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ABSTRACT

The colored de Bruijn graph (cdbg) and its variants have become an important combi-
natorial structure used in numerous areas in genomics, such as population-level variation
detection in metagenomic samples, large-scale sequence search, and cdbg-based reference
sequence indices. As samples or genomes are added to the cdbg, the color information
comes to dominate the space required to represent this data structure. In this article, we
show how to represent the color information efficiently by adopting a hierarchical en-
coding that exploits correlations among color classes—patterns of color occurrence—
present in the de Bruijn graph (dbg). A major challenge in deriving an efficient encoding
of the color information that takes advantage of such correlations is determining which
color classes are close to each other in the high-dimensional space of possible color pat-
terns. We demonstrate that the dbg itself can be used as an efficient mechanism to search
for approximate nearest neighbors in this space. While our approach reduces the encoding
size of the color information even for relatively small cdbgs (hundreds of experiments), the
gains are particularly consequential as the number of potential colors (i.e., samples or
references) grows into thousands. We apply this encoding in the context of two different
applications; the implicit cdbg used for a large-scale sequence search index, Mantis, as
well as the encoding of color information used in population-level variation detection by
tools such as Vari and Rainbowfish. Our results show significant improvements in the
overall size and scalability of representation of the color information. In our experiment on
10,000 samples, we achieved >11 3 better compression compared to Ramen, Ramen, Rao
(RRR).
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1. INTRODUCTION

The colored de Bruijn graph (cdbg) (Iqbal Zamin et al., 2012), an extension of the classical de Bruijn

graph (dbg) (Pevzner and Tang, 2001; Pevzner et al., 2001; Chikhi et al., 2014), is a key component of a

growing number of genomics tools. Augmenting the traditional dbg with ‘‘color’’ information provides a

mechanism to associate meta-data, such as the raw sample or reference of origin, with each k-mer. Coloring

the dbg enables it to be used in a wide range of applications, such as large-scale sequence search (Solomon

and Kingsford, 2016, 2017; Bradley et al., 2017; Sun et al., 2017; Pandey et al., 2018) [although some

(Solomon and Kingsford, 2016, 2017; Sun et al., 2017) do not explicitly couch their representations in the

language of the cdbg], population-level variation detection (Holley et al., 2016; Almodaresi et al., 2017;

Muggli et al., 2017), traversal and search in a pan-genome (Holley et al., 2016), and sequence alignment

(Liu et al., 2016a). The popularity and applicability of the cdbg have spurred research into developing space-

efficient and high-performance data-structure implementations.

An efficient and fast representation of cdbg requires optimizing both the dbg and the color information.

While there exist efficient and scalable methods for representing the topology of the dbg (Bowe et al.,

2012; Chikhi and Rizk, 2012; Chikhi et al., 2014; Salikhov et al., 2014; Crawford et al., 2018; Pandey

et al., 2017a) with fast query time, a scalable and exact representation of the color information has

remained a challenge. Recently, Mustafa et al. (2019) have tackled this challenge by relaxing the

exactness constraints—allowing the returned color set for a k-mer to contain extra samples with some

controlled probability—but it is not immediately clear how this method can be made exact.

Specifically, existing exact color representations suffer from large sizes and a fast growth rate that leads

them to dominate the total representation size of the cdbg with even a moderate number of input samples

(Fig. 3b). As a result, the color information grows to dominate the space used by all these indexes and limits

their ability to scale to large input data sets.

Iqbal et al. (2012) introduced cdbgs and proposed a hash-based representation of the dbg in which each

k-mer is additionally tagged with the list of reference genomes in which it is contained. Muggli et al. (2017)

reduced the size of the cdbg in VARI by replacing the hash map with BOSS (Bowe et al. 2012) [a BWT-

based (Burrows and Wheeler, 1994) encoding of the dbg that assigns a unique ID to each k-mer] and using

a Boolean matrix indexed by the unique k-mer ID and genome reference ID to indicate occurrence.

They reduced the size of the occurrence matrix by applying off-the-shelf compression techniques Ramen,

Ramen, Rao (RRR) (Raman et al., 2002) and Elias-Fano (Elias, 1974) encoding. Rainbowfish Almodaresi

et al. (2017) shrank the color table further by ensuring that rows of the color matrix are unique, mapping all

k-mers with the same color information to a single row and assigning row indices based on the frequency of

each occurrence pattern. However, despite these improvements, the scalability of the resulting structure

remains limited because even after eliminating redundant colors, the space for the color table grows quickly

to dominate the total space used by these data structures.

