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Abstract

Technological advances in characterizing molecular heterogeneity at the single cell level have 

ushered in a deeper understanding of the biological diversity of cells present in tissues including 

atherosclerotic plaques. New subsets of cells have been discovered among cell types previously 

considered homogenous. The commercial availability of systems to obtain transcriptomes and 

matching surface phenotypes from thousands of single cells is rapidly changing our understanding 

of cell types and lineage identity. Emerging methods to infer cellular functions are beginning to 

shed new light on the interplay of components involved in multifaceted disease responses, like 

atherosclerosis. Here, we provide a technical guide for design, implementation, assembly, and 

interpretations of current single cell transcriptomics approaches from the perspective of employing 

these tools for advancing cardiovascular disease research.
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[1] INTRODUCTION

Atherosclerosis is a major cause for many cardiovascular disease pathologies, such as 

coronary artery disease (CAD) leading to myocardial infarctions (MI), cerebrovascular 

disease (CVD) leading to stroke, and peripheral artery disease (PAD) leading to amputated 

limbs. Together, MI and stroke are the most common cause of death, ahead of cancer, 
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accounting for 31% or deaths in the US and a similar percentage worldwide1. 

Atherosclerosis manifests as cell- and lipid-rich plaques in mid- and large-sized arteries. 

After initiation, infiltrating leukocytes promote vascular inflammation, plaque growth, 

calcification, instability, plaque rupture or erosion, ultimately resulting in catastrophic 

arterial thrombosis that fully or partially occludes the affected artery and leads to clinical 

manifestations2, 3.

It is now clear that inflammation is a key factor in human atherosclerosis. In the CANTOS 

clinical trial, more than 10,000 subjects with prior MI and high serum C-reactive protein 

were treated with the anti-IL-1β monoclonal antibody (mAb) canakinumab or placebo4. 

Canakinumab treatment significantly reduced the incidence of major adverse cardiovascular 

events (MACE). In the COLCOT trial, a cohort of patients with previous MI receiving low-

dose colchicine as a broad anti-inflammatory treatment were protected against recurring 

ischemic cardiovascular events5. Inflammation is associated with the infiltration of various 

immune cells, most prominently macrophages, T cells, natural killer (NK) cells and B cells. 

Understanding the diversity of the cellular components of atherosclerotic plaques and 

unraveling the immune response in atherosclerosis holds the promise of enabling novel 

therapeutic strategies.

Traditionally, the composition of the immune cell infiltrate in atherosclerotic plaques was 

assessed by immunostaining6 or flow cytometry (FACS)7, 8. The number of parameters that 

can be studied simultaneously is limited to about 3 to 8 for immunostaining9 and about 8 to 

16 for flow cytometry. New high-parametric flow cytometry allows to measure up to 28 

fluorescent parameters10 and will soon increase to 40 (Cytek Aurora). Implementation of 

new approaches for expanded multi-dimensional analysis has expanded our understanding of 

cellular diversity present within atherosclerotic plaques. An intermediate step in broadening 

the number of antigens that could be assessed on a single cell was the development of mass 

cytometry11, which allows assessment of ~35–42 surface markers12 including intracellular 

cytokines or transcription factors13, but provides no information on mRNAs.

The entire repertoire of all mRNAs present in a cell is called the transcriptome. This review 

will provide a description of the current single-cell technologies for assessing transcriptomes 

and cell surface markers and outline emerging technologies that will continue to propel the 

field forward.

Primer to single cell approaches

Development of next-generation sequencing (NGS) approaches, along with the advent of 

microfluidics devices suitable for single cell encapsulation14 and advanced multi-well 

plates15, have enabled the interrogation of single cells for transcriptome analysis. NGS refers 

to DNA sequencing approaches that utilize a fluorescence- or ion-based multi-strand 

analysis approach, allowing for simultaneous measurements (sometimes referred to as 

“shotgun” sequencing) across the entire transcriptome at once16. Compared to traditional 

Sanger sequencing, NGS has dramatically reduced the need for large quantities of DNA 

template, increased read reliability and reduced cost and time associated with RNA 

sequencing. Complementing NGS technology was the development of microfluidics devices 

with capillary-like constraints able to enrich molecules or cells of a desired size, weight, or 
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charge within a closed system17. Microfluidics platforms are widely used across many fields 

allowing for flow of reagents across a cell or substrate. They dramatically reduce sample and 

reagents needed for experiments. Single cell RNA sequencing (scRNA-seq) technologies 

typically use microfluidics platforms for separating cells of interest and performing the 

initial steps of sample preparation. Alternatively, multi-well plate systems are used for the 

same purpose with 250,000 (BD Rhapsody) to 1 million (Celsee) wells per plate. Together, 

NGS and modern microfluidics or multi-well approaches have enabled the single cell 

revolution and unveiled a new layer of complexity within biological systems.

Commercial scRNA-seq approaches have only been available since 2017 (Table 1), but 

experimental single cell transcriptomics have been attempted since the early 1990s18, 19. 

Early efforts were restricted by low cell numbers, as well as the number of transcripts that 

could be examined in a given experiment. Using modern approaches, transcriptome coverage 

with high sensitivity across tens of thousands of cells is readily achievable. The ability to 

identify rare cell populations and the implications of our new understanding of population 

heterogeneity have been immediately scientifically impactful. scRNA-seq approaches were 

used to identify the precursors of plasmacytoid dendritic cells (DC) in the bone marrow and 

for the first time unraveled detailed human thymus organogenesis and early T cell 

development 20, 21. Transcriptional signatures of murine aortic T cells or tumor-associated 

macrophages obtained from scRNA-seq were used to predict outcome in patients with 

recurrent ischemic events or prognosis in breast cancer patients, respectively12, 22. 

Combining transcriptomics with assessment of cell surface phenotype using oligonucleotide-

labeled mAbs23 has allowed for the development of better identification markers for 

discrimination between cell populations and identified many new cell types. As an example, 

scRNA-seq was recently used to develop lineage-tracing networks within the zebrafish 

brain. These approaches allow for the identification of novel cell types and their cellular 

origins during embryonic development24, 25.

