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Background. The presence of high-abundance drug-resistant HIV-1 jeopardizes success of antiretroviral therapy (ART). Despite 
numerous investigations, the clinical impact of low-abundance drug-resistant HIV-1 variants (LA-DRVs) at levels <15%–25% of the 
virus population in antiretroviral (ARV) drug-naive individuals remains controversial.

Methods. We systematically reviewed 103 studies assessing prevalence, detection methods, technical  and  clinical detection 
cutoffs, and clinical significance of LA-DRVs in antiretroviral drug-naive adults.

Results. In total, 14  919 ARV drug-naive individuals were included. Prevalence of LA-DRVs (ie, proportion of individuals 
harboring LA-DRVs) was 0%–100%. Technical detection cutoffs showed a 4 log range (0.001%–10%); 42/103 (40.8%) studies 
investigating the impact of LA-DRVs on ART; 25 studies included only individuals on first-line nonnucleoside reverse transcriptase 
inhibitor-based ART regimens. Eleven of those 25 studies (44.0%) reported a significantly association between preexisting LA-DRVs 
and risk of virological failure whereas 14/25 (56.0%) did not.

Conclusions. Comparability of the 103 studies is hampered by high heterogeneity of the studies’ designs and use of different 
methods to detect LA-DRVs. Thus, evaluating clinical impact of LA-DRVs on first-line ART remains challenging. We, the WHO 
HIVResNet working group, defined central areas of future investigations to guide further efforts to implement ultrasensitive resist-
ance testing in routine settings.

Keywords.  HIV-1; antiretroviral therapy; HIV-1 drug resistance; low-abundance drug-resistant HIV-1 variants; antitretroviral 
drug-naive individuals; next-generation sequencing; minority variants.

Since its introduction, antiretroviral therapy (ART) has greatly 
reduced global mortality rates and lengthened the lifespan of 
people living with human immunodeficiency virus (HIV) [1, 
2]. However, despite its potency, the efficacy of ART in sup-
pressing viral replication can be jeopardized by the presence of 
drug resistance [3]. Recognizing the potential consequences of 
drug resistance in achieving HIV epidemic control, the World 
Health Organization’s Global Action Plan on HIV Drug Resistance 

2017–2021 defines areas where improved collective efforts are 
needed to strengthen the monitoring, prevention, and response 
to HIV drug resistance [4]. Using the framework of the Global 
Action Plan, WHO HIVResNet—a network of HIV drug resist-
ance experts coordinated by WHO—developed a prioritized list 
of research gaps [5] that, once addressed, will enhance the ability 
to monitor resistance and interpret its impact on ART outcomes. 
These priority areas include the need for: (1) an improved un-
derstanding of optimal methods to detect low-abundance drug-
resistant HIV-1 variants (LA-DRVs), often referred to as minority 
variants; (2) defining the appropriate technical and clinical detec-
tion thresholds for various types of assays; and (3) characterizing 
the clinical relevance of LA-DRVs in ARV drug-naive people 
initiating treatment with drugs to which LA-DRVs are present at 
varying levels of the viral population (or quasispecies) [5].

In HIV-1 infected, antiretroviral drug-naive individuals, 
LA-DRVs may arise due to de novo mutagenesis as a result of 
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error-prone replication or by transmission from an HIV-1–in-
fected antiretroviral drug-treated person [6]. In clinical prac-
tice, DRVs are commonly detected by population, Sanger-based 
sequencing of the HIV-1 pol gene [7]. LA-DRVs present at less 
than 15%–25% of the circulating viral population may not be 
detected by population sequencing [8, 9]. However, with the 
advent of more sensitive methods such as next-generation 
sequencing (NGS), virus variants present at low frequencies 
within the virus population of individuals can be detected. 
Several techniques to detect LA-DRVs have been developed. 
Some of the earliest methods included particularly allele-
specific real-time polymerase chain reaction (AS-PCR) [10]. 
All of these techniques have different thresholds or cutoffs for 
detecting low-abundance variants, and specific strengths and 
limitations [11]. More recently, NGS has revolutionized the 
detection of LA-DRVs and is increasingly used for genotypic 
HIV-1 drug resistance testing worldwide [12, 13].

