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Multiband entropy-based feature-
extraction method for automatic 
identification of epileptic 
focus based on high-frequency 
components in interictal iEEG
Most. Sheuli Akter1, Md. Rabiul Islam1, Yasushi Iimura2, Hidenori Sugano2, Kosuke Fukumori1, 
Duo Wang1, Toshihisa Tanaka   1,2,3,4,5 ✉ & Andrzej Cichocki1,5,6

Presurgical investigations for categorizing focal patterns are crucial, leading to localization and surgical 
removal of the epileptic focus. This paper presents a machine learning approach using information 
theoretic features extracted from high-frequency subbands to detect the epileptic focus from interictal 
intracranial electroencephalogram (iEEG). It is known that high-frequency subbands (>80 Hz) include 
important biomarkers such as high-frequency oscillations (HFOs) for identifying epileptic focus 
commonly referred to as the seizure onset zone (SOZ). In this analysis, the multi-channel interictal iEEG 
signals were splitted into segments and each segment was decomposed into multiple high-frequency 
subbands. The different types of entropy were calculated for each of the subbands and the sparse 
linear discriminant analysis (sLDA) was applied to select the prominent entropy features. Due to the 
imbalance of SOZ and non-SOZ channels in iEEG data, the use of machine learning techniques is always 
tricky. To deal with the imbalanced learning problem, an adaptive synthetic oversampling approach 
(ADASYN) with radial basis function kernel-based SVM was used to detect the focal segments. Finally, 
the epileptic focus was identified based on detection of focal segments on SOZ and non-SOZ channels. 
Eight patients were examined to observe the efficiency of the automatic detector. The experimental 
results and statistical tests indicate that the proposed automatic detector can identify the epileptic 
focus accurately and efficiently.

Epilepsy is one of the most common neurological disorders of the nervous system, affecting people worldwide 
at any age. According to the World Health Organization (WHO), approximately 50 million people globally have 
been diagnosed with epilepsy, which causes social impairment and carries a higher risk of death1,2. Epilepsy is 
defined as repeated and unpredictable seizures caused by abnormal neuronal firing in the brain3. Physicians 
distinguish the type of seizures as either focal (partial) or generalized, based on the location of abnormal brain 
activity and its propagation4,5. Most patients are prescribed inexpensive daily medication to control epileptic 
seizures, but some become resistant to them; thus, resectioning of the epileptic focus surgically may provide the 
best chance of seizure control6,7. Therefore, the localization of the epileptic focus is crucial for epilepsy treatment. 
The standard diagnostic modalities for epileptic focus detection are the investigation of seizure semiology, MRI, 
and EEG. When the epileptologist cannot determine an epileptic focus after using noninvasive methods, the 
implantation of intracranial electrodes to record iEEG during both of the interictal and ictal phases is indicated.

In practice, accurate detection of the epileptic focus is generally achieved by epileptologists observ-
ing long-term iEEG categorizing the patterns of the seizures. The visual examination of long-term iEEG is a 
time-consuming and laborious process, as the detection of the seizures from the interictal time in iEEG is the 
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most difficult task8,9, which puts a heavy burden on epileptologists and reduces their efficiency. Therefore, a 
computer-aided system with an effective algorithm that uses the iEEG signal to localize the epileptic focus would 
be invaluable.

Recent studies have proposed various machine learning-based methods for the problem of identifying focal 
and nonfocal iEEG signals10–13. Typical methods extract appropriate features that reflect the dynamics that char-
acterize normal and epileptic brain activities. Feature extraction is followed by a classifier such as linear discri-
minant analysis (LDA), k-nearest neighbor (kNN), or SVM. For machine learning-based methods, information 
theoretic features, particularly entropies, have been established as efficient features. Srinivasan et al. proposed the 
use of approximate entropy (AE) as a feature of artificial neural networks (ANNs) for automatic seizure predic-
tion14. Nicolaou et al.15 proposed a permutation entropy (PE) to classify epileptic signals from iEEG signals to 
use with SVM. Song et al. used sample entropy as a feature extraction method for detecting healthy vs epileptic 
seizures16. Recently, a variant of time domain multiband decomposition methods, which include empirical mode 
decomposition (EMD) and bivariate EMD, has been proposed to improve the accuracy of seizure detection in 
combination with the different types of entropy-based feature-extraction approaches17,18. The studies showed 
evidence that supports the use of entropy features to characterize normal and epileptic activities. Although the 
above methods have achieved promising results in detecting the epileptic events, these studies are restricted 
by the limited pairs of channels as well as lower frequency bands (0.5–150 Hz) used Bern-Barcelona and other 
datasets9,10,19,20.

However, the use of a low frequency band that partially excludes higher frequency components has some 
restrictions in real world applications. Recent studies in epilepsy21,22 have shown that high-frequency oscillations 
(HFOs), including ripple (80–250 Hz) and fast ripple (250–600 Hz), are promising biomarkers of the epileptic 
focus detection. It has been shown that fast ripple consists of normal brain activities associated with visual per-
ception, which also complicates the clinical use of HFOs as valid biomarkers to guide epilepsy surgery21–23.