Initial microarray approaches were utilized to determine bulk transcriptomes on tissues such 

as atherosclerotic plaques or mixtures of cells like peripheral blood mononuclear cells 

(PBMCs)26. Deeper transcriptomes of FACS-sorted cell populations such as aortic 

macrophages27 or newly identified atherosclerosis-relevant Treg subsets28 were obtained by 

bulk RNA-seq of sorted cells. Understanding gene expression derived from whole tissues or 

PBMCs is a complicated task, because measured gene expression is impacted by cellular 

composition. It was not until scRNA-seq data became available that the averaging problem 

of bulk RNA-seq became obvious. Even within one cell type, the transcriptome varies with 

activation, cell cycle, apoptosis, stress, or time of day (circadian)29. Deconvolution methods, 

such as Cibersort30, allow to dissect the cellular components found in a bulk transcriptome, 

but only for known cell types with known transcriptomes. Complete deconvolution methods 

of bulk RNA-seq data sets are being developed without the need for prior tissue composition 

knowledge. Most of such algorithms assume that a dataset obeys a linear mixing model, 

which refers to the linear relationship between the proportion of a cell-type specific gene in 

a bulk transcriptome to the abundance of this particular cell-type in the probed complex 

tissue. Multiple cell-type specific genes can show mutual expression linearity or collinearity, 

which is used to determine the varying cell types in bulk transcriptomes without the 

knowledge of its composition. For real-life datasets, an algorithm would need large enough 
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input data to robustly determine the linear component of variability across multiple samples 

to faithfully determine the cellular composition e.g. in healthy and diseased tissue31. This 

requires a sizeable sample cohort and is limited by low abundance of a given cell type in a 

complex tissue. scRNA-seq allows us to identify the gene signatures required for accurate 

gene expression deconvolution within bulk RNA-seq datasets, so recently generated scRNA-

seq datasets can be used to reanalyze bulk RNA-seq from previous studies32, 33. Using 

scRNA-seq will continue to help build our understanding of the relationship between cells 

within a given group and allow to predict differentiation trajectories within the bounds of a 

single snapshot in time.

Recently, several studies have introduced mass cytometry and scRNA-seq technologies into 

the cardiovascular field to study a diverse array of cell types, including stromal, endothelial, 

and immune cells34–42. In addition, fate-mapping approaches that insert artificial genes can 

also be used for tracking newly recruited cells or to map the differentiation of a 

heterogeneous population throughout disease kinetics42. Unbiased dimensionality reduction 

and clustering algorithms have resulted in the discovery of new cell types and better 

resolution of cell subsets. The results of such studies pave the way for identifying novel 

pathways for the regulation of atherosclerosis. Here, we review existing studies and aim to 

provide a guide for scRNA-seq experimental design, library preparation, processing, and 

bioinformatics approaches to developing reliable and interpretable results.

[2] SAMPLE PREPARATION

Obtaining a viable population of target cells in suspension and minimizing population bias 

or alterations in gene expression (Box: The promise of CITE-seq (or AB-seq) combined 
with scRNA-seq) is the first step in performing effective scRNA-seq. Cell liberation from 

dense tissue using enzymatic and mechanical isolation methods can often be a primary 

culprit in the introduction of variability within transcriptome analysis approaches. The 

investigator must determine whether tissue processing, digestion, or even cellular sorting are 

necessary, as each additional step introduces possible errors into the final dataset43.

For cell isolations from suspensions like blood, cells merely require a brief wash before 

being enrolled into a desired scRNA-seq platform. In some soft tissues like spleen or lymph 

nodes, lymphocytes can be isolated from single cell suspensions generated by only 

mechanical means (typically by a 70 μm nylon mesh) without enzymatic digestion. 

However, for the remainder of cells within tissues, typically some form of processing is 

required to liberate cells for single cell suspensions. Optimized protocols for liberating cells 

from mouse aortas8, 44 have been published and extensively tested. Enzymatic digestion with 

blends of collagenases and DNAses are the most common approach, particularly for 

cardiovascular disease-related tissues. For each tissue, the conditions (enzymes, 

concentrations, time, temperature, ion composition) need to be optimized and validated. 

Cold digestion protocols taking advantage of proteases with activity at 4–6°C are effective 

for tumor tissue dissection and revealed activation of stress response genes as a result of 

collagenase digestion at 37°C45. This stress response was particularly elevated when 

digestion persisted beyond 1 hour. Few genes have been associated with a cold-protease 

digest approach46. An alternative for cold-protease includes the use of a transcriptional 
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inhibitor, such as actinomycin D, to prevent stress response elements from being activated 

during the isolation procedure47.

A reasonable validation step is using the enzyme cocktail on blood cells and comparing the 

phenotype of the cells exposed to the enzymes with that of untreated cells8. Protocols for 

large arteries and heart biopsies (unpublished) are being developed. Whether samples need 

to be digested in an enzyme cocktail and whether digestion must be performed at elevated 

temperatures (like 37°C), where RNA expression levels may be modified more rapidly and 

more profoundly, should be investigated on a case-by-case basis due to the potential to 

develop biased or non-reproducible data48. A recent study showed that a two-hour 

collagenase treatment of muscles to isolate muscle-resident satellite cells induced expression 

of immediate early genes including Fos, Jun, Socs3, and diverse heat shock proteins, 

marking a cellular stress response48. These genes were not detectable in cells derived from a 

one-hour collagenase digest. Thus, published data sets need to be carefully evaluated for the 

tissue dissociation protocols applied and might need to be reinterpreted in view of cell stress. 

A further source which may lead to decreased quality and yield of cells isolated from a 

complex tissue are lengthy manual processing times at the bench, such as removing 

perivascular adipose tissue or cutting samples for rapid digestion. Commercially available 

platforms including the Miltenyi gentleMACS allow for a more efficient and standardized 

tissue dissociation and homogenization.