It has been shown that LA-DRVs can be detected in individ-
uals acutely or recently infected with HIV-1 [14–19], and their 
transmission has been documented [20, 21], although these are 
probably very rare events. Although several reports indicate that 
the presence of drug-resistant HIV-1 at high abundance may af-
fect future efficacy of ART, the clinical importance of LA-DRVs 
at time of treatment initiation remains uncertain, with some 
but not all studies reporting an association between LA-DRVs 
and suboptimal treatment outcomes. In this systematic review, 
we generate an up-to-date assessment of the prevalence, detec-
tion methods, technical and clinical detection cutoffs, and the 
clinical significance of LA-DRVs in antiretroviral drug-naive 
adults. This review is important to guide further efforts to im-
plement resistance testing in routine settings for patient care 
and surveillance, in an evolving antiretroviral drug landscape.

METHODS

Search Strategy

We searched PubMed’s MEDLINE database for publications 
using 8 search strings constructed for Medline. Our search in-
cluded every related article added to PubMed since its creation 
through 31 May 2019. Articles that contained all or some of 
the string words in the title or abstract were screened for inclu-
sion. The search strings used in different combinations were: 
“HIV drug resistance,” “minority variants,” “minority muta-
tions,” “minority quasispecies,” “low frequency variants,” “low-
abundance variants,” “allele-specific,” “deep sequencing,” and 
“next-generation sequencing.”

Inclusion Criteria for Eligible Studies

A study was included if it mentioned the detection, preva-
lence (ie, the proportion of individuals harboring LA-DRVs), 
and/or clinical impact of LA-DRVs in ARV drug-naive adults. 
Infections caused by any HIV-1 subtype were included; only ar-
ticles written in English were considered.

Exclusion Criteria for Noneligible Studies

Studies including only ARV drug-experienced individuals (ie, 
long- or short-term ART, the latter particularly applied for pre-
vention of mother-to-child transmission of HIV). In addition, 
reviews, brief communications, conference proceedings, ab-
stracts, or posters were excluded because of the very limited in-
formation that they provided or because of duplication of the 
information in full articles. All duplicate publications from the 
different search string results were removed.

RESULTS

Summary of Study Characteristics

Applying the 8 search strings to PubMed, we found 1074 pub-
lications, the majority of which were duplicates. Of the 1074 
publications, 204 were retained with contents matching the 
search strings. Ninety-two publications met inclusion criteria 
(Figure 1) [14–105]. Eight publications reported on 2–3 studies 
each, thus in total 103 studies were included in the analysis 
(Supplementary Table 1). Across the studies, numbers of par-
ticipants ranged from 1 to 1148, with a median of 65 (inter-
quartile range, 27–162) individuals (Table 1). Most participants 
were sampled between the years 2001 and 2014. The earliest 
specimens were collected in 1994 [20, 21] and the latest in 2016 

1074 Full text publications from PubMed using the following search strings
(Date: 31 May 2019) 

198 PubMed: HIV drug resistance AND deep sequencing  
199 PubMed: HIV drug resistance AND next-generation sequencing 
84 PubMed: HIV drug resistance AND allele-specific 
124 PubMed: HIV drug resistance AND low frequency variants 
24 PubMed: HIV drug resistance AND low abundance variants 
38 PubMed: HIV drug resistance AND minority quasispecies 
234 PubMed: HIV drug resistance AND minority mutations 
173 PubMed: HIV drug resistance AND minority variants 

870 publications excluded after screening the
abstracts due to:

Not mentioning low-abundance, low 
frequency or minority variants  
Not performed on humans 
Duplication 

204 publications with contents in relation to search strings

112 publications excluded due to: 

ARV drug-experienced individuals (91)  
Reviews (18) 
Conference abstracts/posters (3) 