In some EEG-based studies24–27, due to the non-linear and non-stationary properties of signals, the filter-bank 
approaches were introduced to improve the performance. Several machine-learning and statistical methods were 
combined with the multiband framework to extract noise-robust features from the narrow band signals24–26. 
In this study, we hypothesize that this filter-based approach is effective for identifying epileptic focus using a 
high frequency bands. The aim of this study is to identify epileptic focus (more specifically Seizure Onset Zone; 
SOZ)28 using multi-band entropy-based features with machine learning in high frequency components of inter-
ictal clinical iEEG. To the best of our knowledge, multi-band entropy-based feature extraction in conjunction 
with high-frequency components (ripple and fast ripple) has not been reported for use in the detection of epi-
leptic focus from continuous interictal iEEG signals. Considering the noise-robust features and the reduction of 
system complexity, the multi-band feature-extraction method has a great potential as the basis for designing a 
computer-aided system for localizing epileptic focus. The rest of this paper is organized as follows: Result section 
presents the simulated experiments with the proposed methods using iEEG data from eight epilepsy patients. The 
detailed description of the proposed automatic system used in the clinical situation, comparison with existing 
method to evaluate the proposed system, and future works are presented in the Discussion section. The conclu-
sion section presents the conclusion of this manuscript. The materials and methods section is presented the data-
set, data pre-processing, multiband analysis, entropy feature-extraction, feature selection, imbalanced learning 
problem, cross-validation design, and performance measurements metrics.

Results
First, the performances based on different algorithms, including filter-bank approach (FbA), FbA with ADASYN 
(FbA/ADA), and FbA with feature selection and ADASYN (FbA/FS/ADA), were compared with 10-fold 
cross-validation. Second, the performances of different approaches were considered and the optimum one was 
selected to simulate the results for eight epilepsy patients. The parameters for the proposed algorithms were sum-
marized as follows:

Algorithm 1- (FbA): In this case, the N  bandpass filters were implemented using a third-order Butterworth 
filter to subband the high-frequency components in iEEG. The different types of entropy measuring methods 
were applied onto each subband to extract features. The extracted features were input to SVM with a 10-fold 
cross-validation for classifying the focal and non-focal segments. Of note, the feature selection and oversampling 
technique (ADASYN) were not used.

Algorithm 2-(FbA/ADA): The N  bandpass filters and feature extraction were performed in the same way as 
in Algorithm 1. For handling the imbalanced learning problem, the ADASYN method was used in the training 
stage of the SVM for each cross-validation.

Algorithm 3-(FbA/FS/ADA): In this algorithm, subbanding and feature extraction were implemented in 
the same way as in Algorithm 1. The selection of dominant entropy features was performed using sparse LDA. 
Finally, the selected features were input to the SVM for classifying focal segments.

Effect of Feature Selection.  The combination of eight entropies were used to extract features from each 
subband defined in Eq. (16). From the eight entropy features, we hypothesized that some features would be more 
effective for the purpose of recognition. Therefore, we used sLDA weights from the training set induced in Eq. 
(17) to select the prominent features based on non-zero weights from each subband. In this study, we set the 
sparsity parameters δ = 3 and δ1 (Pt1: δ = −51 ; Pt2: δ = −51 ; Pt3: δ = −31 ; Pt4: δ = −51 ; Pt5: δ = −31 ; Pt6: 
δ = −41 ; Pt7: δ = −61 ; Pt8: δ = −31 ) based on the training set to achieve satisfactory results, where the absolute 
value of δ1 corresponds to the desired number of variables. Figure 1 shows the colormap of sLDA weights as a 
function of subbands on the vertical-axis and the different types of entropies on the horizontal-axis. The figure 
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indicates that the features with higher values of weights are more significant. To justify this hypothesis, the aver-
age area under the ROC curve (AUC) was derived with 10-fold cross-validation from individual entropy features, 
as well as the average weights across N  subbands, were estimated, as illustrated in Fig. 2. This figure shows the 
relationship between the weights of entropies and the AUC of individual entropies suggesting that the entropies 
with non-zero weights may improve the system performance. Therefore, to select the prominent features for the 

Figure 1.  The color map representing the sLDA weights of the entropies with each subband for eight patients. 
The entropies represented in this paper are: APE (Approximate Entropy), PE (Permutation Entropy), Sh 
(Shannon Entropy), Sp (Sample Entropy), Ts (Tsallis Entropy), S2 (Phase Entropy 2), S1 (Phase Entropy 1), and 
Ren (Reny s Entropy).

https://doi.org/10.1038/s41598-020-62967-z


4Scientific Reports |         (2020) 10:7044  | https://doi.org/10.1038/s41598-020-62967-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

purpose of classification, the entropies corresponding to non-zero weights were selected to evaluate the perfor-
mance of the system.

Performance Analysis with Different Cases.  To evaluate the performance in the different algorithms 
(FbA, FbA/ADA, and FbA/FS/ADA), the AUC was performed for eight patients shown in Table 1. The AUC of a 
method in cases of imbalanced learning is equivalent to the probability of ranking a randomly chosen positive 
instance higher than a randomly chosen negative instance29. In this experiment, we set all parameter for ADASYN 
according to the study30 to balance the training features. The AUC for the algorithm FbA/ADA with feature selec-
tion exhibits superior results for all eight patients. The reason for lower performance using the FbA method is that 
the high degree of imbalance distribution between the minority (focal segments) and majority (non-focal 

Figure 2.  Average AUC obtained from an individual entropy feature (bar) and its average sLDA weights across 
subbands (blue). Error bars indicate standard errors.
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segments) class may provide biased decision boundary used in SVM training. In the test of the statistical signifi-
cance of the methods, the result of Friedman’s ANOVA showed a significant main effect on AUC ( < .p 0 05). 
Performing a Tukey-Kramer-based post-hoc test, the method using FbA/FS/ADA achieved significantly higher 
AUC across all eight patients than the other methods (FbA vs FbA/ADA: < .p 0 001; FbA/ADA vs FbA/FS/ADA: 

< .p 0 001).