In addition to potential processing artifacts from mechanical dissociation and enzymatic 

digestion, any given protocol may result in a misrepresentation of the actual cellular 

diversity present in the tissue. This is due to intrinsic predisposition of the preparation 

method to target some cell lineages over others. Often a historically established protocol was 

designed for the study of a specific cell type of interest, without consideration for other non-

target cells that may be left to succumb to cell damage or death. An example would be that 

in our previous experiments to retrieve cholesterol-loaded foamy macrophages from within 

atherosclerotic plaque in the artery, an aggressive digest of the tissue with a relatively 

complex cocktail of enzymes was necessary36. This approach led to efficient recovery of the 

cells of interest but left other cells, particularly arterial endothelial and smooth muscle cells, 

almost uniformly unrecoverable. Using this same digestion approach for examining stromal 

cells within the arterial wall would result in poor quality transcriptomes that are difficult to 

interpret. With this possibility understood, the fraction of cells within a given sample may 

therefore be over- or under-represented. Validation may involve cell imaging in the tissue 

environment, but microscopy is by nature low-dimensional (few fluorochrome channels). 

Cell proportions obtained by scRNA-seq can be corrected by deconvolving bulk 

transcriptomes34, 49. When digesting tissues that will be subsequently stained for surface 

antigens, for cellular indexing of transcriptome and epitopes (CITE)-seq or FACS sorting, it 

is important to test for the loss of surface markers due to cleavage or shedding. For example, 

L-selectin (CD62L) and CD4 are lost after enzymatic treatment, but CD4 will recover after 

short-term (30 min) culture.

scRNA-seq approaches require a high viability (ideally >95%) of cellular input. Dead cells 

can be removed by bead-based approaches or FACS sorting, which is an approach favored 

by immunologists to isolate leukocytes or other cells of interest from tissues and organs. 
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FACS sorting can also be used to narrow down the cell populations to be studied by scRNA-

seq or bulk RNA-seq. Single cell suspensions are antibody-labeled on ice, undergo multiple 

buffer washes, and are pulled through a sorter. Narrowing down populations by pre-sorting 

can improve cell type resolution, but comes at the expense of potentially missing new cell 

types.

Different choices can be made for cells to be analyzed by scRNA-seq approaches. Broad 

populations from complex tissues have been chosen, for example arterial cells with no 

enrichment41, total hematopoietic cells expressing CD45-antigen from atherosclerotic 

aortas34, 35 or specific immune cell subpopulations such as regulatory T cells obtained from 

transgenic fluorescent reporter mice50. Advantages of using FACS sorting include the 

removal of dead cells and the ability to condense a viable, but relatively rare population or 

group of populations into a single sample. For example, purifying heart leukocytes is a 

laborious process and provides very few hematopoietic cells. Without sorting, there may not 

be sufficient cells to identify the diversity of macrophage populations within the tissue37. 

However, high pressure, shear stress and osmotic changes during the FACS sorting process 

can lead to cellular stress and altered gene expression51. To circumvent this problem, it is it 

is advisable to block the cells’ ability to produce new mRNAs by adding RNA polymerase 

inhibitors52, 53. Also, newer generations of low pressure-based cell sorters such as the 

MACSQuant Tyto may reduce these problems. In addition, faster and less invasive methods 

for cell enrichment include magnetic bead isolation approaches where cells of interest are 

negatively-selected by using antibody-magnetic bead labeling approaches to enrich for cells 

of interest by removing other cells from a mixed population. This procedure can be 

performed completely on ice in less than one hour and with low-budget equipment, making 

it a suitable replacement to sorting, which is time intensive and requires well-maintained and 

expensive equipment. Positive bead isolation strategies for cells of interest should be 

avoided as they can activate cells and lead to stress response signatures54. Approaches are 

being employed to limit cellular changes by shortening digestion periods, keeping cells on 

ice during digests, or even supplementing buffers with RNA polymerase inhibitors. 

Optimizing many of these methods appears to be ongoing in many laboratories and 

standards have not been established yet.

In some scenarios it is not feasible to isolate viable cells from tissues without substantial 

damage. For some clinical samples that are isolated following very long procedures like 

transplantation, were previously frozen or collected post mortem (such as brain aneurysm 

samples), it may be advantageous to take on an alternative isolation approach known as 

single-nuclei RNAseq (snRNA-seq)55. This approach takes advantage of the resistance of 

nuclei to degradation during freeze-thaw cycles. A typical protocol and work flow for 

snRNA-seq is highlighted here56. However, the quantity of mRNA available in the nucleus is 

limited. More unspliced mRNA may be recovered. Additionally, snRNA-seq is not 

compatible with CITE-seq, so no simultaneous protein expression information can be 

obtained. However, comparative analysis has shown that snRNA-seq faithfully replicates 

overall transcriptomes of whole-cell lysates57, 58.
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[3] scRNA-seq METHODOLOGY

scRNA-seq refers to a broad class of techniques and protocols that each contain their own 

inherent strengths and weaknesses. Depending on the readout being sought or the 

availability of resources, certain methods may be more desirable than others. The primary 

difference relates to the ability to process large (tens of thousands) or small (hundreds) 

numbers of cells. Higher cell numbers come at the expense of lower read depth within 

individual cells and impaired ability to decipher mRNA details such as splice variants or 

expression isoforms. However, all approaches share some universal steps. First is the ability 

to separate individual cells (Figure 1), either through microfluidic chambers, nano-droplet 

formation or plate-based systems. Generating the library entails lysing the cells, synthesizing 

the RNA into cDNA and amplifying the cDNA. Due to mRNA degradation after cell lysis 

and an inefficient reverse transcription reaction, only 10–20% of total transcripts are 

synthesized into cDNA14, 59, 60. Because amplification is not uniform, the number of reads 

mapping to a given transcript does not indicate the amount of transcript in the sample. This 

problem was solved by introducing unique molecular identifiers (UMIs)61. Counting UMIs 

is closely related to gene expression62, 63. Initially, the commercially available platform for 

scRNA-seq by 10x Genomics allowed to capture below 10% of a single cell’s transcripts14. 

This was significantly improved to 30–32% by new reagents and chemistry according to the 

manufacturer. All samples are processed for NGS. Illumina’s HiSeq or NovaSeq are the 

most commonly used platforms. In this section, we will reference three of the most popular 

approaches to get from single cells to a sequencing library. More approaches are reviewed 

here64. Single cell technologies continue to evolve and change.

