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Abstract

Accurate segmentation of organs-at-risk is important inprostate cancer radiation therapy planning. 

However, poor soft tissue contrast in CT makes the segmentation task very challenging. We 

propose a deep convolutional neural network approach to automatically segment the prostate, 

bladder, and rectum from pelvic CT. A hierarchical coarse-to-fine segmentation strategy is used 

where the first step generates a coarse segmentation from which an organ-specific region of 

interest (ROI) localization map is produced. The second step produces detailed and accurate 

segmentation of the organs. The ROI localization map is generated using a 3D U-net. The 

localization map helps adjusting the ROI of each organ that needs to be segmented and hence 

improves computational efficiency by eliminating irrelevant background information. For the fine 

segmentation step, we designed a fully convolutional network (FCN) by combining a generative 

adversarial network (GAN) with a U-net. Specifically, the generator is a 3D U-net that is trained to 

predict individual pelvic structures, and the discriminator is an FCN which fine-tunes the 

generator predicted segmentation map by comparing it with the ground truth. The network was 

trained using 100 CT datasets and tested on 15 datasets to segment the prostate, bladder and 

rectum. The average Dice similarity (mean±SD) of the prostate, bladder and rectum are 0.90±0.05, 

0.96±0.06 and 0.91±0.09, respectively, and Hausdorff distances of these three structures are 

5.21±1.17, 4.37±0.56 and 6.11±1.47(mm), respectively. The proposed method produces accurate 

and reproducible segmentation of pelvic structures, which can be potentially valuable for prostate 

cancer radiotherapy treatment planning.
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1. INTRODUCTION

Prostate cancer is the most prevalent malignancy in men, and the second leading cause of 

cancer death in the US with approximately 174,650 new cases and 31,620 deaths estimated 

in 2019.1 Standard treatment options for prostate cancer include radiotherapy such as 

external beam radiation therapy (EBRT) and high/low-dose-rate brachytherapy. The efficacy 

of radiotherapy depends on accurate delivery of therapeutic radiation dose to the target while 

sparing adjacent healthy tissues. In image-guided radiotherapy planning, accurate 

segmentation of the prostate and other organs at risk (OAR) is a necessary step. Manual 

segmentation is still considered as the gold standard in current clinical practice, but it is very 
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time consuming and the quality of the segmentation varies depending on the expert’s 

knowledge and experience. In addition, poor soft tissue contrast in CT images makes the 

contouring process challenging and thus yields to large inter-and intra-observer contouring 

variability.2–4

Automatic organ segmentation is an active research area for the last few decades. Existing 

automatic segmentation methods can be broadly categorized into three classes: atlas-based, 

model-based, and learning-based methods. In atlas-based methods, an atlas dataset is created 

from a set of CT images and manually segmented labels, which are registered to the image 

to be segmented followed by atlas contour propagation to the target image to get final 

segmentation.5–8 The segmentation accuracy of atlas-based method largely depends on the 

accuracy of image registration used for atlas matching and the selection of optimal atlases. 

Since a single atlas cannot perfectly fit to every patients, using multiple atlases has become a 

standard baseline for atlas-based segmentation, where multiple sets of contours transferred 

from different atlases will be fused into a single set of consensus segmentations by using a 

label fusion technique.9–14 While multi-atlas-based segmentation has been widely adopted 

with state-of-the-art segmentation quality, it requires a significant amount of time as it 

involves multiple registrations between the atlas and the target volumes. Model-based 

segmentation utilizes a priori knowledge of the target such as shape, intensity, and texture to 

constrain the registration process.15–21 It is often used in combination with other method, 

e.g., multi-atlas auto-segmentation, to further improve the segmentation. Such hybrid 

approaches that combine the atlas-and model-based segmentations have been applied for the 

delineation of head and neck structures on CT images, showing promising results.16, 22–24 

Other model-based segmentation approaches include deformable model-based 

segmentations that initialize a deformable model into the image to be segmented and then 

the segmentation proceeds by deforming the initial model using image-specific knowledge.
25, 26 These model-based methods require fine-tuned parameters for every structure to be 

segmented, and are sensitive to structures and image quality variations. Learning-based 

models train a classifier or regressor from a pool of training image. Then the segmentation is 

generated by predicting the likelihood map.27, 28 Even though this class of segmentation is 

more flexible than the other two classes as it does not require any priori knowledge, this 

class is limited to the hand-crafted feature extraction.