Results with focal Segments-spotting.  In this section, we provide the results of individual focal seg-
ment detection based on the optimal algorithm (FbA/FS/ADA) with eight epilepsy patients. The result showed 
in the above section that the selection of prominent features and the oversampling method can significantly 
improve the performance of an automatic system. Hence, we are the first one to use high-frequency components 
(ripple and fast ripple) from interictal iEEG, the performances of localizing individual segments were observed 
in terms of sensitivity, specificity, precision, fall-out, and F-score for the comparison study similar to HFOs- and 
low frequency-based related studies9,10,19,20,31–35 computed from the confusion matrix (shown in Table 6). It is 
observed from the Table 2 that the proposed method achieved the highest performance for localizing individual 
segments with the adult patients Pt5 (SEN: 79.25%; fall-out: 2.50%), Pt6 (SEN: 54.82%; fall-out: 3.58%), and Pt8 
(SEN: 88.52%; fall-out: 1.46%). The positive likelihood ratios (PLRs) were also used to evaluate the studies in 
different research36–38. The PLRs for the adult patients (Pt5, Pt6, and Pt8) were achieved 31.70, 15.31, and 60.63, 
respectively. For the deep sheeted FCD patients (Pt2 and Pt7), the surgeon implanted the small electrodes ver-
tically on the sulcus. The sensitivity and Fall-out were Pt2 (SEN: 45.93%; fall-out: 13.36%), Pt7 (SEN: 49.02%; 
fall-out: 16.24%) and the PLRs were achieved 3.44 and 3.02 for patients Pt2 and Pt7, respectively. In case of 
pediatric patients, the sensitivity and Fall-out were Pt1 (SEN: 23.70%; fall-out: 3.74%), Pt3 (SEN: 37.46%; fall-out: 
17.18%), and Pt4 (SEN: 42.96%; fall-out: 15.93%). The proposed method provided the PLRs of 6.34, 2.18, and 2.70 
for the patients Pt1, Pt3, and pt4, respectively.

Results with Channel Identification.  Figure 3 shows a graphical representation with the localization of 
the focal and non-focal segments, which help the epileptologists in two ways: (1) to observe the localization of the 
focal and non-focal segments over duration of the iEEG, and (2) the number of detected focal segments corre-
sponding to the seizure onset and non-seizure onset channels. This provides useful information about the active 
electrodes located close to the epileptic focus. The vertical axis in the color map (left) represents the electrodes 
and the horizontal-axis shows the segment index. Each yellow spot in the color map represents the detected focal 
segments. The right side of the color map in each patient indicates the number of detected focal segments (x-axis) 
in each electrode (y-axis) in which a group of bars (red) represents “SOZ” and black bars without color indicates 
the “non-SOZ”. It is observed from the Fig. 3 that a sharp yellow spotted areas are clearly visible for each electrode 
of SOZ for the adult patients Pt5, Pt6, and Pt8. The detected focal segments (yellow spot) for the patients Pt2 and 

Patient ID FbA FbA/ADA FbA/FS/ADA

Pt1 0.64 0.77 0.79

Pt2 0.71 0.78 0.83

Pt3 0.52 0.52 0.63

Pt4 0.66 0.73 0.75

Pt5 0.93 0.95 0.97

Pt6 0.90 0.94 0.97

Pt7 0.65 0.70 0.70

Pt8 0.96 0.98 0.99

Mean 0.74 0.79 0.83

Table 1.  Area Under the ROC Curve (AUC) comparison with different cases (FbA, FbA/ADA, and FbA/FS/
ADA) for eight patients. The average AUC is estimated for individual segments with 10-fold cross-validation.

Patient 
ID

SEN 
[%] SPE [%]

Precision 
[%]

Fall-out 
[%] F-score

Pt1 23.70 96.26 25.00 3.74 0.24

Pt2 45.93 86.64 43.01 13.36 0.44

Pt3 37.46 82.83 30.37 17.18 0.34

Pt4 42.96 84.07 19.69 15.93 0.27

Pt5 79.25 97.50 62.57 2.50 0.70

Pt6 54.82 96.42 58.96 3.58 0.57

Pt7 49.02 83.76 27.71 16.24 0.35

Pt8 88.52 98.54 71.34 1.46 0.79

Mean 52.70 90.75 42.33 9.24 0.46

Table 2.  Experimental results for individual segments using the optimal method (FbA/FS/ADA).
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Pt7 with deep sheeted FCD were widely distributed through the non-SOZ. The possible reason of widely distri-
bution was that the patients was the BOS-type FCD in which surgeon implanted vertical electrodes into the deep 
in the brain. A similar scenario was observed in the case of pediatric patients (Pt1, Pt3, and Pt4). Table 3 shows 
the results of identifying the epileptic focus for each patients by measuring the AUC across all possible thresholds 
based on detected focal segments in the SOZ and non-SOZ (see in Fig. 3).

Figure 3.  Color map representing the localization of segments (yellow spots) with respect to channels for the 
eight patients using our proposed method. The bar with each color map represents SOZ (red) and non-SOZ 
(black) with number of detected focal segments.
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Computational Cost.  The average computational time for each entropy with 10 subbands was measured 
using Python on iMac Pro (with Intel Xeon W processor and 128 GB RAM). Note that the average results are 
estimated with 100 runs at the testing phase to detect a single segment. Table 4 shows the average computational 
time (in seconds) at each entropy with 10 subbands. It is observed that the phase entropy requires the highest 
computational time. The entropy with Ts, Ren, Sh, and PE requires shorter time compared to others. Since, we 
used the combination of all eight entropies to design the whole system, the average computational time with eight 
entropies and 10 subbands was 56.51 s to test a single segment.

