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Abstract
Background: Gastrointestinal malignancies have the great-
est incidence and cancer-associated death rates worldwide. 
Routine therapeutic modalities include surgery, chemother-
apy and radiation but they often fail to reach the goal of  
cancer-free survival. Summary: In the light of this urgent 
medical need for the treatment of GI tumors, nanotech
nology-based approaches, i.e. nanomedicine, promise new 
therapeutic options. Using nanoparticles instead of classi-
cally designed drugs, targeting anticancer agents directly to 
the tumor site may revolutionize both diagnostic and thera-
peutic tools thereby facilitating the identification and elimi-
nation of malignant cells. Importantly, diagnostic insight 
and therapeutic effects can be achieved simultaneously 
through the same nanoparticle. Additionally, a nanoparticle 
may be loaded with more than one agent, thereby further 
increasing the value and power of the nanotechnology ap-
proach in oncologic therapeutic concepts. Although most 
insight into mechanisms of nanomedicine has been gained 
from in vitro and preclinical in vivo models, few clinical trials 
have been conducted, and nanomedicine-based concepts 
are already part of standard treatment algorithms. However, 
despite substantial progress it remains a challenge to design 
nanoparticles that feature all desirable characteristics at the 
same time. Key Messages: This review seeks to provide sub-
stantial insight into the current status of nanomedicine-
based approaches employed for diagnostic and/or thera-
peutic purposes in the field of gastrointestinal cancers by 
highlighting achievements and pointing out unresolved is-
sues that need to be further addressed by future research 
attempts. © 2020 S. Karger AG, Basel

Introduction

Globally, gastrointestinal (GI) tumors are the leading 
cause for cancer-related death and show the highest inci-
dence. Among those, colorectal cancer, gastric cancer, he-
patocellular carcinoma (HCC) and pancreatic cancer are 
the most frequently observed solid tumors [1]. Even 
though many attempts to reduce their disease burden 
have been undertaken, GI tumors are still overall associ-
ated with a poor outcome due to both delayed diagnosis 
in an already incurable state and insufficient therapeutic 
options in the light of a heterogeneous and so far only 
partially resolved tumor biology. Accordingly, estab-
lished treatment regimens consisting of surgery, systemic 
chemo- and/or immunotherapy and/or local radiothera-
peutic measures routinely fail to ultimately cure the ma-
jority of patients in advanced tumor stages. 

Under the term nanomedicine, nanotechnology-
based approaches including designing tumor-targeting 
nanoparticles are summarized. Nanoparticles represent 
a very heterogeneous group of particles ranging from 1 
to 100 nm in diameter. Their components can be organ-
ic or inorganic, and they show different shapes [2]. Cur-
rently, mainly gold nanoparticles, magnetic nanoparti-
cles, quantum dots, fluorescence-labeled nanoparticles, 
graphenes and graphene oxides, and dendrimers and 
stimulus-responsive polymers are used in research [3]. 
Nanoparticles can reach their target by an enhanced per-
meability and retention effect. This effect results from 
unstructured tumor vessels leaving pores into which 
nanoparticles can accumulate. Another approach to 
guide nanoparticles to their target is binding their sur-
face to tumor-specific ligands like antibodies. Nanopar-
ticles as a drug-delivering system are usually character-
ized by a long circulation time and are protected by liver 
and kidney metabolism [3]. However, also alternative 
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application modes have been employed such as direct de-
livery to the intestinal tumors through an endoscopically 
guided instillation [4].

Different nanoparticles show distinct characteristics. 
For example, superparamagnetic nanoparticles can serve 
as contrast agents in magnetic resonance imaging (MRI). 
They can also be used as treatment tools when drugs or 
agents like nucleic acid are bound to them or encapsu-
lated by them (Fig. 1). But nanoparticles can be treatment 

themselves [2, 5–8]. For example, gold nanoparticles and 
other nanoparticles are utilized for hyperthermia and 
photodynamic therapy after irradiation with light in the 
infrared region [9]. There is a growing body of literature 
that recognizes the importance of nanomedicine, yet re-
search takes place mainly in vitro and in vivo, but some 
agents have already been tested in clinical trials (Table 1) 
or are yet part of standard cure [2, 5–8]. 

Nanoparticles in Colorectal Cancer

Colorectal cancer (CRC) belongs to the tumors with 
the highest incidence and mortality in the world. Besides 
the standard approaches in therapy like surgery, chemo-
therapy and radiation, great efforts have been made in the 
field of nanomedicine lately. Evidence from a number of 
experimental studies has established that nanoparticles 
represent a feature in treating CRC. 