92 articles eligible for inclusion

•
•
•
•
•
•
•
•

Figure 1. Summary of study search and selection procedure. Abbreviations: ART, 
antiretroviral therapy; HIV, human immunodeficiency virus.
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[40, 41, 67, 93, 96]. Forty-two (40.8%) studies did not differ-
entiate between acute and chronic HIV-1 infection. Seventeen 
(16.5%) studies reported on acute/recent HIV-1 infection and 
44 (42.7%) studies focused (mainly) on chronic HIV-1 infec-
tion. Plasma was the most frequent specimen type (97 studies, 
94.2%). Most studies (68, 66.0%) were conducted in high-
income countries (mainly in Europe and the United States), 
with comparably fewer (30, 29.1%) conducted in low- and 

middle-income countries: sub-Saharan Africa (19, 18.4%), Asia 
(8, 7.8%), and Middle/South America (3, 2.9%).

Sixty-one (59.2%) studies reported solely on the prevalence 
of LA-DRVs in ARV drug-naive individuals and did not as-
sess their impact on treatment outcomes, while 30 (29.1%) 
different prevalence studies also investigated the impact of 
LA-DRVs on ART clinical outcomes (Table  1). Of the re-
maining 12 studies, 9 (8.7%) were case-control studies [38, 53, 
57, 60, 70, 84, 88, 99, 105], 2 (1.9%) were case reports [25, 
100], and 1 (1.0%) was a meta-analysis [65]; all reported on 
the association between LA-DRVs and treatment outcomes 
(Supplementary Table 1).

Methods Used in the Detection of Low-Abundance Drug-Resistant HIV-1 

Variants

A variety of different methods were used to detect LA-DRVs in 
the 103 studies. Most studies used AS-PCR (34, 33.0%) and 454 
pyrosequencing (34, 33.0%) or Illumina (25, 24.3%) NGS plat-
forms (Table 1 and Supplementary Table 1). Prior to 2005, when 
the first NGS platform became available, AS-PCR was the most 
frequently used method. Despite having the highest sensitivity, 
a major limitation of point mutation assays, such as AS-PCR, 
is that they can only detect 1 single point mutation at a time 
[10] and their ability to detect alternative polymorphisms at the 
codon of interest is reduced [106].

Generally, each method may be affected by polymorphisms 
associated with drug resistance, which may skew the sensitivity 
of primers and probes used in the assay [106]. Other important 
issues, particularly when applying NGS assays, are experimental 
challenges during sample preparation, for example loss during 
DNA or RNA extraction or contaminations, and errors intro-
duced during reverse transcription or amplifications, for ex-
ample nucleotide misincorporation, resampling, biases due to 
primer/probe mismatches, or in vitro recombination [107, 108]. 
Some of them can be addressed by quantifying input cDNA 
copy numbers as done, for instance, in the study by Mbunkah 
et al [67], or by using primer IDs [36, 109, 110]. Details of the 
technical strengths and limitations of the methods used in the 
studies are shown in Table 2.

The technical sensitivity of each method dictates the lower 
limit of detection to be used with it. Studies that used AS-PCR 
had a minimum limit of detection (technical cutoff) of 0.001% 
and a maximum of 1%, with 0.01% used most often (Table 2). 
Studies using NGS technologies (454 pyrosequencing, Illumina 
NGS, or single-molecule real-time sequencing by Pacific 
Biosciences) had minimum technical cutoffs of 0.02% and 1%, 
respectively. A 1% technical cutoff was most commonly applied 
with those methods. Sources of errors in genotypic resistance as-
says, including errors introduced by reverse transcription, mul-
tiple rounds of amplification (including PCR recombination) 
followed by sequencing, may affect the technical cutoffs [108]. 
Lowering technical cutoff values below 1% for most NGS-based 

Table 1. Summary of All Publications on Detection, Prevalence, and/or 
Clinical Impact of Low-Abundance Drug-Resistant HIV-1 Variants in ARV 
Drug-Naive, Adult Individuals (92 Publications, 103 Studies)

Parameter Studies, n (%)

Number of participants, median (min–max) 65 (1–1148) 