Drop-seq

Droplet-based sequencing approaches, which include the popular 10X Genomics 

Chromium14 and Drop-seq65, 66 approaches and others take advantage of nanoliter droplet 

formation through microfluidics cartridges to place individual cells into an oil-based 

medium to separate cells for micro-reactions. These approaches are currently the most high-

throughput with tens of thousands of cells being assessed in a single run (Table 1). They 

utilize UMIs that are associated with individual transcripts. UMIs are molecular barcodes 

that are attached on the surface of a bead to identify each transcript of a cell. Once cells are 

lysed, sample libraries can be combined after multiplexing. Multiplexing and sequencing 

multiple samples in one run reduces batch effects. Sequencing is limited to the cell barcode, 

multiplexing tags, UMI tags, and read-length size portions of transcripts that can be read. 

This limits the ability to detect many splice variants within Drop-seq approaches when 

compared to full-transcript sequencing approaches like SMART-seq. This makes it 

impossible to detect splice variants. Drop-seq provides high throughput, but low read depth. 

It is usually sufficient to obtain 40,000–50,000 reads per cell. This approach is useful for 

identifying rare cell populations and to map cellular diversity within whole organs.

SMART-seq

SMART-seq can be paired with index sorting or microfluidics platforms like the Fluidigm 

C1. Index sorting is a FACS-based approach of separating single cells into multi-well plates 

for subsequent single cell analysis. Fluidigm C1 is a fully automated system for separation 
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of single cells that includes an automated platform for cell lysis, cDNA synthesis, and 

tagging procedures. The Fluidigm platform is suitable for analysis of surface protein 

expression by imaging, genomic DNA, epigenetic, or micro RNA abundance all within the 

microfluidics chamber. Whereas the first C1 generation allowed for the assessment of up to 

96 cells, the C1 high-throughput integrated fluidics circuits platform allows to analyze 

mRNA of up to 800 individual cells The distribution of cells in the microfluidic chambers is 

gentler than flow cytometry sorting and may influence transcriptomes less. Optical 

assessment of the microchamber after cellular loading provides unparalleled confidence in 

the number of cells that are subjected to single cell RNA sequencing protocols. However, 

this approach comes at the cost of a high cellular input for loading.

Following separation of individual cells using cell sorting or microfluidics platforms, cells 

are lysed and RNA is hybridized to an oligo-dT containing primer after first strand cDNA 

synthesis to act as a barcode67. Current versions of this approach, termed SMART-seq2, 

have optimized the nucleic acid linking approach to improve kit performance68, 69. Full 

cDNA transcripts are then amplified and sequenced. This approach requires read depths 

beyond 1,000,000 reads per cell and can detect isoform variants and even single nucleotide 

polymorphisms (SNPs) in transcripts. Full sequence analysis improves mRNA sensitivity 

and provides great depth within individual cells. This comes at the cost of being low-

throughput. The cost is high at >$50 per cell. Sophisticated new approaches based of 

SMART-seq2 protocols have been used to determine cellular heterogeneity in the developing 

mouse brain and an entire nematode using Split Pool Ligation-based Transcriptome 

sequencing (SPLiT-seq)70 and single-cell combinatorial indexing RNA sequencing (sci-

seq)71, respectively. Both depend on multiple rounds of combinatorial indexing with 

oligonucleotide barcodes leading to uniquely barcoded individual cells and transcriptomes. 

For this, 100–1000 cells are sorted into 96- or 384 well-plates and kept intact. An in situ 
reverse transcription with barcoded primers will be performed, all cells will be collected, 

and randomly distributed into wells of another plate. This is followed by 2nd strand 

synthesis, tagmentation and a PCR to introduce a 2nd barcode. This technique allowed for 

the parallel analysis of 150,000 cells and drastically reduced cost per cell. Generation of 

SMART-seq3 is on the horizon; it detects transcripts in an allele-specific way and at 

increased sensitivity, which may lead to the detection of thousands of more genes per cell 

than are currently available with commercial products72.

BD Rhapsody

The BD Rhapsody approach allows for the targeted detection of a few hundred known 

targets. Several gene panels are available. Rhapsody performs paired barcoding in 

microwells with magnetic beads. Beads and attached mRNA are retrieved and synthesized 

into cDNA. cDNA is then amplified using targeted primers to specific genes of interest and 

labeled with library index barcodes. Samples are then sequenced and target gene expression 

is assessed. This approach leads to the ability to run more cells at a lower cost than other 

approaches. Rhapsody is compatible with the detection of surface antigens (by AB-seq) and 

hence provides protein information. A newly developed Rhapsody approach is designed to 

provide full (not targeted) transcriptomes.
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CITE-seq, integrating transcriptome and proteomics

CITE-seq detects surface antigen abundance in tandem with scRNA-seq through the use of 

oligo-barcodes attached to antibody conjugates (instead of traditional flow cytometry or 

CyTOF, which use fluorochromes or rare metals, respectively). An analogous approach, 

REAP-seq (RNA expression and protein sequencing), has also been developed using an 

alternative method for conjugating oligonucleotide probes to antibodies73. Oligonucleotide 

barcodes can then be interrogated for enrichment within populations of cells to assist in 

identifying populations of interest. A typical workflow is shown in Figures 1 and 2. Matched 

transcriptome and cell surface phenotype information is retrieved, which allows for a more 

fine-grained analysis of cells. A first report in 2017 provided information of single cell 

transcriptomes and simultaneous assessment of 17 surfaces markers23.

The BioLegend brand of CITE-seq, called Total-seq, uses poly(dT) oligos and Drop-seq 

approaches utilizing 3’ or 5’ sequencing. Fernandez et al. recently used a 21-surface marker 

CITE-seq panel to describe leukocyte heterogeneity in human atherosclerotic plaques39, 74. 

Antibody numbers are limited only by the number of oligo barcodes developed by 

manufacturers, with custom options available. Therefore, expect antibody CITE-seq panels 

to dramatically expand in the near future.