Discussion
According to the clinical guidelines related to epilepsy surgery, epilepsy surgeon should consider implanting the 
intracranial electrodes to observe the seizure onset zone (SOZ), irritative zone, and symptomatic zone before the 
epileptic focus resection for patients with medically intractable epilepsy. The epileptic zone includes SOZ and a 
part of irritable zone and symptomatic zone. To determine the epileptic focus, the epileptologists need to analyse 
and label 3 to 7 days iEEG data depending on the patients conditions. In the proposed automatic system, we 
need to label only 30-minutes of the interictal iEEG to localize the epileptic focus, instead of 3 to 7 days labeling. 
An automatic detection or estimation of SOZ from short period of interictal recording provide epileptologists 
a great assistance and can increase the number of iEEG analysis for patients with intractable epilepsy. A recent 
study developed EPINETLAB, a multi-graphic user interface (GUI) automated software, to help researchers and 
clinicians to detect HFOs and identify the SOZ using iEEG/MEG data39. To perform a preliminary validation 
analysis of EEG data, they used six patients with drug-resistant epilepsy and analyzed only the ripple frequency 
band (80–250 Hz). However, a number of recent studies have found that fast ripple (200–600 Hz) could be more 
valid and reliable biomarkers than ripple bands to guide epilepsy surgery21–23.

Several studies exploiting Bern-Barcelona and Bonn EEG datasets9,10 have been reported for epilepsy-related 
signal classification. For instance, the Bonn datasets consist of five EEG datasets denoted as Set A (normal: healthy 
awake and eyes open), Set B (normal: healthy awake and eyes closed), Set C (Epileptic: interictal), Set D (Epileptic: 
interictal), and Set E (epileptic: ictal) with 100 single-channels and the time duration of each channel was 23.6 s. 
Nicolaou et al. used approximate entropy as a feature and employed SVM classifier for identifying normal vs ictal 
EEG with average accuracy of 93.55%15. Guo et al. proposed an automatic epileptic seizure detection system with 
approximate entropy features derived from multi wavelet transform, and combined with an artificial neural net-
work to classify the existence or absence of seizure with average accuracy 99.85% for two cases: (normal vs ictal), 
and the combination of normal and interictal vs ictal40. In another study, wavelet packet entropy and hierarchical 
EEG classification were proposed with average accuracy of 99.44% for normal vs ictal41. A method based on dis-
crete wavelet transforms (DWT) with entropy features was proposed, leading to a classification accuracy of 84% 
using k-nearest neighbor (kNN), probabilistic neural network (PNN), fuzzy classifier, and least squares support 
vector machine (LS-SVM)42. Mursalin et al. proposed an automated epileptic seizure detection approach using 
improved correlation-based feature selection and random forest classifier (RFC) with average accuracy of 
98.44%43. However, the studies with a variant of EEG and iEEG datasets including Friburg19, CHB-MIT20, 
Children’s hospital Boston datasets44 etc. were investigated to identify the seizure events based on machine learn-
ing approaches. All the above studies used only lower frequency bands (0.5–150 Hz) for limited pairs of electrodes 
with well balanced problems. In this study, we have considered the full clinical perception, including 
high-frequency components (100–600 Hz) and multi-channels imbalanced problem, which offers the practical 
implementation of clinical utilization. Due to the highly imbalanced problem of the iEEG data, we used AUC here 
instead of using classification accuracy as system evaluation criterion. The proposed method detects epileptic 
focus for different epilepsy mechanisms patients (age and pathological type) with an average AUC of 0.86. We also 
observed that the entropy features, such as APE, PE, and Sp, are more discriminative in high-frequency bands. 
These findings may provide an excellent tool when appropriate methodology will be combined with the high- and 
low-frequency bands to locate the epileptic focus.

Recently, Ullah et al. has proposed an automated system for epilepsy detection for Bonn dataset based on deep 
learning approach, yielding 99.1% accuracy45. A similar dataset was used to design a deep convolutional neural 
network (CNN) with 13 layer for categorizing the normal, preictal, and seizure class and obtained an average 
accuracy of 88.7%, a specificity of 90% and a sensitivity of 95%46. Although, the deep-learning based automatic 
systems have improved the system performance compared to simpler classier SVM, it needs a large amount of 
training data in order to show such remarkable performance. On contrary to the deep learning, the SVM method 
is easy to understand and provides consistent performance. The epileptologists can efficiently interpret the classi-
fier outcome to take the right medical decision.

Patient ID Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8 mean

AUC 0.90 0.79 0.71 0.79 0.96 0.94 0.81 0.99 0.86

Table 3.  Average AUC with 10-fold cross-validation for identifying epileptic focus.

Methods APE PE Sh Sp Ts
Phase  
(S1 and S2) Ren

Total 
Time (s)

Time (s) 12.40 0.032 0.010 12.40 0.008 31.66 0.008 56.51

Table 4.  Average computational time (s) with each entropy for 10 subbands.

https://doi.org/10.1038/s41598-020-62967-z


8Scientific Reports |         (2020) 10:7044  | https://doi.org/10.1038/s41598-020-62967-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

A comparison study with Bern-Barcelona dataset using time-domain multiband analysis, including EMD 
and BEMD, was reported by Itakura et al.18, improving the performance of the system with a 86.89% average 
accuracy for identifying the seizure patterns. However, this type of analysis is only suitable for single and bivariate 
iEEG signals. In the case of multi-channel iEEG signals, the number of extracted bands over channels are not 
consistent. Thus, the EMD and BEMD methods are not suitable for multi-channel iEEG signals. Considering 
real time implementation, a filter-bank technique is more convenient for decomposing high-frequency bands 
(100–600 Hz), has little computational cost, and decreases the system complexity when compared with other 
multiband approaches.