Stage of HIV-1 infection at time of inclusion  

 Acute/recent  
 (Mainly) chronic  
 Not specified

17 (16.5)  
44 (42.7)  
42 (40.8)

Type of specimen used for LA-DRVs detection  

 Plasma  
 PBMCs  
 Serum  
 Dried blood spot  
 CSF  
 Virus isolate

97 (94.2)  
10 (9.7)  
4 (3.9)  
1 (1.0)  
1 (1.0)  
1 (1.0)

Geographic area  

 Europe  
 North America  
 Africa  
 Asia  
 Latin America  
 Worldwide  
 Europe/North America  
 Not specified

40 (38.8)  
21 (20.4)  
19 (18.4)  
12 (11.7)  
4 (3.9)  
4 (3.9)  
2 (1.9)  
1 (1.0)

Type of study  

 Prevalence  
 Prevalence and clinical impact of LA-DRVs  
 Case-control studies  
 Case reports  
 Meta-analysis

61 (59.2)  
30 (29.1)  
9 (8.7)  
2 (1.9)  
1 (1.0)

Detection method of LA-DRVs  

 454 pyrosequencing  
 AS-PCR  
 Illumina NGS  
 Cloning + sequencing  
 HIV-SNaPshot  
 OLA  
 Pyrosequencing (Pyro-Mark)  
 DEEPGEN NGS  
 RCA  
 SGA  
 SMRTS (PacBio)

34 (33.0)  
34 (33.0)  
25 (24.3)  
3 (2.9)  
2 (1.9)  
2 (1.9)  
2 (1.9)  
1 (1.0)  
1 (1.0)  
1 (1.0)  
1 (1.0)

Inclusion/exclusion of individuals harboring DRVs detected 
by population sequencing

 

 DRVs not excluded  
 Certain DRVs excluded  
 Any DRVs excluded  
 Presence of DRVs as inclusion criteria  
 No population sequencing performed/no data shown

32 (31.1)  
15 (14.6.)  

9 (8.7)  
4 (3.9)  

25 (24.3)

Abbreviations: ART, antiretroviral  therapy; AS-PCR, allele-specific polymerase chain reac-
tion; CSF, cerebral spinal fluid; DRV, drug-resistant HIV-1 variant; HIV, human immunodefi-
ciency virus; LA, low abundance; NGS, next-generation sequencing; OLA, oligonucleotide 
ligation assay; PBMCs, peripheral blood mononuclear cells; RCA, rolling-circle amplifica-
tion; SGA, single genome amplification; SMRTS, single molecule real-time sequencing.
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assays could give rise to false positives due to these inherent 
errors from the assay [111]. The high heterogeneity in limits 
of detection not only between the different methods used but 
also within the same methods argues for future interlaboratory 
studies [11, 94, 112].

Prevalence of Low-Abundance Drug Resistant HIV-1 Variants

Ninety-one (88.3%) studies of ARV drug-naive adults reported 
DRVs prevalence data. The reverse transcriptase region was 
the most commonly studied part of the HIV-1 genome. Sixty-
one of the 91 studies (67.0%) were conducted in high-income 
countries, 14 (15.4%) in low- and middle-income countries, 
and 14 (15.4%) in upper middle-income countries, as classi-
fied by the World Bank [113]. For 2 (2.2%) studies, the coun-
tries of origin were not specified. The drug-resistant mutations 
K103N, Y181C, and M184V were the most commonly re-
ported mutations at varying detection thresholds (Table 3 and 
Supplementary Table 1). The K103N, Y181C, and M184V mu-
tations as LA-DRVs were detected in a median of 2.0%, 0.2%, 
and 0.5% of ARV drug-naive adults, respectively. The preva-
lence of the K103N, Y181C, and M184V mutations as LA-DRVs 
in ARV drug-naive individuals reached up to 33.0%, 10.0%, and 
41.9%, respectively (Table 3 and Supplementary Table 1).