[4] PRACTICAL CONSIDERATIONS

scRNA-seq costs have dropped dramatically since 2017, but remain a limitation for 

researchers to access the technology. scRNA-seq is 10–200 times more expensive than bulk 

RNAseq approaches. Multiplexing scRNA-seq samples slightly reduced experimental costs, 

but most importantly helped to normalize between samples and control batch effects. These 

approaches utilize molecular barcoding at the sample level in addition to the cellular level. 

This allows for multiple samples to be combined and run on the same lanes, which becomes 

particularly important when collecting clinical samples with limited sample size, or when 

large numbers of samples need to be assessed. An intriguing new approach suitable for 

scRNA-seq or snRNA-seq approaches localized DNA-barcodes to lipid anchors on 

membranes termed MULTI-seq (Multiplexing using lipid-tagged indices) may be 

particularly helpful for sample barcoding approaches and discrimination of cell viability and 

endogenous gene expression patterns75. Antibody mediated multiplexing approaches have 

also been developed and modified for use with snRNA-seq analysis76.

Limitations of scRNA-seq include the limited depth of reads that can be detected per cell, 

often 10 times lower than what is obtained in bulk RNA-seq of sorted cells. Most bulk RNA-

seq experiments are sequenced at millions of reads per sample. Shallow sequencing 

approaches are thought to underrepresent the transcriptional information. A greater 

sequencing depth increases the number of detectable transcripts. However, this is not linear 

and only marginally scalable, which means that sequencing depth needs to be increased 

tremendously to obtain information of additional transcripts. At a certain sequencing depth 

sequencing saturation occurs, which means that no additional unique transcripts will be 

detected.
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Saturation is a function of both library complexity and sequencing depth. RNA content 

varies between cell types and their activation status, which will be represented by different 

numbers of transcripts in a library, called the complexity. The library complexity limits 

detection of transcripts even with increasing sequencing depths. As increasing sequencing 

depth comes with higher experimental costs, alternative strategies might be favored. A high-

throughput scRNA-seq experiment can be used to uncover cellular heterogeneity in a 

complex tissue under homeostatic or pathologic conditions. Once an unusual cell 

subpopulations or transcript combinations within a cell population has been discovered, cell 

surface marker of this population can be identified. Subsequently, this population can be 

FACS-isolated and subjected to deep bulk RNA-seq to obtain a better picture. This was 

recently implemented for vascular macrophages in atherosclerotic arteries23.

In addition to sequencing depth, intrinsic bias between approaches has been reported. 

Specifically, full-length sequencing libraries are associated with increased sensitivity for 

longer mRNA fragments. By contrast, droplet approaches using UMI tagging acquire 3’ or 

5’ ends for analysis, thus avoiding length biasing77.

[5] POST-SEQUENCING PROCESSING

Post-sequencing processing for large data sets requires significant computational resources 

and experienced specialists, which remain limiting factors for many laboratories performing 

scRNA-seq (Figure 2). In droplet-based technologies, after paired-end sequencing is 

performed, two FASTQ files are obtained. The first contains cellular and UMI barcodes, 

which identifies the cellular source, the second contains sequence and quality scores of the 

sequenced cDNA. Subsequently, reads are mapped to the reference genome/transcriptome of 

the target species78, 79. Pseudoaligners instead of classical aligners can speed up the 

alignment process80. Droplet-based technologies, after alignment and quantification, yield a 

large matrix of detected gene expression in each cellular barcode.

A substantial proportion of droplets contain a bead but no cell. Other droplets contain one 

bead and one cell (desired). Yet other droplets contain one bead and two or more cells 

(multiplets). All multiplets must be identified and removed to prevent flawed results. 

Multiplets, unless removed, will look like unique cell types. There are three fundamental 

ways to remove multiplets: based on SNPs81, cell transcriptomes82, or hashtags83. Several 

methods to identify multiplets have been described84. Dead cells should also be removed. 

Overrepresentation of mitochondrial transcripts is commonly used to identify dead cells, but 

there is no consensus on the cutoff.

Regardless of the scRNA-seq strategy, the filtered count matrix must be normalized, scaled, 

and subjected to dimensionality reduction. Since scRNA-seq data contain extensive and 

highly variable data, visualization requires dimensionality reduction approaches for removal 

of noise and simplification of variation between samples. The variability between tens or 

hundreds of genes needs dimensionality reduction for an understandable display. Using 

algorithms such as tSNE, UMAP, or PCA, complex data can be generated into 2-

dimensional models for simplified visualization. Additional downstream analyses include 
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differential gene expression, followed by pathway/gene set enrichment, trajectory analysis, 

and others85.

Batch effects refer to preparation-dependent changes in how cells were isolated, RNA was 

processed, or any other unwanted experiment-to-experiment variations. Batch effects make it 

difficult to compare transcriptomes collected from different laboratories or at different times. 

Common batch effects in scRNA-seq datasets include protocol variations, variations among 

donors, and operator variations. Depending on the severity, batch effects can be so large as 

to completely obscure the biological information contained in the data. Principal Component 

Analysis (PCA) is often used to visually inspect whether cells cluster by some experimental 

co-variate. Recently, Büttner et al86 designed a test to quantify the extent of batch effects 

that is inherently more accurate than simple visual inspection. Although the optimal 

approach to prevent batch effects is following a balanced experimental design87, 88, balanced 

designs are rarely feasible or cost-effective. Hence, several batch correction algorithms have 

been proposed to correct for batch effects89–94, some of which have been initially designed 

for microarray and bulk RNA-seq89, whereas others have been specifically designed for 

scRNA-seq90–94. Generally, batch effect correction is applied to the normalized data before 

dimensionality reduction and clustering. These algorithms differ in the level at which they 

correct batch effects. Combat89 and MNNCorrect92 operate by directly correcting gene 

expression in each cell, whereas Seurat93 generates corrected low-dimensional reductions, 

similar to principal components, for clustering and visualization. BBKNN90 generates an 

adjusted neighbor graph taking into account the different batches for subsequent clustering 

and visualization. Other batch correction algorithms are embedded within frameworks 

specifically designed for scRNA-seq analysis95.

Dropouts and imputation of data

Dropouts are transcripts that are expected in a cell, but for which no reads were detected. 