LE-SN38 is a liposomal formulation of SN38, the ac-
tive metabolite of CPT-11 (irinotecan). This nanoparticle 
showed greater tumor growth inhibition than CPT-11 in 
a xenograft model with SCID (severe combined immuno-
deficiency) mice [10]. Thermodox is used to treat liver 
metastases, which derive from CRC. It is a liposome that 
delivers doxorubicin after thermal stimulation, and its 
use is combined with radiofrequency thermal ablation 
[8]. Both, LE-SN38 and Thermodox are tested in clinical 
studies. 

CPX-1, a liposome-encapsulated formulation of irino-
tecan and floxuridine has already completed phase II clin-

Table 1. Important current and finished clinical trials using nanoparticles

Drug Nanoparticle type Status Disease Reference

MTL-CEBPA Lipid Phase 1 HCC NCT02716012

DCR-MYC Lipid Phase 1/2 HCC NCT02314052

Irinotecan Liposome Phase 1/2 Gastric cancer or gastroesophageal junction 
adenocarcinoma

NCT03739801

Irinotecan Liposome Phase 1/2 Metastatic biliary tract carcinoma, metastatic colorectal 
carcinoma, metastatic gastroesophageal junction 
adenocarcinoma, metastatic pancreatic adenocarcinoma 

NCT03337087

TKM 080301 Lipid nanoparticle Phase 1 Secondary liver cancer
HCC

NCT01437007
NCT02191878

Paclitaxel Albumin FDA/EMA 
approved

Pancreatic cancer 55, 56

AZD4635 Nanoparticle suspension Phase 1 Advanced solid malignancies NCT02740985

Doxorubicin Doxorubicin docetaxel 
pluronic block copolymers

Phase 2 Gastroesophageal adenocarcinoma 62

HCC, hepatocellular carcinoma; FDA, Food and Drug Administration; EMA, European Medicines Agency.

Fig. 1. Example of a nanoparticle working as a nanocarrier: a lipo-
somal nanoparticle is loaded with doxorubicin and siRNA in its 
core. It is connected to an antibody. The nanoparticle detects the 
cancer cell via antibody-antigen contact and delivers doxorubicin 
and siRNA.
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ical trials in patients, who had been treated with oxalipla-
tin or irinotecan previously. Out of 15 patients, 9 showed 
stable disease, 2 had partial response and only 2 devel-
oped progressive disease. Two patients could unfortu-
nately not be evaluated. Six patients showed a progres-
sion-free survival of more than 6 months [11].

Yang et al. [12] developed oxaliplatin long-circulating 
liposomes (pegylated-liposomal oxaliplatin). They could 
demonstrate that their use was associated with a higher 
amount of apoptosis in tumors in comparison with free 
oxaliplatin in vivo using a xenograft mouse model for 
CRC. 

First steps to directly target CRC metastases were per-
formed in an experiment with core/pegylated shell 
nanoparticles, which delivered DNA for gene therapy. 
The nanoparticles selectively transfected CRC metastases 
in vivo, even though only a small fraction of the cells ex-
pressed the transgene [13]. 

The challenge of targeting only the tumor site has been 
addressed in different experiments. 

Of particular concern is A33. The A33 antigen plays a 
pivotal role in targeting CRC. Its expression in about 95% 
of all colorectal tumors makes the humanized A33 mono-
clonal antibody an attractive guide to deliver nanoparti-
cles to the tumor site [14]. The binding to polymer cap-
sules formed by the layer-by-layer method gives the op-
portunity to deliver drugs and other anticancer agents 
directly to the tumor [15]. But not only antibodies also 
peptides can function as a targeting aim. 

One study from Gounaris et al. [16] set out to investi-
gate the usefulness of G3-C12 for detecting galectin-3 and 
G11 to target epidermal growth factor receptor on fluo-
rescently labeled N-(2-hydroxypropyl)methacrylamide 
copolymers. Furthermore, they connected G11-binding 
nanoparticles to doxorubicin creating a tumor-specific 
drug-delivering system. 

Besides therapeutical use of nanoparticles, these par-
ticles have emerged as powerful platforms for diagnostic 
approaches. Gounaris et al. [16] were able to identify dys-
plastic foci within chronically inflamed colons using en-
doscopic fluorescence imaging in IL-10−/− colitic mice. 
Through the utilization of lectin-conjugated Fe2O3@Au 
core@shell nanoparticles, He et al. [17] performed dual-
modality imaging to detect colorectal cancer in nude mice 
in T2-weighted MRI and computer tomography. 

Nanoparticles in Gastric Cancer

Determining the impacts of nanomedicine on gastric 
cancer is important for the future of diagnostics and can-
cer treatment. Besides that, many research groups do pio-
neer work combining them, which is named theranostic 
[18]. 

Recent research has reported its use in different diag-
nostic tools such as MRI, fluorescence imaging and en-
doscopy [7]. 

