanically induced loosening[J] Bone. 2011;48(2):225–230. doi: 10.1016/j.bone.2010.09.024. [DOI] [PubMed] [Google Scholar]
  • 58.Bernhardsson M, Sandberg O, Aspenberg P. Anti-RANKL treatment improves screw fixation in cancellous bone in rats[J] Injury. 2015;46(6):990–995. doi: 10.1016/j.injury.2015.02.011. [DOI] [PubMed] [Google Scholar]
  • 59.Sköldenberg O, Rysinska A, Eisler T, et al. Denosumab for treating periprosthetic osteolysis; study protocol for a randomized, double-blind, placebo-controlled trial[J] BMC Musculoskelet Disord. 2016;17:174. doi: 10.1186/s12891-016-1036-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Faverani LP, Polo TOB, Ramalho-Ferreira G, et al. Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats[J] Clin Oral Investig. 2018;22(1):255–265. doi: 10.1007/s00784-017-2106-2. [DOI] [PubMed] [Google Scholar]
  • 61.Mu C, Hu Y, Huang L, et al. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits[J] Mater Sci Eng C Mater Biol Appl. 2018;82:345–353. doi: 10.1016/j.msec.2017.08.056. [DOI] [PubMed] [Google Scholar]
  • 62.Maximov PY, Lee TM, Jordan VC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice[J] Curr Clin Pharmacol. 2013;8(2):135–155. doi: 10.2174/1574884711308020006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins[J] Science. 1999;286(5446):1946–1949. doi: 10.1126/science.286.5446.1946. [DOI] [PubMed] [Google Scholar]
  • 64.Staal A, Frith JC, French MH, et al. The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity[J] J Bone Miner Res. 2003;18(1):88–96. doi: 10.1359/jbmr.2003.18.1.88. [DOI] [PubMed] [Google Scholar]
  • 65.Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants[J] Clin Oral Implants Res. 2004;15(3):346–350. doi: 10.1046/j.1600-0501.2003.01015.x. [DOI] [PubMed] [Google Scholar]
  • 66.Ayukawa Y, Ogino Y, Moriyama Y, et al. Simvastatin enhances bone formation around titanium implants in rat tibiae[J] J Oral Rehabil. 2010;37(2):123–130. doi: 10.1111/j.1365-2842.2009.02011.x. [DOI] [PubMed] [Google Scholar]
  • 67.Du Z, Chen J, Yan F, et al. Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats[J] Clin Oral Implants Res. 2009;20(2):145–150. doi: 10.1111/j.1600-0501.2008.01630.x. [DOI] [PubMed] [Google Scholar]
  • 68.Kwon YD, Yang DH, Lee DW. A titanium surface-modified with nano-sized hydroxyapatite and simvastatin enhances bone formation and osseintegration[J] J Biomed Nanotechnol. 2015;11(6):1007–1015. doi: 10.1166/jbn.2015.2039. [DOI] [PubMed] [Google Scholar]
  • 69.Scott RS, Lintott CJ, Wilson MJ. Simvastatin and side effects[J] New Zealand Med J. 1991;104(924):493. [PubMed] [Google Scholar]
  • 70.Marie PJ. Strontium ranelate: a physiological approach for optimizing bone formation and resorption[J] Bone. 2006;38(2 Suppl 1):S10–S14. doi: 10.1016/j.bone.2005.07.029. [DOI] [PubMed] [Google Scholar]
  • 71.Tao ZS, Zhou WS, He XW, et al. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats[J] Mater Sci Eng C Mater Biol Appl. 2016;62:226–232. doi: 10.1016/j.msec.2016.01.034. [DOI] [PubMed] [Google Scholar]
  • 72.Li Y, Feng G, Gao Y, et al. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats[J] J Orthop Res. 2010;28(5):578–582. doi: 10.1002/jor.21050. [DOI] [PubMed] [Google Scholar]
  • 73.Linderback P, Agholme F, Wermelin K, et al. Weak effect of strontium on early implant fixation in rat tibia[J] Bone. 2012;50(1):350–356. doi: 10.1016/j.bone.2011.10.034. [DOI] [PubMed] [Google Scholar]
  • 74.O'Donnell S, Cranney A, Wells GA, et al. Strontium ranelate for preventing and treating postmenopausal osteoporosis[J] Cochrane Database Syst Rev. 2006;19(3):CD005326. doi: 10.1002/14651858.CD005326.pub2. [DOI] [PubMed] [Google Scholar]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology

RESOURCES