Taken together, the prevalence of these LA-DRVs was highly 
variable in different studies of ARV drug-naive individuals. 
Several issues complicate the comparison of prevalence data 
between studies. Considerable heterogeneity was present with 
respect to time of sampling, detection methods used to char-
acterize LA-DRVs, the thresholds applied in their detection, 
and to a lesser extent the study participants’ inclusion/exclusion 
criteria. Consequently, highly variable prevalence estimates of 
LA-DRVs are reported across the different studies, even those 
performed in the same country. Another complicating factor 
was the presence of DRVs as revealed by genotypic resistance 
testing methods based on population sequencing. Ten of 91 
(11.0%) studies included only individuals without any DRVs 
detected by population-based sequencing, 15 (16.5%) excluded 
specific DRVs detected by population-based sequencing, and 
37 (40.7%) allowed the presence of DRVs at high abundance. 
In 5 of 91 (5.5%) studies, the presence of DRVs detected by 
population-based sequencing was an inclusion criteria, and in 
24 (26.4%) studies, genotypic resistance testing by population-
based sequencing was not performed or the data were not 
shown (Table 1). Nevertheless, it was generally true that the use 
of more sensitive detection assays led to the reporting of higher 
prevalence estimates of DRVs.

Impact of Low-Abundance Drug-Resistant HIV-1 Variants on the Outcome 

of Antiretroviral Therapy

LA-DRVs have been suggested to have an impact on ART out-
comes in antiretroviral drug-naive individuals [10]. We found 
42/103 (40.8%) studies investigating the impact of LA-DRVs on 

first-line ART in ARV drug-naive adults. Of note, the presence 
of DRVs detected by standard population sequencing was not an 
exclusion criterion in most of the studies (Supplementary Table 
1). Four studies described single individuals on nonnucleoside 
reverse transcriptase inhibitor (NNRTI)-based ART regimens 
in whom preexisting low-abundance NNRTI-resistant vari-
ants were rapidly selected and became the predominant variant 
during virological failure (Supplementary Table 1) [25, 27, 87, 
100]. Another study showed the selection of preexisting low-
abundance protease inhibitor (PI)-resistant variants during 
virological failure in 3 individuals receiving ritonavir-boosted 
protease inhibitor (PI/r)-based regimens [90].

Besides these 5 case reports, 1 meta-analysis [65], 9 case-
control studies, and 27 prevalence studies investigated the clin-
ical relevance of LA-DRVs (Supplementary Table 1). Four of 
these 37 studies (10.8%) investigated the impact of preexisting 
RTI- and/or PI LA-DRVs on first-line PI/r-based ART and did 
not find any impact of LA-DRVs on clinical outcome [17, 59, 60, 
85]. In 8 of the 37 studies (21.6%), individuals received various 
first-line ART regimens, mainly NNRTI- or PI/r-based therapy. 
No impact of preexisting LA-DRVs on treatment outcomes was 
reported in these studies [15, 18, 29, 31, 44, 54, 71, 95]. So far, 
no study has reported the potential impact of integrase strand 
transfer inhibitor (INSTI) LA-DRVs on INSTI-based ART regi-
mens in ARV drug-naive individuals.

The potential impact of LA-DRVs on first-line NNRTI-based 
ART regimens is very controversially discussed. Twenty-five of 
the 37  studies (67.6%) included only individuals on first-line 
NNRTI-based ART, regimens considered to have a relatively 
low genetic barrier to resistance. Case reports are not included 
in this subset of studies. We assessed the quality of these 25 
studies using 18 criteria based on the recommendations by 
the Strengthening of Reporting of Observational Studies in 
Epidemiology (STROBE) statement covering information on 
study design, participants’ characteristics, methods, and re-
sults (Table 4 and Supplementary Table 2) [114]. A majority of 
the 25 studies reached high scores showing the high quality of 
these studies. Nevertheless, the comparability of those studies 
is hampered by the high heterogeneity of the studies’ designs 
(Supplementary Table 2) with respect to several factors: (1) 
some used AS-PCR, hence reporting only 1 or a few DRVs, 
while others used NGS and reported a selection of DRVs, in-
cluding some studies reporting all nucleoside reverse transcrip-
tase inhibitor (NRTI)- and NNRTI-DRVs; (2) a few studies 
focused solely on NNRTI-DRVs, while others included all 
RTI-DRVs; (3) a wide range of technical cutoffs was used, that 
is 0.001%–10.0%; (4) most studies excluded individuals with 
preexisting high-abundance DRVs, while others did not; (5) 
the number of participants was highly variable, ranging from 
5 to 489; (6) the criteria and definitions used to determine the 
impact of LA-DRVs on clinical outcome were highly diverse; 
and (7) the clinical and epidemiological characteristics of the 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
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http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
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participants varied substantially, for example year of sam-
pling and stage of HIV-1 infection at time of study enrolment 
(Supplementary Table 2).