Wang et al. [19] used superparamagnetic iron oxide 
nanoparticles (SPION) for in vitro and in vivo experi-
ments. They coated it with dSiO2 and after labeling with 
near infrared fluorescence dye and anti-CD146 monoclo-
nal antibody it led to a nanoparticle called 800ZW–SPI-
ON@dSiO2–YY146. This nanoparticle was used for in 
vitro and in vivo imaging. They performed MR/near in-
frared fluorescence imaging using 800ZW–SPION@
dSiO2–YY146 in an MKN45 xenograft tumor model 
showing its ability to detect gastric cancer by targeting the 
tumor marker CD146 [19]. 

Few studies concentrate on nonsupramagnetic 
nanoparticles. Folic acid-conjugated silica-capped gold 
nanoclusters designed by Zhou et al. [20] were able to de-
tect FR(+) MGC803 cells in a nude mouse model showing 
red emitting fluorescence optical property with X-ray ab-
sorbance for optical and computed tomography dual-
modality imaging of gastric cancer. 

Previous research has established the design and im-
plementation of glucose-regulated protein 78 (GRP78)-
guided polymeric micelles to diagnose gastric cancer. 
GRP78 is considered to be a reliable gastric cancer bio-
marker showing an increased expression level on the cell 
surface of gastric cancer cells. Cheng et al. [21] coupled 
the micelles to indium-111 (111In). Tumor imaging with 
nano single photon emission computed tomography/
computed tomography revealed higher radioactive inten-
sity of GRP78-binding protein 111In-labeled micelles in 
comparison to 111In-labeled micelles without coupled 
GRP78-binding protein. 

Recent studies by Wang et al. [22] included tumor de-
tection in a xenograft tumor model for esophagus cancer 
in rats using surface-enhanced Raman scattering nanopar-
ticles conjugated to human epidermal growth factor re-
ceptor 2 or epidermal growth factor receptor. These 
nanoparticles were administered orally and endoscopy 
with multimode fibers for illuminating and detection was 
performed. Hereby, tumors could not only be detected 
but the amount of human epidermal growth factor recep-
tor 2 and epidermal growth factor receptor could be 
quantified.

Theranostic describes the combination of diagnostic 
and therapy. There are two different manners of it. On 
the one hand imaging can detect the therapeutic 
nanoparticle, and on the other hand diagnostic and 
therapeutic nanoparticles can be administered together 
[23–26]. Huang et al. [27, 28] designed photosensitizer-
conjugated carbon dots called C-dots-Ce6. They com-
bine tumor homing with near infrared fluorescence im-
aging-guided photodynamic treatment. Additionally, 
drug agents could be magnetically led to the tumor, and 
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the magnetic component of the nanoparticle made it 
visible in MRI. 

An innovative technique to deliver drugs using pe-
gylated polycaprolactone nanoparticles containing gela-
tinase-sensitive peptide was developed by the group of 
Baorui Liu. Since gelatinases are overexpressed in gastric 
cancer [29–31], the nanoparticles can target the cancer 
cells easily and deliver different kinds of agents like che-
motherapeutics, small molecules or nucleic acids [32–
42].

Besides that, other efforts were undertaken using 
nanoparticles for treating gastric cancer. SP1049C (Plu-
ronic L61, F127-doxorubicin), a P-glycoprotein targeting 
micellar formulation of doxorubicin, showed good re-
sults in a clinical phase II trial. The objective response rate 
was 47% (95% CI: 24.4–71) in the evaluable patient popu-
lation [43].

Nanoparticles in HCC

First steps for the treatment of HCC with nanomedi-
cine were made almost three decades ago. In 1991 Dun-
can and colleagues [44] developed two different N-(2- 
hydroxypropyl)methacrylamide copolymers containing 
doxorubicin and galactosamine, which target hepatocyte 
galactose receptor, named PK1 and PK2. PK2 targets 
asialoglycoprotein receptor that is overexpressed in HCC. 
Patients reported the same side effects with PK2 and un-
formulated doxorubicin. Asialoglycoprotein receptor ex-
pression levels become lower during disease progression 
suggesting asialoglycoprotein receptor expression as a 
biomarker for treatment with this agent [6, 44–46].

Xu et al. [47] developed a new nanoparticle carrying 
doxorubicin, and it shows a low toxicity profile in vivo 
while being very selective.

A different approach was used by Devulapally et al. 
[48], when they co-encapsulated gemcitabine and anti-
sense-microRNA-21 in pegylated-poly(lactic) coglycolic 
acid nanoparticles achieving treatment with two different 
agents, which was more successful than each agent alone 
in vitro.