In the last few years, deep learning-based automatic segmentation demonstrated its potential 

in accurate and consistent organ delineation. Particularly, convolutional neural network 

(CNN) became a state-of-the-art in solving challenging problems in image classification and 

segmentation due to its automatic deep feature extraction.29 Ronnebergeret al. proposed the 

2D U-net which is a fully convolutional neural network (FCN) with skip connection and 

capable of extracting contextual features from contacting layers and structural information 

from expansion layers30.A 3D volumetric segmentation using FCN, called V-net, is 

proposed to segment prostate in MR data.31 Zhu et al. incorporated deep supervision in 

hidden layers of U-net to segment prostate in MR images.32 Wang et al. developed a prostate 

segmentation in CT where a dilated convolution, along with deep supervision is combined 

with FCN.33 Segmentation of male pelvic structures (bladder, prostate and rectum) is 

performed using 2D U-net34 and using FCN with boundary sensitive information.35 General 

adversarial network (GAN) is a learning based network that estimates a generative model 
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through an adversarial process. GANs have attracted much interest for their success in 

unsupervised learning36, 37 and have been used in detecting prostate cancer.38

In this paper, we propose a hierarchical volumetric segmentation of male pelvic CT where a 

coarse segmentation is produced using a multiclass 3DU-net to determine organ-specific 

regions of interest (ROIs)and fine segmentation is performed utilizing GAN with a 3D U-net 

as generator and FCN as discriminator. GAN contributes by providing learned parameters of 

accurate segmentation by distinguishing between real and fake segmentations and thus 

globally improving segmentation accuracy.

2. METHODS

We propose a fully automatic segmentation method to segment pelvic structures such as the 

prostate, bladder, and rectum from male pelvic CT images. The pelvic CT contains larger 

background compared to the small organs. Such irrelevant background information burdens 

on computation efficiency. To improve performance, we design a hierarchical coarse-to-fine 

segmentation approach as shown in Figure 1.

2.1 Coarse Segmentation

In the coarse segmentation step, a ROI localization map is generated to extract only the ROIs 

that contain the organs of interest. The original CT image and manual contours are used to 

train a multiclass.3D U-net.30 Similar to the standard U-net, it has contraction and expansion 

paths each with four layers. Each layer of contraction path is composed of two 3×3×3 

39convolutions each followed by a leaky rectifier linear activation function39, after that a 

2×2×2 max pooling is performed. In each layer, we add batch normalization to speed up 

learning by reducing the internal covariate shift40 and dropout to prevent overfitting41. After 

each layer, the number of feature map is doubled. The expansion path has the similar 

architecture to the contraction path except that in each layer it has an upsampling followed 

by a 2×2×2 deconvolution that halves the number of feature map. In the last layer, a 1×1×1 

convolutionis used to map the output feature to the desired number of labels. Then the copy 

layers are used to transfer features extracted from the early contraction path to the expansion 

path. To save training cost, the ROI localization network is trained to segment organs all 

together instead of segmenting each organ separately.

We have down-sampled the original CT image to a lower resolution to train the coarse 

segmentation network. Once this first network is trained, it produces a coarse segmentation 

of pelvic structures of interest, which can be used to automatically extract ROIs of the 

prostate, bladder and rectum. Based on the coarse segmentation, the centroid of each organ 

is calculated and then the ROI of each organ is cropped from the original image where the 

centroid is the center of the cropped ROI.The cropped ROI are large enough to sufficiently 

cover each organ and enough background context.