Fourteen of those 25 studies (56.0%) showed no association 
between preexisting LA-DRVs and risk of virological failure in 
individuals receiving NNRTI-based first-line ART: 3 case-control 
studies [88, 99, 105] and 11 prevalence studies [24, 26, 50, 68, 72, 
75, 77, 79, 80, 89, 96]. Eleven of the 25 studies (44.0%) reported a 
higher risk of virological failure if low-abundance NNRTI-DRVs 
were present prior to treatment initiation (1 meta-analysis [65], 5 
case-control studies [38, 53, 57, 70, 84], and 4 prevalence studies 
[23, 41, 46, 48, 115]; Supplementary Table 2).

In a multicohort European case-control study that included 
ARV drug-naive individuals (76 cases and 184 controls), the 
presence of preexisting low-abundance NNRTI-DRVs more 

than doubled the risk of virological failure in individuals on 
first-line NNRTI-based ART (odds ratio,  2.75; 95% confidence 
interval [CI],  1.35–5.60; P  = .005) compared to individuals 
with no NNRTI LA-DRVs detected [38]. In a pooled analysis 
of 10 studies with a total of 985 ARV drug-naive individuals, 
138 (14%) of whom carried either NNRTI or NRTI LA-DRVs, 
the detection of LA-DRVs at treatment initiation was associ-
ated with more than twice the risk of virological failure early 
after therapy initiation with NNRTI-based ART compared to 
individuals in whom no LA-DRVs were detected [65]. Among 
the few studies in low- and middle-income countries assessing 
the clinical impact of LA-DRVs on NNRTI-based ART, 1 study 
conducted in Mexico including 264 ARV drug-naive individ-
uals initiating treatment reported an association of LA-DRVs 
with virological failure [23].

Table 2. Detection Methods for Low-Abundance Drug-Resistant HIV-1 Variants Used in the Included Publications

Detection Method Technical Strengths Technical Limitations
Technical  
Cutoff Applied, % Min–Max

454 pyrosequencing Good sensitivity and specificity;  
long reads at short run times 

Homopolymer errors; relatively high insertion/deletion rate; low 
throughput; costly reagents, (not available anymore)

0.02–5

AS-PCR High sensitivity and specificity;  
fairly labor-intensive; easy  
interpretation of results 

Only particular mutations of interest can be detected;  
false-positive results at lower limits; polymorphisms at primer 
binding sites can reduce assay’s sensitivity/specificity; varying 
sensitivity/specificity for different mutations due to virus- and 
assay- related issues 

0.001–2

Cloning +  
sequencing

High sensitivity; not susceptible  
to primer polymorphisms;  
genetic linkage is possible if 
single genome amplification is 
applied

Time and labor intensive 0.5–10; depending on 
sequenced clones

Illumina NGS High-throughput data with low  
error rates; high sensitivity;  
relatively cheap

Fairly laborious with long run times 1–3

OLA High sensitivity and specificity;  
fairly labor intensive; easy  
interpretation of results 

Only particular mutations of interest can be detected; false-positive 
results at lower limits; polymorphisms can reduce sensitivity

2

RCA High sensitivity and specificity;  
fairly labor intensive; easy  
interpretation of results 

Only particular mutations of interest can be detected; false-positive 
results at lower limits; polymorphisms can reduce sensitivity

