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Perivascular spaces (PVS) are fluid-filled spaces surround-
ing small perforating brain blood vessels.1 They may be 

part of the glymphatic system2 and be important for brain fluid 
drainage. When enlarged, PVS are visible on T2-weighted and 
T1-weighted magnetic resonance imaging (MRI) as round or 
linear hyperintensities /hypointensities respectively, primarily 
in the basal ganglia and centrum semiovale (CSO). They are 
neuroimaging features of small vessel disease (SVD).1,2 The 
glymphatic system concept is mostly based on rodent stud-
ies: drainage routes, flow mechanisms, and direction of fluid 
movement are unclear.2

Deoxygenated venous blood provides intrinsic contrast on 
gradient echo and susceptibility-weighted imaging sequences; 
therefore, vessels visible on these sequences are suspected 
to be venular. Several visual and computational venular 

quantification methods have been described (Table IV in the 
Data Supplement).3

We examined spatial relationships between suspected 
venules and PVS and determined associations between 
venules and patient demographics, risk factors, SVD fea-
tures, cerebral microvessel dysfunction, and retinal venules in 
patients with SVD.

Methods
We used data from 2 prospective studies of sporadic SVDs: iSVD 
study (Inflammation in SVD)4 and the MSS-3 (Mild Stroke Study 
3). Both studies recruited patients with lacunar or minor nondis-
abling ischemic stroke (modified Rankin Scale score, <3) from NHS 
Lothian clinical stroke services and used similar 3T MRI sequences 
(Table V in the Data Supplement). MRI, demographic, and clinical 
data were obtained within 3 months after stroke. Patients gave written 
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informed consent. The studies were approved by the South East 
Scotland Research Ethics Committee (references 14/SS/1081 and 18/
SS/0044). Data are accessible from the corresponding author.

MSS-3 performs phase-contrast MRI to measure pulsatility in 
the superior sagittal sinus, straight sinus, and transverse sinuses5 and 
calculates the pulsatility index as (Flow

maximum
−Flow

minimum
)/Flow

mean
.5

To quantify suspected venules, we obtained a total venular count in 
a region of interest in periventricular CSO on gradient echo/suscepti-
bility-weighted imaging. The mean difference in venule-PVS overlap 
between 2 observers was zero (95% CI, −1 to 1) in interobserver re-
liability analysis (Data Supplement). One observer performed a total 
CSO PVS count on T2-weighted images in the venular region of in-
terest. We compared gradient echo/susceptibility-weighted imaging 
with T2-weighted images to determine definite, probable, or possible 
overlap of venules and PVS, from their location, shape, and direction 
(Figure; detailed Methods in the Data Supplement).

On retinal images, we measured arteriolar and venular widths 
(central retinal arteriolar equivalent and central retinal venular equiv-
alent, respectively) and arteriole-to-venule ratio.

We quantified SVD lesions1 using Fazekas scale6 for periventric-
ular and deep white matter hyperintensities (WMH) and 5-point scale 
for PVS7 (for MRI, retinal imaging, processing, and analyses, see the 
Data Supplement).

We performed statistical analyses using IBM SPSS, version 24.0 
(IBM Corp, Armonk, NY). We used both studies to develop the visual 
quantification method and assess the venule-PVS spatial relationship 
(details in the Data Supplement). In MSS-3, we additionally ana-
lyzed venular count versus patient demographics, vascular risk fac-
tors, SVD features, retinal vessels, and venous sinus pulsatility using 
multivariable linear regression adjusted for age, sex, and systolic 
blood pressure. We assessed assumptions of normality with standard 
methods: no assumptions appeared to be violated. In secondary mul-
tivariable analyses, we explored associations between significant pre-
dictors from the first analyses in addition to age, sex, and systolic 
blood pressure. Analyses were explorative, so no formal correction 
for multiple comparisons was done.