The rate of dropouts is dramatically higher in scRNA-seq data than in bulk approaches, 

because the starting nucleotide concentration in a single cell is limiting. For a low-expressed 

gene, a transcript may be present in the cell or not at any given time. Even if present, 

transcripts might not be detected. This risk increases if the sequencing depth was 

insufficient, thus creating false negatives. The loss of “true” gene expression can lead to 

biased results and might necessitate the removal of cells or samples from further analysis. 

Conversely, similar dropouts in a subset of cells might aggregate them in the same cluster, 

producing false apparent cellular diversity. Multiple approaches to address this problem and 

fill the blanks in single cell data have been developed96–100. Each of these methods 

outperformed several others depending on the benchmarks and datasets used. 

Fundamentally, these approaches can be used to impute all gene expression values (e.g. 

MAGIC98) or only dropout genes (e.g. DrImpute97). Another approach adopted by 

SCRABBLE101 attempts to borrow information from a matched bulk RNA-seq sample in 

order to constrain imputation. This strategy is considered superior and outperforms five 

competitive platforms. The assumption underlying imputing all genes is that dropout is a 

broad phenomenon that affects all genes; albeit to varying degrees. These algorithms are not 

part of the necessary and routine scRNA-seq analysis workflow and should only be 

implemented when expected genes in cell populations are missing. On a cautionary note, 
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Andrews et al102 recently suggested that imputation may be beneficial to visualization and 

clustering, but may introduce false positives when used for cell type markers and differential 

expression. New bioinformatic workflows allow to normalize and remove technical variation 

in molecular counts while preserving the true biological variation103. This procedure is 

independent of pseudocount addition or imputation and log transformation, thus improving 

the analysis of scRNA-seq data.

Data deposition

Typically, most investigators deposit their raw data on the National Center for Biotechnology 

Information Gene Expression Omnibus database (NCBI GEO). Raw data from NCBI GEO 

can be downloaded using the freely available SRA toolkit. Some groups prefer to publish 

their data on their own websites, which usually have added features including the ability to 

browse individual genes and visualize clustering, e.g. Tabula Muris104 (https://tabula-

muris.ds.czbiohub.org/) and the Human Cell Atlas (https://data.humancellatlas.org/). Other 

repositories are available, including the Single Cell Expression Atlas (https://

www.ebi.ac.uk/gxa/sc) or the Pangloa database (https://panglaodb.se). When depositing 

scRNA-seq data, it is important to deposit at least the raw data and an accurate, detailed and 

complete metadata file. Although NCBI GEO provides a template for researchers to fill out 

the metadata information related to their data, it is up to the researcher to include as much 

detail as they want. This has not been standardized yet. Some GEO entries will have fastq 

files as raw files while others will have 10x bams files. Supplementary data is not 

standardized in GEO and can contain either count files, normalized expression values, h5 

molecule matrices from the 10x cell ranger pipeline, or all of the above. Standardized and 

detailed data deposition is crucial for reproducibility, particularly due to the inherent 

variation observed in single cell studies. When using deposited data, it is very critical to 

ensure that data has been properly processed, especially when integrating multiple datasets. 

Processing the raw fastq data avoids many potential sources of error. The main challenges 

for using repositories is the ability to integrate the data in a way that retains as much 

biological information as possible while reducing the unwanted variation. A lot of progress 

has been made in developing tools for the integration of different datasets while accounting 

for potential batch effect and avoiding confounded experimental designs. An important 

consideration when integrating datasets is having the complete metadata, with as much 

detail as possible. Additionally, as more and more datasets are being generated, it is 

important to consider scaling both the hardware requirements, i.e. hard-disks and computing 

cores, and software requirements, i.e. tools and packages for the preprocessing and analysis 

of such data.

[6] UNSUPERVISED CLUSTERING AND MACHINE LEARNING

Using unbiased computational approaches where gene expression similarities between 

individual cells leads to a clustering within the veil of a shared expression makeup has 

become the dominant approach for data analysis. The most popular algorithm is Louvain, 

which is a graph-based method for community detection. In-depth discussion of 

unsupervised clustering can be found elsewhere105. By allowing algorithms to sort the data, 

analytical bias can be avoided. These unbiased analysis approaches have proven that unique 
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clusters of cells found in specimens can be reproduced in different labs using different 

implementations of this approach. Determining the boundaries between clusters in an 

unbiased way is still challenging. It is up to the researchers to identify or name clusters, 

based on prior knowledge or systematic naming conventions. Researchers often have to 

choose clustering resolution: leveraging this parameter will either merge similar clusters into 

one bigger cluster or split a bigger cluster into smaller, transcriptionally different clusters. 

While choosing this parameter is not straightforward, good practice needs confirmation of 

transcriptionally diverse cellular clusters with protein-based methods such as FACS. Also, in 

our experience, clusters are not always restricted to a single cell type. This is best 

exemplified by proliferating cells, which share a specific and dominant transcriptional 

profile. Thus, they cluster together although they are of different cell types. New 

bioinformatic tools including scmap106 and SingleR107 are aiding to call cell clusters. Both 

methods rely on reference data. They automatically choose sets of genes that identify a given 

cell type. However, both algorithms are prone to misclassifications if the transcriptome 

originating from a particular phenotype or cell of interest is not included in the reference. 

Particularly, aberrant cells or cells obtained from pathological conditions can harbor a 

heterogenous transcriptome which is not included in the reference. In case cells are not 

definable by the reference, scmap leaves these cells unclassified. A different algorithm, 

CHETAH108, also utilizes reference data, but infers classification on intermediate or 

unassigned cells by hierarchical clustering.