2.2 Fine Segmentation

For the fine segmentation, three CNNs are trained based on the cropped (using the ROIs 

from the coarse segmentation) CT and manual segmentations separately for the prostate, 

bladder, and rectum. The CNNs in this step are designed using GAN and 3D U-net as shown 
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in Figure 2. The GAN network consists of a generator and discriminator networks where the 

two networks compete with each other to produce an accurate and optimal segmentation 

map. A 3D U-net is used as a generator, and trained using cropped CT and manual 

segmentations. After training, the generator produces predicted label of the OAR. On the 

other hand, an FCN is used as the discriminator and trained using manually contoured labels 

to determine if the generator predicted labels are real or fake.

In GANs both the generator network G and discriminator network D are trained 

simultaneously. The objective of G is to learn the distribution px from the dataset x and then 

samples a variable z from the uniform or Gaussian distribution pz.(z). The purpose of D is to 

classify whether an image comes from training datasets or from G. To define the cost 

functionz of the GAN, let lfake and lreal denote labels for fake and real data, respectively. 

Then the cost function for D and G are defined using least square loss function42 as follows:

min
D

LossD = 1
2Ex px x D x − lreal

2 + 1
2Ez pz z D G z − lfake

2
(1)

min
G

LossG = 1
2Ez pz z D G z − c 2

(2)

where c is constant value that generator wants discriminator to believe for fake labels.

In the proposed method, for fine segmentation we defined the objective function of the 

generator as the sum of weighted dice loss function and least squared generator loss function 

defined in equation (2).The final objective function to optimize the network is defined as:

Loss = Lossdice + LossG (3)

We have used a weighted dice loss define as:

Lossdice = ∑i wi 1 −
∑xbi x p x, i

∑xbi x + p x, i (4)

where for each class i, wi is the class weight and bi(x)and is the binary map at each pixel x 
and p(x,i) is the predicted probability.

3. RESULTS

We evaluated the proposed segmentation method using 115 CT datasets obtained from 

prostate cancer patients who were treated by EBRT. We used 100 datasets for training and 

remaining 15 datasets for testing. Each patient had CT images of pelvic region and manual 

contouring of the prostate, bladder, and rectum drawn by a radiation oncologist. The size of 

the original CT image was 512×512 ×[80–120] voxels with a voxel size of 1.17×1.17×3 

mm3. We downsampled the original CT image to5×5×5 mm3 voxel resolution with a 

dimension of 118×118×[48–72] which were then used to train the coarse segmentation 

network. The coarse segmentation network produced a rough segmentation of the organs 

from which we extracted the ROIs of the prostate, bladder, and rectum. The ROIs were 
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96×96×32, 112×112×64, and 96×96×64 voxels for the prostate, bladder, and rectum, 

respectively, which were cropped from the original CT for the successive fine 

segmentations. The same 100 patient data were used to train the fine segmentation networks 

after ROI cropping from the original CT (not downsampled). In order to quantitatively 

assess the performance of the proposed method we used Dice similarity coefficient (DSC), 

Mean Surface Distance (MSD) and Hausdorff Distance (HD). An example segmentation 

from one of the test cases is shown in Figure 3 and the 3D rendering of the segmentations is 

shown in Figure 4.

Class-imbalance is a common problem in multiclass segmentation where small structures are 

prone to being underrepresented. We compared our proposed hierarchical segmentation with 

segmentation where the network was trained with all the multiclass labels simultaneously to 

produce segmentation label maps of the prostate, bladder, and rectum altogether. In terms of 

segmentation accuracy, the proposed method with single-class training always performed 

better than the multiclass segmentation. In addition, we also compared to the 3DU-net based 

segmentation which was trained for multiclass segmentation. Table 1 shows comparison 

results. The proposed method obtains significant improvement over the multiclass U-net

+GAN and U-net-based segmentations with a respective Dice (mean ±SD)of 0.90 ± 0.05, 

0.96 ± 0.06and 0.91 ± 0.09for the prostate, bladder and rectum, respectively. The MSD for 

all three structures are less than 1.8 mm, which is within the expected random error given 

the image resolution of 1.17×1.17×3 mm3. The proposed method also achieves lower HD 

than the other two methods.