We observe that, in real biological data, even when the number of distinct color classes is large, many of

them will be near each other in terms of the set of samples or references they encode. That is, the color

classes tend to be highly correlated rather than uniformly spread across the space of possible colors. There

are intuitive reasons for such characteristics. For example, we observe that adjacent k-mers in the dbg are

extremely likely to have either identical or similar color classes, enabling storage of small deltas instead of

the complete color classes. This is because k-mers adjacent in the dbg are likely to be adjacent (and hence

present) in a similar set of input samples. In the context of sequence search, because genomes and

transcriptomes are largely preserved across organs, individuals, and even across related species, we expect

two k-mers that occur together in one sample to be highly correlated in their occurrence across many

samples. Thus, we can take advantage of this correlation when devising an efficient encoding scheme for

the cdbg’s associated color information.

In this article, we develop a general scheme for efficient and scalable encoding of the color information

in the cdbg by encoding color classes (i.e., the patterns of occurrence of a k-mer in samples) in terms of

their differences (which are small) with respect to some ‘‘neighboring’’ color class. The key technical

challenge, solved by our work, is efficiently searching for the neighbors of color classes in the high-

dimensional space of colors by leveraging the observation that similar color classes tend to be topologically

close in the underlying dbg. We construct a weighted graph on the color classes in the cdbg, where the

weight of each edge corresponds to the space required to store the delta between its end points. Finding the
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minimum spanning tree (MST) of this graph gives a minimal delta-based representation. Although re-

constructing a color class on this representation requires a walk to the MST root node, abundant temporal

locality on the lookups allows us to use a small cache to mitigate the performance impact, yielding query

throughput that is essentially the same as when all color classes are represented explicitly.

An alternative would have been to try to limit the depth (or diameter) of the MST. This problem is

heavily studied in two forms: the unrooted bounded-diameter MST problem (Raidl, 2008) and the rooted

hop-constrained MST problem (Althaus et al., 2005). Neither is in APX, that is, it is not possible to

approximate them to within any constant factor (Manyem and Stallmann, 1996). Althaus et al. (2005) gave

an O( log n) approximation assuming the edge weights form a metric. Khuller et al. (2002) show that, if the

edge lengths are the same as the edge weights, then there is an efficient algorithm for finding a spanning

tree that is within a constant of optimal in terms of both diameter and weight. Marathe et al. (1998) show

that in general we can find trees within O( log n) of the minimum diameter and weight. We can’t use

Khuller’s approach (because our edge lengths are not equal to our edge weights), and even a O( log n)

approximation would give up a potentially substantial amount of space.

We showcase the generality and applicability of our color class table compression technique by demon-

strating it in two computational biology applications: sequence search and variation detection. We compare

our novel color class table representation with the representation used in Mantis (Pandey et al., 2018), a state-

of-the-art large-scale sequence-search tool that uses a cdbg to index a set of sequencing samples, and the

representation used in Rainbowfish (Almodaresi et al., 2017), a state-of-the-art index to facilitate variation

detection over a set of genomes. We show that our approach maintains the same query performance while

achieving over 11 · and 2:5 · storage savings relative to the representation previously used by these tools.

2. METHODS

This section describes our compact cdbg representation. We first define cdbgs and briefly describe

existing compact cdbg representations. We then outline the high-level idea behind our compact repre-

sentation and explain how we use the dbg to efficiently build our compact representation. Finally, we

describe implementation details and optimizations to our query algorithm.

2.1. Colored de Bruijn graphs

The dbgs are widely used to represent the topological structure of a set of k-mers (Pevzner et al., 2001;

Zerbino and Birney, 2008; Simpson et al., 2009; Grabherr et al., 2011; Schulz et al., 2012; Chang et al.,

2015; Liu et al., 2016b; Pandey et al., 2017a). The dbg induced by a set of k-mers is defined below.

Definition 1. Given a set E of k-mers, the dbg induced by E has edge set E, where each k-mer (or edge)

connects its two (k - 1)-length substrings (or vertices).

Cdbgs extend the dbg by assigning a color class C(x) to each edge (or node) x of the dbg. The color class

C(x) is a set drawn from some universe U. Examples of U and C(x) are

- Sometimes, U is a set of reference genomes, and C(x) is the subset of reference genomes containing

k-mer x (Liu et al., 2016a; Almodaresi et al., 2017, 2018; Muggli et al., 2017).