Analysis tools

Close to 500 scRNA-seq analysis packages are available by now, impossible to review in a 

short article. The expression of ligand-receptor pairs in single cell data obtained from 

complex tissue can be harnessed to predict how tissue cells interact and communicate with 

each other109. The cellular RNA content is a great indicator of the state of the cell at the time 

of analysis. However, dynamic processes such as embryogenesis cannot be addressed by a 

static method. Approaches to overcome the static nature of scRNA-seq include utilization of 

nucleotide analogs that can be pulsed prior to processing, allowing for temporal resolution of 

newly expressed RNA to be tracked within single cells, termed scSLAM-seq110. RNA 

velocity111 – which represents the time-resolved transcriptome state – can be predicted by 

analyzing unspliced and spliced mRNAs. In other words, RNA velocity allows to predict the 

future cell state given that unspliced mRNA has yet to be processed and expressed within the 

cell. Monocle112, 113 allows for unsupervised trajectory analysis of single cells by pseudo-

time ordering. The second version of monocle68, a machine-learning technique based on 

reverse graph embedding (RGE) and parsimonious principal graphs, can be used on all 

scRNA-seq data sets and does not require input information about cell fates or branch points. 

Another algorithm available in the monocle2 package is Census59 . This algorithm converts 

fragments per kilobase per million reads/transcripts per million reads (FPKM/TPM) gene 

expression values in single cells to relative transcript counts without the need for spike-in 

standards or UMIs. For easier modeling of the data compared to normalized read counts, 

Census-obtained counts can be used to determine splice isoforms and provides allelic 

information which can be used to determine developmental regulation. An in-depth review 

of algorithms inferring trajectories of single cells can be found here114. Further useful 

analytical tools allow researchers to investigate not only the different transcriptional profiles 
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of the cells but also their regulatory networks (SCENIC)115 and their potential interaction 

via ligand receptor relationships (CellPhoneDB116, NicheNet117). Multiple algorithms are 

particularly useful for studying adaptive immune responses in complex tissues. We find the 

most powerful tool in this regard to be TraCeR118, which can be used to reconstruct paired 

and full-length TCR chains from transcriptomes of single T cells. This allows to study the 

TCR V, D and J segment usage and clonality in homeostasis or under pathological 

conditions. It should be noted that TraCeR requires full-length transcriptomes. We have been 

able to assemble TCRα and β sequences from 10X Genomics 5’ sequencing.

Multi-omics approaches

The next step in single cell platform analysis includes broader multi-omics approaches like 

DNA methylation by bisulfite conversion sequencing or TAB-seq, non-coding RNAs, 

chromatin accessibility by ATAC-Seq, histone modification by CHIP-seq, and protein 

expression levels by CITE-seq (also called AB-seq). Integrating these data with ever-

changing bioinformatics approaches enables more powerful analysis. For example, 

expressed quantitative trait loci (eQTLs) can help identify underlying regulatory networks 

associated with targets of interest.

All of today’s scRNA-seq methodologies require the preparation of single cell suspensions, 

which leads to complete loss of spatial information of cell types within a given tissue. There 

are some limited workarounds, like injecting an antibody intraveneously to label 

intravascular cells119. New approaches aim to fully retrieve spatial information. Recent 

publications introduced two new methodologies, seqFISH+120 and Slide-seq121, which 

allow for in situ spatial identification of transcripts at near-single cell resolution across a 

wide array of RNA probes. 10x Genomics offers a commercially available solution called 

Visium which allows for whole transcriptome detection, but not at single-cell resolution. 

Cartana provides a product based on in situ sequencing122. The technology allows to detect 

over 100 genes within tissue sections at single cell resolution123. In seqFISH+, tissue 

sections are incubated with transcript-specific probes containing a complementary sequence 

to an oligonucleotide attached to a fluorochrome. Key is the multiplexing with three 

different fluorochromes and multiple hybridization rounds, allowing to image multiple 

transcripts in every round. The images of every hybridization round are bioinformatically 

parsed together; detection of 10,000 transcripts in a complex tissue has been achieved. An 

alternative approach was used where barcoded-beads were spotted on a functionalized glass 

slide and sequenced subsequently to define areas of beads and establish a map of barcodes 

spotted on the slide121. Tissue sections were then incubated with the functionalized slide, 

RNA was released, hybridized with the spotted barcoded oligonucleotides, and subjected to 

sequencing. However, this approach does not provide true single cell resolution, because 

RNA from more than one cell may hybridize to each spot. Transcript detection at a 

resolution of 100 μm2 (10×10 μm) has been achieved.

The future of single cell methodologies

We are only in year 3 of commercially available scRNA-seq. Innovation continues at a rapid 

speed and new products are released weekly. CITE-seq and AB-seq are only the beginning 

of multi-omics approaches. Spatially resolved and high-throughput strategies are on the 
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verge of becoming practical. ScRNA-seq approaches are being applied to high-throughput 

chemical screens to assess hundreds of thousands of cells in individual runs, allowing for 

molecular insights to be gained from large scale pharmacologic perturbations124. More than 

100x cost reduction per cell has already been achieved compared to the pioneer days of 

sorting single cells into single wells. Sensitivity is improving, but still not satisfactory. 

Standard protocols for removing low quality transcriptomes, doublets and dead cells are 

sorely needed. Imputation and batch effect removal software programs exist, but there is no 

consensus in the field which ones should be used. Another important direction is the 

integrated and comparative analysis of single-cell data between different laboratories, 

donors, batches, single-cell platforms or even species. The goal of these methods is to 

identify common cell types/states that are present in different scRNA-seq samples while 

rendering dimensionality reduction and clustering robust to unwanted variation. While first 

techniques were only recently developed93, 125, enormous progress has already been made 

showing the possibility to extend these techniques to single-cell protein, chromatin and 

spatial data126. With more labs using scRNA-seq, the demand for unified processing 

strategies has increased. The biggest bottleneck in scRNA-seq today is the post-sequencing 

bioinformatic analysis, which is currently carried out by well-trained experts who are in high 

demand in academia and industry. Future strategies will aim to create user-friendly data 

analysis interfaces, databases and standard file formats that will streamline analysis and data 

sharing.

We expect methods and algorithms that will try to identify possible regulators, key 

transcription factors and epigenetic data. A single cell assay for transposase accessible 

chromatin (ATAC-Seq), a method to map open chromatin, is already available from 10x 

Genomics. Cell type calling and phenotypical associations based on scRNA-Seq data may 

use association rule mining or other rule-based machine learning techniques. These 

algorithms assist in generating hypotheses that can be tested in the lab.