In epilepsy studies for identifying epileptic focus, the visual inspection of iEEG time series have demonstrated 
that HFO may occur during ictal, preictal, and interictal states47–50, and the rate of HFOs tends to be higher 
in SOZ21,50–52. To detect HFOs, several automatic HFO detectors have been proposed including the methods 
of artifact rejection, estimating the energy of the signal using Root Mean Square (RMS) amplitude, short-time 
Linelength or others53–56. However, HFOs-related studies to identify the possible seizure onset channels need the 
long-time iEEG data to calculate the baseline. Jrad et al. proposed automatic HFO detection with multi-class SVM 
in depth-EEG signals57. In their study, the performance evaluation matrices for evaluating the system were used in 
terms of sensitivity and false discovery rate (FDR). The reason for using FDR was that the amount of true negative 
(TN) was large enough in HFOs detection task. They achieved an average result with five drug-resistant epilepsy 
for Ripple (Sensitivity: 81.1% and FDR: 30.2%) and fast ripple (Sen: 74.6% and FDR: 6.3%). Guo et al. proposed 
magnetoencephalography-based (MEG) HFOs detector using stacked sparse autoencoder (SSAE) for identifying 
the HFOs and normal control (NC) with well balanced problem achieving 89.9% in accuracy58. The method CNN 
was used by Johansen et al.59 for identifying spikes and HFOs with five epilepsy patients with an average AUC of 
0.94. To detect spikes, ripples, ripples-on-spikes (RonS), a long short-term memory neural network (LS-MNN) 
with balanced number of training samples was used by Medvedev et al. achieving more than 90% accuracy31. 
Zuo et al.33 proposed the CNN-based method for identifying the two kind of HFOs in ripple and fast-ripple 
separately and achieved average results with sensitivity (77.04% and 83.23% for ripples) and specificity (72.27% 
and 79.36% for fast ripples) compared to four traditional automated methods proposed in the RIPPLELAB tool-
box32. The combination of short-time energy (STE) and CNN also used in recent study for identifying HFOs60. In 
their study, the performance of the system in terms of sensitivity and FDR are used to evaluate their system and 
compared with three related existing studies32,36,57. They achieved higher average results with five adult patients 
for ripple (Sen: 81.1% and FDR: 30.2%) and fast ripple (Sen: 74.6% and FDR: 6.3%). However, their above studies 
focused on the detection of HFOs in ripple and fast ripple iEEG data separately and the performance evaluation 
metrics of their system were mainly used based on their balanced or imbalanced problems. Compared to the 
above HFOs-related studies, we used only 30-min of iEEG data with SOZ and combined the ripple and fast 
ripple bands together with the multi-band fashion to identify electrodes related to epileptic events. The average 
sensitivity, specificity, and Fall-out for individual segment identification with eight patients (including different 
pathological types with pediatric and adult patients) was 52.70%, 90.75%, and 9.24%, respectively. The average 
AUC for identifying epileptic focus was 0.86 across eight patients. However, some channels for each patient have 
created a block of epileptic activity detection (see in Fig. 3). Due to the complex nature of the biological systems, 
the interictal iEEG are strongly non-stationary, which do not allow the linear methods to adapt perfectly over the 
whole time windows that is a main reason for creating the block of epileptic activity detection.

In order to achieve a more practical system for real-life applications, we have considered further improve-
ments in the following directions. First, we used only 30-min of signal of the interictal phase, whereas an epilep-
tologist can predict the epileptic focus using the proposed automatic system. We need to expand the automated 
system using the detection of seizure discharges. Second, the influential parameters to design the system were 
used based on the previous studies30,42,61. The values of the parameters as well as the choice of optimal subbands in 
multi-band analysis are required to adjust in a data-adaptive nature in order to further improve the system. Third, 
this study evaluate the subject-dependent system based on the SOZ from the discharges of habitual seizures. Due 
to subject-specific nature of iEEG signals, the distributions of extracted features among patients were distinct. In 
machine-learning research, several studies proposed the use of domain transfer learning to adapt the different 
distributions of features extracted from different subjects62,63. We strongly believe that domain transfer learning to 
implement subject-independent system could be one of the best solutions for future study. However, the problem 
is very challenging due to very different locations of electrodes and subjects-specific nature of epilepsy events. In 
addition, Islam et al.26 reported that the appropriate selection of operational subbands can significantly improve 
the system performance due to subject-specific nature of EEG signals. Therefore, the possible extension of this 
study is to detect the most significant subbands in the high-frequency components, which may further improve 
our system performance in the future. Thus, there are several avenues for further research to design the automatic 
system with feature-extraction and classification.

Conclusion
This study developed an effective epileptic focus detection method from high-frequency components for interic-
tal iEEG data. Eight feature-extraction methods with multi-band analysis were proposed and tested. We evaluated 
the proposed method for eight epilepsy patients considering different ages and pathological types (adult and pedi-
atric) to investigate efficiency in the high-frequency components (ripple and fast ripple). The detection results 
were broader around the SOZ electrode ranges for the patient of BOS-FCD type pathology. Moreover, we had the 
variability of AUC with the patients, in which the pediatric patients have a tendency toward less sensitivity than 
the adult patients.
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Materials and Methods
Dataset.  More than 100 patients with focal cortical dysplasia (FCD) were studied at the Juntendo University–
Epilepsy Center in Tokyo, Japan. This study was approved by the ethics committee of Juntendo University Hospital 
as well as the Tokyo University of Agriculture and Technology, Japan. All methods were performed in accordance 
with relevant guidelines and regulations. All the patients signed the informed consent for a research protocol. 
During pre-surgical evaluation, several non-invasive diagnostic protocols, such as seizure semiological evalua-
tion, interictal scalp EEG, MRI, molecular imaging, and psychomotor-development testing, were performed to 
determine the electrode locations for each patient. Video-EEG monitoring was also indicated for drug-resistant 
epilepsy cases as a pre-surgical evaluation.