1

SGA Risk of nucleotide  
misincorporation or template 
switching introduced during  
PCR amplification is reduced;  
genetic linkage is possible

Very labor intensive and costly; much time involved in determining 
the appropriate dilution to use 

2

SMRTS  
(Pacific Bio-
sciences)

Long reads; low error rate due  
to circular consensus sequencing

Fairly laborious; high input amount of DNA required 1

Abbreviations: AS-PCR, allele-specific polymerase chain reaction; HIV, human immunodeficiency virus; NGS, next-generation sequencing; OLA, oligonucleotide ligation assay; RCA, rolling-
circle amplification; SGA, single-genome amplification; SMRTS, single-molecule real-time sequencing.

Table 3. Prevalence of Low-Abundance Drug-Resistant HIV-1 Mutations K103N, Y181C, and M184V in the 91 Prevalence Studies 

K103N Y181C M184V

Studies reporting the LA-DRV, No. (%) 68 (74.7) 57 (62.6) 58 (63.7)

Number of participants/study, median (IQR; min–max) 55 (29–151; 4–995) 56 (26–133; 4–442) 53 (21–123; 5–833)

Proportion of individuals harboring the LA-DRV, median % (IQR; min–max) 2 (0–5.5; 0–33.3) 0.2 (0–3; 0–10) 0.5 (0–7.3; 0–41.9)

Details are provided in Supplementary Table 1.

Most studies provided information for individuals harboring the K103N, Y181C, and M184V mutations at high abundance. These individuals were not included in this analysis.

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range; LA-DRV, low-abundance drug-resistant HIV-1 variant.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz650#supplementary-data
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Sensitivity thresholds (for identifying cases) and tradeoffs 
with specificity (ability to identify controls) with respect to the 
clinical relevance of LA-DRVs have been debated. Sensitivity 
thresholds were evaluated in more recent studies. After a me-
dian follow-up of 8  months after ART initiation, Ávila-Ríos 
et al observed a variable increased risk of viral nonsuppression 
at 6 months depending on the sensitivity threshold used [23]. 
Findings were statistically significant at sensitivity thresholds of 
20% (P =  .019), 10% (P =  .0064), and 5% (P =  .015), but not 
at 2% (P =  .074), suggesting an optimal threshold for NNRTI 
LA-DRVs of 5%. Inzaule et  al also reported an optimal sen-
sitivity threshold for NNRTI LA-DRVs of 5%, but not lower 
[53]: lowering the threshold from 20% through 1% results in 
improved sensitivity (ability to identify cases) but at a cost of 
reduced specificity (ability to identify controls). The adjusted 
odds ratio for virological failure was 9.2 (95% CI, 4.2–20.1) at 
a detection threshold of 20%, but changed as the threshold was 
lowered: 6.8 (95% CI, 3.3–13.9) at the 10% threshold, 7.6 (95% 
CI, 3.4–17.1) at the 5% threshold, and 4.5 (95% CI, 2.0–10.2) 
at the 1% threshold [53]. A very recent study by Derache et al 
showed a significantly higher risk of virological failure in the 
presence of LA-DRVs using a threshold of 5% [41].

An alternative predictor of clinical outcome that has been 
proposed is the absolute copy number of a particular viral 
mutant (mutational load), rather than the proportion. A  few 
studies have investigated the relationship between mutational 
load and its impact on virological outcome. A threshold of 2000 
copies/mL of variants with K103N prior to treatment initiation 
was shown to predict virological failure in a retrospective anal-
ysis investigating the effects of low levels of the K103N muta-
tion present at treatment initiation [48]. In a pooled analysis 
of studies involving ARV drug-naive individuals initiating 
NNRTI-based regimens, a dose-dependent increased risk of vi-
rological failure of first-line ART was observed, although copy 
numbers of 10–99 per mL plasma or frequencies of <0.5% of 
low-abundance NNRTI-DRVs were already significantly asso-
ciated with an increased risk of virological failure of first-line 
ART [65]. A  dose-effect relationship between the mutational 
load and virological failure was also observed in the multicohort 
Europe-wide case-control study showing a significantly higher 
risk of virological failure at mutational loads ≥1000 copies per 
mL [38]. Inzaule et al also performed a sensitivity analysis based 
on mutational load and reported that the association between 
LA-DRVs and virological failure was significant only at a higher 
copy number (≥1000 copies per mL) [53].