Several studies have investigated the application of 
small interfering RNAs (siRNA) for HCC treatment [6]. 
In the context of nanomedicine, Wang et al. [49] designed 
a nanovector (NP-siRNA-GPC3 antibody) with an iron 
core and coated with chitosan-polyethylene glycol-graft-
ed polyethylene imine copolymer. This nanovector is 
conjugated with a monoclonal antibody against human 
glypican-3 receptor, which shows high expression levels 
in HCC and transports siRNA. Sun et al. [50] constructed 
a polyethylene imine-modified liposome, which trans-
ports siRNA targeting glypican-3 and sorafenib, a mull-
tikinase inhibitor, which is a standard drug for HCC 

treatment with partially serious side effects. There are 
several other studies going on in vitro and in vivo testing 
the different characteristic potentials of nanoparticles in-
cluding the delivery of nucleic acids, drug agents or pro-
viding endogenous toxicity. Recent research reported 
about a thermosensitive liposomal formulation named 
Thermodox, which forms holes after being heated up to 
40–45   ° C leading to the release of a loaded drug with 
promising results in a phase III clinical trial [51]. CEBPA 
(CCAA/enhancer-binding protein α), a regulator in he-
patic function, is downregulated in HCC. Coating acti-
vating RNA in a liposomal nanoparticle and administer-
ing it in a rodent HCC model reduced tumor burden, so 
this formula called MTL-CEBPA was further tested in 
clinical trials [52, 53]. The overexpression of Polo-like ki-
nase 1 in HCC led to a phase I clinical trial using siRNA 
encapsulated in lipid nanoparticles. Due to limited effects 
no further studies in HCC are planned [54]. However, 
this substance is now being investigated for the treatment 
of liver metastases (NCT01437007). 

Nanoparticles in Pancreatic Cancer

Pancreatic cancer belongs to the cancer types in which 
nanoparticles are already part of standard treatment. It is 
now well established from a variety of studies that the 
albumin-bound nanoparticle nab-paclitaxel (abraxane) 
is part of first-line treatment in unresectable and meta-
static disease [55, 56]. 

Gemcitabine is another standard chemotherapeutic in 
pancreatic cancer. Patra et al. [57] designed a gold 
nanoparticle that delivers gemcitabine and used cetux-
imab (a monoclonal epidermal growth factor antibody) 
to guide it to the tumor site. In this experiment, tumor 
inhibition was increased in vitro and in vivo. 

A key issue in treating pancreatic cancer is the devel-
opment of resistance to gemcitabine due to CD47, which 
provides an antiphagocytosis signal. Therefore, gem-
citabine has been coupled to iron oxide magnetic nanopar-
ticles that include an anti-CD47 antibody. This formula 
inhibited tumor growth in vivo [58]. Hoskins et al. [59] 
used coupled bisnaphthalimidopropyldiaaminooctane, a 
novel drug against pancreatic cancer with poor water sol-
ubility, to polyallylamine grafted with 5% mole choles-
teryl pendant groups. So, the drug is discharged through 
holes in the shell. In vitro this nanoparticle showed a 
higher cytotoxic effect on pancreatic cancer cells than 
gemcitabine. 

There are different approaches using metal and metal 
oxide nanoparticles with antipancreatic cancer activity 
[5]. For example, cerium oxide nanoparticles sensitize 
cancer cells to radiation, when administered before treat-
ment while being nontoxic to normal tissue [60]. Pal et al. 
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[61] designed plectin-1-pancreatic targeting peptide-
gold nanoparticles, which deliver gemcitabine to pancre-
atic cancer. It has a huge advantage due to its selectivity 
in vivo. 

Conclusion

Nanomedicine has the potential to improve diagnostic 
tools and increase therapeutic options for GI cancers. The 
heterogeneity of available nanoparticles seems to provide 
a great advantage, for there are many different options 
going along with it like binding and encapsulating drugs, 
different agents and target-directed therapy. Some 
nanoparticles are already in clinical use. The delivery of 
one or more anticancer drugs directly to the tumor site 
and the fact that some nanoparticles can be used for im-
aging make them very attractive. Published results from 
in vitro and in vivo research are indeed promising. Yet, 
some limitations must be taken into account. First, most 
research on nanoparticles has been performed in vitro 
and in vivo, while clinical data are rarely available. Hence, 

the efficacy of individual nanoparticles must be evaluated 
in clinical studies. In fact, some nanoparticles with prom-
ising results in vitro and in vivo failed in clinical tests. 
Similarly, data on safety and toxicity of distinct nanopar-
ticles are sparse. Another negative aspect considers the 
costs as well as the complexity of the designing and man-
ufacturing under controlled pharmaceutical production 
conditions. Still, nanomedicine is an interesting and 
promising field in medical science. Since it deals with 
medicine, physics, pharmacology and chemistry there is 
a huge need for multidisciplinary research. 
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