- Sometimes, U is a set of reads, and C(x) is the subset of reads containing x (Alipanahi et al., 2018a,b;

Turner et al., 2018).

- Sometimes, U is a set of sequencing experiments, and C(x) is the subset of sequencing experiments

containing x (Solomon and Kingsford, 2016, 2017; Sun et al., 2017; Pandey et al., 2018).

The goal of a cdbg representation is to store E and C as compactly as possible1, while supporting the

following operations efficiently:

- Point query. Given a k-mer x, determine whether x is in E.

- Color query. Given a k-mer x 2 E, return C(x).

1The nodes of the de Bruijn graph are typically stored implicitly, because the node set is simply a function of E.
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Given that we can perform point queries, we can traverse the dbg by simply querying for the eight

possible predecessor/successor edges of an edge. This enables us to implement more advanced algorithms,

such as bubble calling (Iqbal Zamin et al., 2012).

Many cdbg representations typically decompose, at least logically, into two structures: one structure

storing a dbg and associating an ID with each k-mer, and one structure mapping these IDs to the actual

color class (Almodaresi et al., 2017; Muggli et al., 2017; Pandey et al., 2017b). The individual color

classes can be represented as bit vectors, lists, or using a hybrid scheme (Yu et al., 2018). This

information is typically compressed (Ziv and Lempel, 1977; Raman et al., 2002; Ottaviano and Ven-

turini, 2014).

Our article follows this standard approach and focuses exclusively on reducing the space required for

the structure storing the color information. We propose a compact representation that, given a color ID,

can return the corresponding color efficiently. Although we pair our color table representation with the

dbg structure representation of the counting quotient filter (CQF) (Pandey et al., 2017b) as used in

Mantis (Pandey et al. 2018), our proposed color table representation can be paired with other dbg

representations.

2.2. A similarity-based cdbg representation

The key observation behind our compressed color-class representation is that the color classes of k-mers

that are adjacent in the dbg are likely to be very similar. Thus, rather than storing each color class explicitly,

we can store only a few color classes explicitly and, for all the remaining color classes, we store only their

differences from other color classes. Because the differences are small, the total space used by the rep-

resentation will be small.

Motivated by the observation above, we propose to find an encoding of the color classes that takes

advantage of the fact that most color classes can be represented in terms of only a small number of edits

(i.e., flipping the parity of only a few bits) with respect to some neighbor in the high-dimensional space

of the color classes. This idea was first explored by Bookstein and Klein (1991) in the context of

information retrieval. Bookstein and Klein showed how to exploit the implicit clustering among bitmaps

in Information Retrieval (IR) to achieve excellent reduction in storage space to represent those bitmaps

using an MST as the underlying representation. Unfortunately, the approach taken by Bookstein and

Klein cannot be directly used in our problem, since it requires computing and optimizing upon the full

Hamming distance graph of the bit vectors being represented, which is not tractable for the scale of data

we are analyzing. Hence, what we need is a method to efficiently discover an incomplete and highly-

sparse Hamming distance graph that, nonetheless, supports a low-weight spanning tree. We describe

below how we apply and modify this approach in the context of the set of correlated bit vectors (i.e.,

color classes) that we wish to encode.

We construct our compressed color class representation as follows (Fig. 1). For each edge x of the dbg, let

C(x) be the color class of x. Let C be the set of all color classes that occur in the dbg. We first construct an

undirected graph with vertex set C and edge set reflecting the adjacency relationship implied by the dbg. In

other words, there is an edge between color classes c1 and c2 if there exist adjacent edges (i.e., incident on

the same node) x and y in the dbg such that c1 = C(x) and c2 = C(y). These edges indicate color classes that

are likely to be similar, based on the structure of the dbg. We then add a special node ; to the color class

graph, which is connected to every node. We set the weight of every edge in the color class graph to be the

Hamming distance between its two end points (where we view color classes as bit vectors and ; is the all-

zeros bit vector).

We then compute a MST of the color class graph and root the tree at the special ; node. Note that,

because the ; node is connected to every other node in the graph, the graph is connected and hence an MST

is guaranteed to exist. Using a MST, we minimize the total size of the differences that we need to store in

our compressed representation.