Conclusion

Single cell RNA-seq with CITE-seq or AB-seq is a powerful methodology for cell type 

discovery, lineage relationships, homeostasis, development and disease. Terabytes of data 

are generated every day. Single cell RNA sequencing is beginning to reveal the complex 

interactions between cell types in atherosclerosis initiation, progression, regression and 

plaque rupture as well as other fields of cardiovascular research. New insights will help to 

tailor new and innovative therapeutic strategies for atherosclerosis beyond controlling lipid 

levels.
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Nonstandard Abbreviations and Acronyms:

ATAC-seq Sequencing protocol which assesses open chromatin 

regions

BCR B cell receptor

CHIP-seq Chromatin precipitation sequencing, maps transcription 

factor binding

CITE-seq (also AB-seq) cellular indexing of transcriptome and 

epitopes, allows simultaneous assessment of antigens and 

transcriptomes

CyTOF Mass cytometry

Deconvolution Bioinformatic analysis of bulk RNA transcriptomes for 

cellular composition

Drop-seq Droplet-based sequencing

Dropouts Expected transcript for a given cell, but no read was 

detected

eQTL Expressed quantitative trait loci

FACS Flow cytometry

FASTQ File format obtained after sequencing

FPKM Fragments per kilobase per million reads

Imputation Algorithms that infer the expression of a dropout

MULTI-seq Multiplexing using lipid tagged indices-sequencing

REAP-seq RNA expression and protein sequencing

RGE Reversed graph embedding, used to resolve single-cell 

trajectories

Saturation Sequencing depth at which no additional transcripts will be 

detected

Sci-seq Single-cell combinatorial indexing RNA sequencing

scRNA-seq Single cell RNA sequencing

scSLAM-seq Single cell, thiol-(SH)-linked alkylation of RNA for 

metabolic labeling sequencing

SMART-seq Protocol to perform deep transcriptional profiling

snRNA-seq Single nuclei RNA sequencing
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SPLiT-seq Split pool ligation-based transcriptome sequencing

TAB-seq Sequencing protocol which utilizes bisulfite sequencing 

and TET proteins to study 5-hydroxymethylcytosine DNA 

modifications

Tagmentation Sequencing library preparation with the Tn5 transposase

TCR T cell receptor

TPM Transcripts per million reads

Trajectory analysis Pseudotime projection obtained from single cell 

transcriptomes allowing to predict cell states and 

developmental relationships

UMI Unique molecular identifier; molecular tag used to detect 

and identify unique mRNA transcripts
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Box.

The promise of CITE-seq (or AB-seq) combined with scRNA-seq.

Discovery FACS panels are focused on known cell types. Unbiased approaches such as CITE-seq 
with 50 antibodies yield 1225 dot plots, many of which have never been seen before. 
This will lead to the discovery of new cell types in blood and tissues of humans and 
model animals in health and disease. The surface phenotype is superior to 
transcriptomes for cell identification, because it takes advantage of knowledge gained 
in 30 years of flow cytometry.

Complexity Classical flow cytometry allows for detection of 16 markers. New analyzers promise 
up to 50 markers (Cytek Aurora, BD Symphony). Mass cytometry resolves up to 40 
markers. Due to uniquely barcoded antibodies, CITE-seq is virtually unlimited. 100-
plex panels are on the horizon.

Uncovering true 
heterogeneity

Machine learning algorithms perform dimensionality reduction (UMAP, tSNE) and 
group cells into clusters of similar surface antibody expression (Louvain). In a second 
analysis step, the single cell transcriptomes refine the clusters.

TCR, BCR T and B cell receptor sequences can be assembled, for example using the 5’ solution 
by 10x Genomics, and combined with transcriptomes and surface phenotype.

Leveraging 
transcriptomes

Pathway analysis allows to determine the functionality of a given cell cluster, 
including activation, proliferation and apoptosis status.

Developmental 
cues

Single cell transcriptomes can be subjected to algorithms such as Monocle and 
RNAvelocity, which render data as pseudotime plots based on the expression status of 
a cell. This allows to infer developmental trajectories and lineage branching of cells in 
a complex environment.

Limitations All scRNA-seq approaches require enzymatic and mechanical tissue dissociation, 
which induces artifacts. CITE-seq or AB-seq are not compatible with intracellular 
staining. The assays for CITE-seq or AB-seq are more elaborate and require a higher 
technical skill compared to sample preparation for flow cytometry. The workflooxw 
requires accessibility to multiple instruments including a FACS sorter, single cell 
platforms such as the 10x Chromium Controller and a sequencer. The biggest 
bottleneck today is the bioinformatic analysis of the generated data.
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Figure 1. 
Experimental workflow for CITE-seq and AB-seq experiments.

Single cell suspensions derived from artery wall (top) or PBMCs (bottom) are sorted for live 

cells and other desired markers (here: CD45 for leukocytes), hash-tagged, washed and 

incubated with the oligonucleotide-marked antibody panel (currently 50 mAbs are possible). 

After 3 more washes, the cells are loaded into the BD Rhapsody scanner or the 10x 

Chromium controller. Beads are retrieved and processed for library preparation. Pre-

sequencing quality control (QC) is done by TapeStation. DNA fragments are removed, and 

Williams et al. Page 26

Circ Res. Author manuscript; available in PMC 2021 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the library is sequenced using NGS sequencers like the Illumina NovaSeq. The figure was 

created with BioRender.
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Figure 2. 
Bioinformatic analysis workflow of CITE-seq and AB-seq experiments

The output of the sequencer is a FASTQ file with information about read quality. Further 

post-sequencing QC steps are indicated. If batch effects are detected, they can be removed if 

the experiment was designed to do so. Missing transcripts may be imputed. Dimensionality 

reduction (here by UMAP) and clustering (here by Louvain) result in 2 D maps of cells 

segregated by surface markers. Each antibody and transcript can be displayed as a heat map 

projected onto the UMAP. Differential gene expression is determined between clusters, or 

between samples from healthy and diseased individuals, or one cluster against all other cells. 

From the gene signature, pathway analysis is performed. The figure was created with 

BioRender.
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