The subdural electrodes (4-mm diameter and 10-mm distance) (UNIQUE MEDICAL Co, Tokyo, Japan) were 
implanted and covered almost the entire surface over the FCD and the adjacent cortex. In patients with the bot-
tom of sulcus (BOS) type of dysplasia, the surgeon dissected the cortical sulcus and implanted small electrodes on 
the vertical sulcus. The iEEGs were acquired using the Neuro Fax digital video EEG system (NIHON-KODEN, 
Tokyo, Japan) with a sampling rate of 2 kHz. The number of electrodes were defined for each patient based on 
an epileptologist s review during iEEG data recording. Among 100 patients, epileptologists selected only eight 
patients with SOZ and a positive (focal) label was assigned to a channel judged to a seizure onset electrode by 

Patients 
ID

Age and 
gender Pathology Location

Number of 
electrodes Seizure onset channels

Suspicious 
seizure 
onset

Pt1 5/F Type 2B surface 60 10,11,16 49,51

Pt2 39/F Type 2B bottom 50 9, 10, 13, 14, 17, 18, 26, 
32, 38

Pt3 5/M Type 2B both 42 7, 8, 9, 10, 11, 17, 18

Pt4 6/M Type 2B surface 36 16,22,23

Pt5 20/M Type 2A surface 60 34, 40, 41 24,35,50,8

Pt6 15/M Type 2B surface 70 9,10,11,12,32,37 38

Pt7 32/M Type 2B bottom 71 15,16,29,30,35,36,42,48

Pt8 25/M Type 2B bottom 76 6,7,8

Table 5.  The summary of interictal iEEG data for individual patients with focal cortical dysplasia (FCD). Male 
and female are indicated as M and F.

Figure 4.  The 3D representation of the brain with interictal electrodes (yellow) of eight patients used from the 
dataset. The red circle represents the SOZ marked by epileptologists.

Predicted positive Predicted negative

Actual positive TP: True Positive FN: False Negative

Actual negative FP: False Positive TN: True Negative

Table 6.  Confusion matrix for a two-class problem.
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epileptologists, and a negative (non-SOZ) label was given to the rest of the channels. Therefore, data on eight 
patients obtained from SOZ and non-SOZ electrodes were used to evaluate the proposed method. Table 5 shows 
the summary of the iEEG dataset from the eight patients. The 3D representation of the brain and the electrode 
positions during recording are shown in Fig. 4 for each patient. The red circle represents the SOZ21,22 marked by 
epileptologists.

Data Pre-processing.  The multi-channel interictal iEEG data were recorded for at least three days until 
an adequate number of habitual seizures were obtained for analyzing. The epileptologists reviewed the interictal 
iEEG recordings and annotated the electrodes that had possibly indicated the SOZ. In this study, we used 30-min 
interictal iEEG data from each patient and split the 30-min iEEG signals into 20-s segments resulting in total 90 
segments. The label (SOZ/non-SOZ) was given to each electrode, we assumed that all the segments in SOZ can 
be considered as focal segments and the segments for other channels were assumed to be non-focal segments. 
A third-order Butterworth bandpass filter was applied to extract the high-frequency components (100–600 Hz) 
from each interictal iEEG segment.

Multiband Analysis.  In practice, the EEG time series that exhibits nonstationary behavior with a variety of 
neurological events may contain noise that can deteriorate the performance of the system in a single-band 
approach. Therefore, a filter bank, which is an array of bandpass filters, was applied to decompose an EEG signal 
into a set of analysis signals exhibiting multiple subband frequency components64,65. To develop more accurate 
detection of brain activities related to the specific mental tasks, EEG-based studies proposed the filter-bank 
method to divide the wide frequency ranges into narrow subbands24–26. More specific, Higashi et al. proposed a 
filter-bank approach to improve the performance of MI-BCI, which decomposed the 4–40 Hz frequency ranges 
into 6 subbands with a bandwidth of 6 Hz each66. Ang et al. divided the similar frequency ranges (4–40 Hz) into 
narrow subbands with a bandwidth of 4 Hz each24. In signal processing study, the choice of subbands should be as 
narrow as possible to achieve more accurate detection of automatic system similar to these EEG-BCI24–26,66. 
However, the choice of dividing the wide frequency bands into narrow subbands indeed depends on system per-
formance, real-time applications as well as the reduction of system complexity18,25,67. Considering system perfor-
mance as well as the reduction of the system complexity, the proposed multiband approach divided the 
high-frequency bands, including ripple (100–250 Hz) and fast ripple (250–600 Hz), into 10 subbands, each of 
which has a band width of 50 Hz. The subbands are labeled …S S S, , , N1 2  as shown in Fig. 5, where N  is the total 
number of subbands ( =N 10).

Entropy Feature Extraction.  To extract features characterizing the complexities of a time-series from 
interictal iEEG signals, several entropy-based methods are available. It has been reported in different epilepsy 
studies17,18,61 that using a combination of different entropies to extract features from an EEG signal can improve 
the classification performance. Therefore, the representation of the eight entropies with a multiband approach 
was chosen to extract features in this study. The details of the eight entropy measures used in this study are sum-
marized in the following sections.

Figure 5.  The different components of the proposed system for epileptic focus identification. The values 
…S S S, , , N1 2  represent the subbands and N represents the total number of subbands.
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Approximate Entropy.  Approximate entropy (APE) was first proposed by Pincus et al. to measure the amount of 
regularity in the time-series68. It is extensively used in many areas of biomedical signal processing, such as EEG69 
and ECG signal analysis70. To estimate the approximate entropy (APE) from each segment, let us define as a time 
series x i( ) of the n-th subbands Sn of each channel. The time series x i( ) can be represented − +L d 1 vectors as 

… − +X X X L d(1), (2), , ( 1), where L is the length of signal (in our case =L 40, 000 for each channel of a seg-
ment due to 2 kHz sample frequency). Each X i( ) vector can be expressed as:

= + … + − ∈X i x i x i x i d( ) [ ( ), ( 1), , ( 1)] IR , (1)d

where d is the embedding dimension and for each i, ≤ ≤ − +i L d1 1. APE is defined as:

APE d r L
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where C r( )i
d  is a correlation integral indicating the probability of the vector X i( ), which remains similar to X j( ) 

within tolerance limit r. The C r( )i
d  is defined as71,72:
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where  ⋅( ) is the indicator function and the ⋅dist( ) represents the distance between two vectors X i( ) and X j( ). In 
this study, the value of the r parameter is chosen as the 0.2 times the standard deviation of the data, and =d 2 
used in the study68.