Results
We included 67 patients (Table 1). Venules were most vis-
ible near the ventricles, whereas PVS were most visible ad-
jacent to cortex (Figure [B and C]). When many PVS were 
present, more PVS were visible near the ventricular outer 
surface. Even when PVS overlapped with venules, PVS 
shapes often differed from the venule (Figures IV and V in 
the Data Supplement).

Per participant, the mean venular count was 33.22±11.83, 
mean PVS count was 55.33±28.62, and the median number 
of venule-PVS overlap was 1 (range, 0–8): only 81 venules 
had overlapping PVS in all 67 patients (mean percent of total 
venules that overlapped with PVS, 4.6%; range, 0%–18%; 
Figure VI in the Data Supplement).

Venular count increased with CSO PVS score (β=0.331 
[95% CI, 0.058–0.604]), total CSO PVS count (β=0.605 
[95% CI, 0.376–0.835]), and venule-PVS overlap (β=0.500 
[95% CI, 0.256–0.744]). Lower venular count was associ-
ated with increased pulsatility in the sagittal (β=−0.425 [95% 
CI, −0.754 to −0.096]) and transverse (β=−0.406 [95% CI, 
−0.712 to −0.100]) sinuses (Table 2). No other associations 
were found (Tables VI and VII in the Data Supplement).

On substituting total CSO PVS count8 for PVS score in 
the model, venular count remained positively associated with 
PVS count (β=0.468 [95% CI, 0.187–0.750]) but not venule-
PVS overlap. Venular count was still associated with total 
PVS count (β=0.547 [95% CI, 0.309–0.786]) in the model 
with transverse sinus pulsatility index.

Discussion
We found different locations and infrequent overlap between 
suspected venules and PVS on 3T MRI, suggesting that most 
venules and MRI-visible PVS are not spatially related. A 7T 
MRI study9 and a pathology study10 also found little venule-
PVS overlap, suggesting that MRI-visible PVS in humans 
might be periarteriolar. As PVS increased, punctate PVS (pos-
sibly representing PVS around lenticulostriate arterioles from 
the basal ganglia10) more often overlapped with venules at 
the ventricular edge. Since venular count increased with total 
CSO PVS count, visible venules and PVS might both indicate 
worsening SVDs.2,11,12

As this may be the first study of venular associations 
with demographics, risk factors, and MRI measurements, 
the analyses were exploratory. One study found associations 
between increased venule visibility and WMH volume,11 
whereas another found the opposite.13 We did not find an 

Figure. Examples of venules related to perivascular spaces (PVS). A, Ex-
ample of overlap of linear PVS (left inlay, arrowheads) and venule (right 
inlay, arrowheads). B and C, Examples of venules (inside blue lines) and 
PVS (outside blue lines) in different locations.
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association with WMH, perhaps due to the small sample. 
Contrary to rodent studies,12 we did not find associations 
between venules and hypertension. We also found no asso-
ciations with retinal vessel widths. Retinal vessel density 
or fractal dimension may be more sensitive and should be 
examined in future.

Previous work suggested that PVS increase with increased 
arterial and venous sinus pulsatility.14 We found positive asso-
ciations between venular count and total CSO PVS count, 
suggesting that higher venular count might associate with 
increased pulsatility index but that higher venular count was 
associated with lower venous sinus pulsatility index. This 
might be indirectly explained by previous associations found 
between fewer visible venules and worse WMH13 and worse 
WMH with increased venous sinus pulsatility.14

Our study is limited by the small sample and cross-sec-
tional design. Artifacts like vessel calcification might be 
confused with venules. Strengths include developing an easy-
to-apply venular quantification method for gradient echo and 
susceptibility-weighted imaging sequences. Future studies 
should examine longitudinal data from larger samples, assess 
changes over time and more associations.

Conclusions
Although we did not find a spatial relationship between sus-
pected venules and PVS, more venules seemed to relate to 
enlarged PVS in the CSO. While we cannot exclude the pres-
ence of PVS around venules, enlarged PVS, as visible on 
MRI, might be more periarteriolar than perivenular.
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