We then store the MST as a table mapping each color class ID to the ID of its parent in the MST, along

with a list of the differences between the color class and its parent. For convenience we can view the list of

differences between color class c1 and color class c2 as a bit vector c1 � c2, where � is the bit-wise

exclusive-or operation. To reconstruct a color class given its ID i, we simply xor all the difference vectors

we encounter while walking from i to the root of the MST.
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FIG. 1. Encoding color classes by finding the MST of the color class graph, an undirected graph derived from cdbg.

The order of the process is (a–c). The arrows in (a, b) show the direction of edges in the dbg which is a directed graph.

The optimal achievable MST is shown in (d) for comparison. Since we never observe the edge between any k-mers

from color classes green and yellow in cdbg, we won’t have the edge between color classes green and yellow, and

therefore, our final MST is not equal to the best MST we can get from a complete color class graph. cdbg, colored de

Bruijn graph; MST, minimum spanning tree.
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2.3. Implementation of the MST data structure

Assuming we have jCj color classes, jUj colors, and an MST with total weight of w over the color class

graph, we store all the information required to retrieve the original color bit vector for each color class ID

based on the MST structure into three data structures:

- Parent vector: This vector contains jCj slots, each of size Ølog2 Cø. The value stored in index i rep-

resents the parent color class ID of the color class with index i in the MST.

- Delta vector: This vector contains w slots, each of size Ølog2 jUjø. For each pair of parent and child in

the parent vector, we compute a vector of the indices at which they differ. The delta vector is the

concatenation of these per-edge delta vectors, ordered by the ID of the source of the edge. Note that the

per-edge delta vectors will not all be of the same length, because some edges have larger weight than

others. Thus, we need an auxiliary data structure to record the boundaries between the per-edge deltas

within the overall delta vector.

FIG. 1. (Continued).
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- Boundary bit vector: This vector contains w bits, where a set bit indicates the boundary between two

delta sets within the delta vector. To find the starting position, within the delta vector, of the per-edge

delta list for the MST edge with source ID i, we perform select(i) on the boundary vector. Select

returns the position of the ith one in the boundary vector.

2.3.1. Query of the MST-based representation. Figure 2 shows how queries proceed using this

encoding. We start with an empty accumulator bit vector and a color class ID i for which we want to

compute the corresponding color class. We perform a select query for i and i + 1 in the boundary bit vector

to get the boundaries of i’s difference list in the delta vector. We then iterate over its difference list and flip

the indicated bits in our accumulator. We then set i)PARENT[i] and repeat until i becomes 0, which

indicates that we have reached the root. At this point, the accumulator will be equal to the bit vector for

color class i.

2.4. Integration in Mantis

Once constructed, our MST-based color class representation is a drop-in replacement for the current color

class representations used in several existing tools, including Mantis (Pandey et al. 2018) and Rainbowfish

(Almodaresi et al. 2017). Their existing color class tables support a single operation—querying for a color

class by its ID—and our MST-based representation supports exactly the same operation.

For this article, we integrated our MST-based representation into Mantis. The same space savings can be

achieved in other tools, particularly Rainbowfish, which has a similar color-class encoding as Mantis.

2.4.1. Construction. We construct our MST-based color-class representation as follows. First, we run

Mantis to build its default representation of the cdbg. We then build the color-class graph by walking the

dbg and adding all the corresponding edges to the color-class graph. The edge set is typically much smaller

FIG. 2. The conceptual MST (top-left); the data structure to store the color information in the format of an MST

(right). This figure also illustrates the steps required to build one of the color vectors (C3) at the leaf of the tree. Note

that the query process shown here does not depict the caching policy we apply in practice.
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than the dbg (because many dbg edges may map to the same edge in the color-class graph), so this can be

done in RAM. Note that we do not compute the weights of the edges during this pass, because that would

require having all of the large color-class bit vectors in memory to compute their Hamming distance.

In the second pass, we traverse the edge set and compute the weight of each edge. To minimize RAM

usage during this phase, we sort the edges and iterate over them in a ‘‘blocked’’ manner. Specifically,

Mantis stores the color class bit vectors on-disk sequentially by ID, grouped into blocks of roughly 6 GBs

each. We sort the edges lexicographically by their source and destination block. We then load all pairs of

blocks and compute the weights of all the edges between the two blocks currently in memory. At all times,

we need only two blocks of color class vectors in memory. Given the weighted graph, we compute the MST

and make one final pass to determine the relevant delta lists and encode our final MST structure.