Sample Entropy.  Sample entropy (Sp) is a modified version of APE intended to resolve a weakness of APE73. The 
main drawback of APE is a biased estimate due to self-matches of templates. Sp reduces the bias caused by the use 
of the self matches in the computation of APE73. Sp is defined for a given time series x i( ) as:
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where X i( ) is a vector induced from Eq. (1) and  ⋅( ) is the indication function to count the true condition number 
excluding the self-matches  − = ≤dist X i X i r( ( ( ) ( )) 0 )68. In this study, the parameters r and d were set to the 
similar to the approximate entropy.

Permutation Entropy.  Permutation entropy (PE) is a simple and robust method for estimating the complexity of 
a time series used for automated seizure prediction74. For a given time series x i( ), each vector 

τ= + …X i x i x i( ) [ ( ), ( ), ,x i d( ( 1) )]τ+ − , where the d and τ  are the embedding dimension and time lag, 
respectively. Let us define a permutation of … d[1, 2, , ] by Π = …j j j[ , , , ]d1 2  in such a way that 

τ τ+ − ≤ + − ≤ …x i j x i j( ( 1) ) ( ( 1) )1 2 x i j( ( 1) )d τ≤ + − .  T h e n ,  w e  c a n  d e f i n e 
τ τ τ= + − + − … + −

∼X i x i j x i j x i j( ) [ ( ( 1) ), ( ( 1) ), , ( ( 1) )]d1 2 . For the set of vectors τ
=
− −X i{ ( )}i

L d
0
( 1) , the prob-

ability of each possible permutation Πk ( = …k d1, 2, , !) can be introduced as Π Π τ= − −p C L d( ) ( )/( ( 1) )k k , 
where L is the length of time series x i( ) and ΠC( )k  is the number of occurrences of the order pattern Πk. The PE 
can be defined as:

∑ Π Π= −
=

PE p p( ) log ( ),
(8)k

d

k k
1

!

2

In this study, the parameters d and τ were set to 3 and 1, respectively.

Spectral Entropy.  Spectral entropies quantify the complexity of a time series based on the power spectrum75. 
Several studies have proposed the use of spectral entropy, including Shannon (Sh) and Reny’s entropy (Ren), to 
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characterize the seizure activities75–77. To obtain the power level for each frequency, the Fourier transform of the 
time series x i( ) is used. The normalization of the power pf  was estimated as:

=
∑

p
P
P

,
(9)

f
f

f

where Pf  is the power level of the frequency component. The entropies defined as Sh and Ren are estimated in 
follows75:

∑= −Sh p pln( ),
(10)f

f f
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Ren p( ) 1
1

ln ,
(11)f

f
2

where α is the order of Reny’s entropy (α = 2).

Phase Entropy.  Phase entropies are defined through a bispectrum known as higher order spectra78. The bispec-
trum of a time series x i( ) can be defined as:

⁎B f f E F f F f F f f( , ) [ ( ) ( ) ( )], (12)1 2 1 2 1 2= +

where E represents the expectation operator of a random variable. The F is the Fourier transform of the time 
series x i( ) and F* is its conjugate. The two types of phase entropy, S1 and S2, can be defined as:
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Tsallis Entropy.  Tsallis entropy is the generalized version of Shanon entropy and controls the trade off between 
the contributions from the tails and the main mass of the distribution79. Tsallis entropy is defined as79:

=
− ∑

−
Ts

p

q

1

1
,

(15)
f f

q

where pf  is the normalization of power computed from the Eq. (9) and q is a real number, frequently called the 
entropic-index, that characterizes the degree of non-extensivity of the system79,80. In this study, we set =q 2.

Feature Selection.  In machine learning, one of the challenges is the selection of the best feature set from all 
the available feature space reported in different studies25,81–83. The selection of entropy features extracted from 
interictal iEEG data could provide a more accurate classification with respect to the whole set of features. To select 
more relevant entropy features, sparse LDA is a recently advanced technique84,85, which reveals discriminant 
directions of a few variables instead of all the variables used in the standard LDA86,87. After extracting entropy 
features from an interictal iEEG segment, the entropies of n-th subband for a channel can be defined as:

= … ∈u u uv [ , , , ] IR (16)n n n n
D D(1) (2) ( )

where vn denotes the combination of entropies ( =D 8) extracted from the n-th subband of a channel using the 
above feature-extraction methods. We can calculate the entropies for all channels with each segment and finally 
stacked all of the segments to form the training features ∈ ×M IRn

H D, where = ×H ch s such that ch and s are the 
total number of channels and segments, respectively. The sparse LDA criterion from the set of the training fea-
tures Mn and class Cn for n-th subband is defined sequentially as88:

ˆ ˆ C M
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, 2
2

2
2

1 1
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θ β θ β δ β δ β

θ θ

= − + +
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θ β

where θ = (1, 1)n
T is the initialization vector. The δ and δ1 are tuning parameters used to achieve non-zero ele-

ments in each discriminative direction. By solving Eq. (17), we will achieve the ˆ ˆ ˆ ˆ[ , , , ]n n n n
D T(1) (2) ( )

β β β β= … . The 
parameters δ and δ1 were tuned such that β̂n has G non-zero elements. Let us define the index of the β̂n as 

β= ≤ ≤ | ≠I i i D{ , 1 0}n n
i( )ˆ . The features vn for n-th subband with a channel can be defined as:
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= … ∈ u u uv [ , , , ] IR (18)n n
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Finally, feature V* is defined by concatenating features vn of N  subbands for a channel as:

= … ∈  

⁎V v v v[ , , , ] IR (19)N
NG

1 2

After applying sLDA, the selected training features for N  subbands can be written as:

ν = = … = …i I j Jv v{ , : 1, , ; 1, , } (20)F
i

N
j

in in in in
( ) ( )in in⁎ ⁎

The feature vector of the iin-th sample of SOZ channel is denoted by ⁎v F
i( )in  and the feature vector of the jin-th sam-

ple of non-SOZ channel is denoted by ⁎( )v N
jin . Note that the dataset is generally imbalanced say I Jin in.