Evaluating the clinical impact of LA-DRVs on first-line ART 
remains challenging. Most studies enrolled small numbers of 
participants and were often substudies or subanalyses where 
LA-DRVs were not the primary focus. Substantial variation in 
study design and use of different methods to detect LA-DRVs 
were also observed. The definitions of virological failure also 
varied and in most studies neither coadministered NRTIs 

nor the viral and mutational loads were considered. A  meta-
analysis of these studies would be inappropriate due to these 
biases, coupled with the fact that some of these studies also in-
cluded individuals with preexisting DRVs detected by routine 
genotypic drug resistance assays.

CONCLUSIONS

The prevalence of LA-DRVs has been reported in antiretroviral 
drug-naive individuals across the globe at varying levels. In the 
past decade, different technologies have evolved and new ones 
have been developed, making detection of LA-DRVs in individ-
uals easier in terms of costs and sensitivity. The application of these 
novel platforms to routine HIV drug resistance genotyping has the 
potential to be revolutionary. This review documents a consider-
able range in the lower limit of detection of LA-DRVs for different 
assays, from <0.01% as seen with AS-PCR to 1%–5% for ultradeep 
sequencing assays and other methods [54].

LA-DRVs have been shown to be clinically relevant, espe-
cially prior to the initiation of a first-line NNRTI-based reg-
imen. Of note, not each ARV drug-naive individual harboring 
LA-DRVs experiences virological failure. Furthermore, in the 
case of virological failure, the preexisting LA-DRVs are not nec-
essarily the selected variants. The clinical impact of LA-DRVs 
on response to regimens that are based on other drug classes 
generally remains even more uncertain, as reflected by the 
latest recommendations on HIV-1 drug resistance testing by 
the International Antiviral Society USA [116]. Although just 
a single study in this review reported low-abundance INSTI-
DRVs at a prevalence of 2.4% [52], we believe that the relevance 
of LA-DRVs with potential impact on INSTI-containing re-
gimens will depend on a number of factors including: (1) the 
prevalence of transmitted INSTI resistance, which remains low 
but which may increase in the future; and (2) the overall genetic 
barrier of INSTI regimens.

Important questions concerning LA-DRVs remain to be ad-
dressed, such as defining a clinically relevant threshold or cutoff 
at which they are associated with an increased risk of virolog-
ical failure (Box 1). A large prospective study investigating the 
impact of LA-DRVs on different ART regimens and in different 
clinical settings in different countries could shed light on this 
widely debated, timely, and clinically relevant question, but 
such a study will be challenging and costly to set up. Future 
studies should assess the effect of mutational load on virological 
outcomes, identify which LA-DRVs are clinically relevant, the 
impact of linked mutations, and the time it takes to virological 
failure.

Standardization of assays and bioinformatics procedures 
in this field is also important [117]. Because it is crucial to 
understand the point at which LA-DRVs may become clin-
ically significant, defining a clinically relevant threshold for 
HIV drug resistance testing will be equally valuable [23, 53]. 
Therefore, more studies are needed to determine a threshold, 
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below which the risk of treatment failure decreases. Because 
cutoffs may depend on several factors such as viral load and 
the relative fitness cost of specific mutations, defining a single 
cutoff for all DRVs is unlikely to be possible. Consequently, 
clinical cutoffs specific for each mutation and treatment reg-
imen may be required. In the near future, the clinical impact 
of LA-DRVs on treatment outcome will possibly depend on 
the genetic barrier of the remaining current drugs to resist-
ance and the potency of emerging drugs. Furthermore, wider 
implementation of some of the sensitive technologies for de-
tection of LA-DRVs in low- and middle-income countries is 
also encouraged.
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Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
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