2.4.2. Parallelization. We note that, after having constructed the Mantis representation, most phases

of the MST construction algorithm are trivially parallelized. MST construction decomposes into three

phases: (1) color-class graph construction, (2) MST computation, and (3) color-class representation gen-

eration. We parallelize graph construction and color-class representation generation. The MST computation

itself is not parallelized.

We parallelized the determination of edges in the color-class graph by assigning each thread a range of

the k-mer-to-color-class-ID map. Each thread explores the neighbors of the k-mers that appear in its

assigned range, and any redundant edges are deduplicated when all threads are finished. Similarly, we

parallelized the computation of edge weights and the extraction of the delta vectors that correspond to each

edge in the MST. Given the list of edges sorted lexicographically by their end points (determined during the

first phase), it is straightforward to partition the work for processing batches of edges across many threads.

It is possible, of course, that the batches will display different workloads and that some threads will

complete their assigned work before others. We have not yet made any attempt to optimize the parallel

construction of the MST in this regard, although many such optimizations are likely possible.

2.4.3. Accelerating queries with caching. The encoded MST is not a balanced tree, so decoding a

color bit vector might require walking a long path to the root, which negatively impacts the query time.

Attempting to explicitly minimize the depth or diameter of the MST is, as discussed in Section 1, not

generally approximable within a constant factor. However, considering the fact that the frequency distri-

bution of the color classes is very skewed, some of the color classes are more popular or have more children

and, therefore, are in the path of many more nodes. We take advantage of these data characteristics by caching

the most recent queried color bit vectors. Every time we walk up the tree, if the color bit vector for a node is

already in the cache, our query algorithm stops at that point and applies all the deltas to this bit vector instead

of the zero bit vector of the root. This caching approach significantly improves the query time, resulting in the

final query time required to decode a color class being marginally faster than direct RRR access.

The cache policy is designed with the tree structure of our color-class representation in mind. Specifi-

cally, we want to cache nodes near the leaves, but not so close to the leaves that we end up caching

essentially the entire tree. In addition, we don’t want to cache infrequently queried nodes. Thus we use the

following caching policy: all queried nodes are cached. Furthermore, we cache interior nodes visited during

a query as follows. If a query visits a node that has been visited by >10 other queries and is >10 hops away

from the currently queried item, then we add that node to the cache. If a query visits more than one such

node, we add the first one encountered.

In our experiments, we used a cache of 10,000 nodes and managed the cache using a FIFO policy.

2.5. Comparison with brute-force and approximate-nearest-neighbor-based approaches

Our MST-based color-class representation uses the dbg as a hint as to which color classes are likely to be

similar. This leads to the natural question: how good are the hints provided by the dbg?

One could imagine alternatively constructing the MST on the complete color-class graph. This would

yield the absolutely lowest-weight spanning tree on the color classes. Unfortunately, no MST algorithm

runs in less than O(jEj) time, so this would make our construction time quadratic in the number of color

classes. The number of color classes in our experiments ranges from 106 to 109, so the number of edges in

the complete color-class graph would be in the order of 1012 to 1018, or possibly even more, making this

algorithm impractical for the largest data sets considered in this article.
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Alternatively, we could try to use an approximate nearest-neighbor algorithm to find pairs of color

classes with small Hamming distance. As an experiment, we implemented an approximate nearest neighbor

algorithm that bucketed color classes by their projection into a smaller-dimensional subspace. Nearest-

neighbor queries were computed by searching within the queried item’s bucket. Results were disappointing.

Even on small data sets, the average distance between the queried item and the returned neighbor was

several times larger than the average distance found using the neighbors suggested by the dbg. Thus, we did

not pursue this direction further.

3. EVALUATION

In this section we evaluate our MST-based representation of the color information in the cdbg. All our

experiments use Mantis with our integrated MST-based color-class representation.

Evaluation metrics: We evaluate our MST-based representation on the following parameters:

- Scalability. How does our MST-based color-class representation scale in terms of space with in-

creasing number of input samples, and how does it compare to the existing representations of Mantis?

- Construction time. How long does it take—in addition to the original construction time for building

cdbg—to build our MST-based color-class representation?

- Query performance. How long does it take to query the cdbg using our MST-based color-class

representation?