Imbalanced Learning Problem.  In the case of epileptic focus detection, the number of non-SOZ elec-
trodes representing the majority class is much higher than the SOZ electrodes (minority class). This can produce 
several difficulties in standard machine learning methods due to an imbalance in class distribution and concept 
complexity30,89,90. Therefore, the use of sampling methods in imbalanced learning applications requires the mod-
ification of an imbalanced data set by some mechanisms in order to provide a balanced distribution89,90. Recent 
studies have shown that a balanced data set with several base classifiers provides improved classification perfor-
mance compared to an imbalanced data set30,89–91. In this section, we generate surrogate data using the adaptive 
synthetic (ADASYN) approach, which is one of the solutions used to solve the imbalanced learning problem. The 
balance set ν can be defined from the training feature set ν induced from Eq. (20) as:





˜⁎ ⁎ ⁎ ˜ν = = … = … = …i I j J i Iv v v{ , , : 1, , ; 1, , ; 1, , }, (21)F
i

N
j

F
i

in in in in in in
( ) ( ) ( )in in in

where, + =I I Jin in in. The following algorithm, proposed by He et al.30,89, is employed here to generate surrogate 
samples ⁎ ˜v F

i( )in .

Step 1 Calculate the number of synthetic data examples that need to be generated for the entire focal class by:

β= − ×I J I( ) (22)in in in

The β represents an arbitrary number in the range of 0 to 1 to specify the desired balance level after the synthetic 
data generation process. We set the β in Eq. (22) to 1, which corresponds to fully balanced data30.

Step 2 For each example ⁎v F
i( )in  in the focal class, find the K-nearest neighbors according to the Euclidean dis-

tance and calculate the ratio Γiin
 as follows:

Γ
Θ

= = …
K

Z
i I

/
, 1, 2, , , (23)i

j
in inin

in

where Θ jin
 is the number of samples in the K-nearest neighbor of ⁎( )v N

jin  that belong to the non-focal class and Z is 
a normalization factor such that Γiin

 is a distribution function Γ∑ =( 1)i iin in
.

Step 3 Determine the number of synthetic samples to be generated for each ⁎v F
i( )in  in the focal class as:

Γ= × g I (24)i i inin in

Step 4 Generate giin
 synthetic data samples for each sample of focal class using SMOTE algorithm92 as:

⁎ ˜ ⁎ ⁎ ⁎v v v v( ) (25)F
i

F
i

F
i

F
i( ) ( ) ( ) ( )in in in in δ= + − ×

where 


⁎vF
i( )in  is a randomly chosen focal data example from the K-nearest neighbors ( =K 5) for ⁎v F

i( )in  and δ denotes 
the random number belonging to [0, 1]. The other parameters for ADASYN were used as default setting30.

Cross-validation Design.  To evaluate the developed system, we needed to divide the data into training and 
test sets, which was the critical step due to an imbalanced number of focal and non-focal channels. To optimally 
divide the data into training and test sets, this study proposes k-fold cross-validation technique ( =k 10) by divid-
ing 90 segments into k subsets of equal size. Among the k subsets, a single subset is retained for testing the model, 
and the remaining ( −k 1) subsets are used as training. As mentioned, ADASYN was applied to highly imbal-
anced feature sets in the training stage to balance the class features. The cross-validation process is then repeated 
k times and the result of a system is taken by averaging all the runs.

Performance Measurement for Segments.  Instead of using classification accuracy as a system evaluation cri-
terion for imbalanced datasets, a set of assessment metrics related to receiver operating characteristics (ROC) graphs29 
were used as performance measurements. Under the imbalanced learning condition, the classification accuracy is not 
sufficient as a standard performance measure29,93–95. Therefore, the representation of classification performance can be 
derived from the confusion matrix, as illustrated in Table 6. Based on Table 6, the evaluation metrics can be defined as:

https://doi.org/10.1038/s41598-020-62967-z


1 4Scientific Reports |         (2020) 10:7044  | https://doi.org/10.1038/s41598-020-62967-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 Sensitivity (SEN) or recall:

=
+

×SEN TP
TP FN

100%,
(26)

where TP is the number of correctly detected segments from the total number of focal segments in the SOZ 

channels and FN  indicates the number of incorrectly detected segments from the total number of focal seg-
ments in the SOZ channels.

•	 Specificity (SPE):

=
+

×SPE TN
TN FP

100%,
(27)

where TN  is the number of correctly detected segments from the total number of non-focal segments in the 

non-SOZ channels and FP represents the number of incorrectly detected segments from the total number of 
non-focal segments in the non-SOZ channels.

•	 Precision or positive predictive value (PPV):

=
+

×Precision TP
TP FP

100%
(28)

•	 Fall-out or false positive rate (FPR):

=
+

×FPR FP
TN FP

100%
(29)

•	 F1 score is the harmonic mean of preision and sensitivity defined as:

= ⋅
×
+

F score Recall precision
Recall precision

2
(30)1

Performance Measurement for Channels.  The performance of each patient to identify epileptic focus 
was estimated by using AUC-ROC96. The sensitivity (SEN) and false positive rate (FPR) of the channels for each 
fold were computed using each threshold values (in our case, zero to maximum number of detected focal seg-
ments for each fold). After achieving SEN and FPR of the channels with each fold, we estimated the AUC by using 
trapezoid rule96 and average all the folds to achieve the final results.
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