Table 2 shows quantitative comparison between our method with existing state-of-the-art 

methods that used different datasets. Our method outperforms both multi-atlas-based 

methods and machine learning-based method using regression forest-based deformable 

segmentation.27, 28, 43 Kazemifar et al. proposed a deep learning based segmentation of CT 

male pelvic organs using 2D U-Net with DSC of 0.88± 0.10, 0.95± 0.04 and 0.92± 0.10 for 

the prostate, bladder and rectum, respectively. Another CNN-based automatic segmentation 

of the same pelvic organs by incorporating boundary information in network training is 

recently proposed where the segmentation accuracy in terms of DSC are 0.89 ± 0.03, 

350.94 ± 0.03 and 0.89 ± 0.04 for the prostate, bladder and rectum, respectively.35 Although 

these methods are capable of producing satisfactory segmentation results, our method 

achieves better performance in segmenting pelvic organs from CT images.

4. CONCLUSION

We present an end-to-end, deep-learning-based automatic segmentation of male pelvic 

OARs using U-net+GAN with an automatic ROI localization of the organs to be segmented. 

The automatic ROI extraction improves computational efficiency and the segmentation 

accuracy by allowing the fine segmentation networks to focus only on the region of each 

organ. The fine segmentation of each organ is performed using U-net+GAN where the 

generator and discriminator competes with each other to improve segmentation accuracy. To 

avoid class imbalance problem of multiclass segmentation, we performed single-class 

training, which significantly improved segmentation accuracy over the multiclass training-

based segmentation. We performed experimental validation using clinical data and showed 
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that the proposed method outperformed other state-of-the-art methods. The proposed method 

can potentially improve the efficiency of radiation therapy planning of prostate cancer 

treatment.
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Figure 1. 
Workflow of the proposed hierarchical segmentation method.
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Figure 2. 
The U-net + GAN architecture for pelvic structure segmentation.
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Figure 3. 
An example segmentation result. The first column shows the ROI of each organ. The second 

column shows the ground truth segmentations. The third column is the proposed automatic 

segmentations and the fourth column shows overlaid contours of the ground truth (yellow) 

and automatic segmentation (red).
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Figure 4. 
3D representation of the segmentations (yellow: prostate, green: bladder, brown: rectum). 

(Left) Ground truth. (Right) Proposed automatic segmentation.
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Table 1.

Quantitative comparison of segmentation results from different methods.

Metrics Method
OAR

Prostate (mean ± SD) Bladder (mean ± SD) Rectum (mean ± SD)

DSC

Hierarchical U-net+GAN 0.90 ± 0.05 0.96 ± 0.06 0.91 ± 0.09

U-net+GAN (Multiclass) 0.86 ± 0.07 0.92 ± 0.05 0.87 ± 0.13

U-net 0.84 ± 0.05 0.88 ± 0.06 0.83 ± 0.16

MSD (mm)

Hierarchical U-net+GAN 1.56 ± 0.37 0.95 ± 0.15 1.78 ± 1.13

U-net+GAN (Multiclass) 2.28 ± 0.78 2.11 ± 0.45 3.45 ± 0.95

U-net 2.89 ± 1.15 2.34 ± 0.91 3.91 ± 0.47

HD (mm)

Hierarchical U-net+GAN 5.21 ± 1.17 4.37 ± 0.56 6.11 ± 1.47

U-net+GAN (Multiclass) 6.55 ± 1.53 6.55 ± 1.53 7.55 ± 1.53

U-net 8.20 ± 1.90 7.20 ± 1.90 9.20 ± 1.90
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Table 2.

Comparison with previous studies based on DSC

Method
Prostate Bladder Rectum

DSC (mean ± SD) DSC (mean ± SD) DSC (mean ± SD)

Shao et al.28 Learning-based using regression Forest 0.88 ± 0.02 – 0.84 ± 0.05

Gao et al.27 0.86 ± 0.41 0.92 ± 0.47 0.88 ± 0.48

Acosta et al.43 Multi-atlas 0.85 ± 0.40 0.92 ± 0.20 0.80 ± 0.70

Kazemifar et al.34

Deep learning using CNN
0.88 ± 0.10 0.95 ± 0.04 0.92 ± 0.10

Wang et al.35 0.89 ± 0.03 0.94 ± 0.03 0.89 ± 0.04
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