3.1. Experimental procedure

3.1.1. System specifications. Mantis takes as input a collection of squeakr files (Pandey et al.,

2017c). Squeakr is a k-mer counter that takes as input a collection of fastq files and produces as output a

single file with a compact hash table mapping each k-mer to the number of times it occurs in the input files.

As is standard in evaluations of large-scale sequence search indexes, we do not benchmark the time

required to construct these filters.

The data input to the construction process was stored on four-disk mirrors (eight disks total). Each is a

Seagate 7200 rpm 8 TB disk (ST8000VN0022). They were formatted using ZFS and exported using NFS

over a 10 Gb link. We used different systems to run and evaluate time, memory, and disk requirements for

the two steps of preprocessing and index building as were done by Pandey et al. (2018).

For index building and query benchmarks, we ran all the experiments on the same system used in Mantis

(Pandey et al., 2018), an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20 GHz with 44 cores and 56 MB L3

cache) with 512 GB RAM and a 4 TB TOSHIBA MG03ACA4 ATA HDD running Ubuntu 16.10 (Linux

kernel 4.8.0-59-generic). Constructing the main index was done using a single thread, and the MST

construction was performed using 16 threads. Query benchmarks were also performed using a single thread.

3.1.2. Data to evaluate scalability and comparison to Mantis. We integrated and evaluated our

MST-based color-class representation within Mantis, so we briefly review Mantis here. Mantis builds an

index on a collection of unassembled raw sequencing data sets. Each data set is called a sample. The Mantis

index enables fast queries of the form, ‘‘Which samples contain this k-mer,’’ and ‘‘Which samples are

likely to contain this string of bases?’’ Mantis takes as input one squeakr file per sample (Pandey et al.,

2017c). A squeakr file is a compact hash table mapping each k-mer to the number of times it occurs within

that sample. Squeakr also has the ability to serialize a hash that simply represents the set of k-mers present

at or above some user-provided threshold; we refer to these as filtered Squeakr files. Using the filtered

Squeakr files vastly reduces the required intermediate storage space and also decreases the construction

time required for Mantis considerably. For example, for the breast, blood, and brain data set (2586

samples), the unfiltered Squeakr files required: 2.5 TB of space, while the filtered files require only: 108

GB. To save intermediate storage space and speed index construction, we built our Mantis representation

from these filtered Squeakr files.

Given the input files, Mantis constructs an index consisting of two files: a map from k-mer to color-class ID

and a map from color-class ID to the bit vector encoding that color class. The first map is stored as a CQF,

which is the same compact hash table used by Squeakr. The color-class map is an RRR-compressed bit vector.
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Recall that our construction process is implemented as a postprocessing step on the standard Mantis

color-class representation. For construction times, we report only this postprocessing step. This is because

our MST-based color-class representation is a generic tool that can be applied to many cdbg representations

other than Mantis, so we want to isolate the time spent on MST construction.

To test the scalability of our new color-class representation, we used a randomly selected set of 10‚ 000

paired-end, human, bulk RNA-seq short-read experiments downloaded from European Nucleotide Archive

(NIH, 2017) in gzipped FASTQ format. In addition, we have built the proposed index for 2586 sequencing

samples from human blood, brain, and breast (BBB) tissues originally used by Solomon and Kingsford

(2016) and also used in the subsequent work (Solomon and Kingsford, 2017; Sun et al., 2017; Yu et al.,

2018), including Mantis (Pandey et al., 2018), as a point of comparison with these representations. The set

of 10‚ 000 experiments does not overlap with the BBB samples. The full list of 10‚ 000 experimental

identifiers can be obtained from https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/

nobbb10k_shuffled.lst The total size of all these experiments (gzipped) is 25.23 TB.

To eliminate spurious k-mers that occur with insignificant abundance within a sample, the squeakr files

are filtered to remove low-abundance k-mers. We adopted the same cutoff policy originally proposed by

Solomon and Kingsford (2016), by discarding k-mers that occur less than some threshold number of times.

The thresholds are determined according to the size (in bytes) of the gzipped sample, and the thresholds are

given in Table 1. We adopt a value of k = 23 for all experiments.

3.2. Evaluation results

3.2.1. Scalability of the new color-class representation. Figure 3a and Table 2 show how the size

of our MST-based color-class representation scales as we increase the number of samples indexed by

Mantis. For comparison, we also give the size of Mantis’ RRR-compression-based color-class represen-

tation. Figure 3a also plots the size of the CQF that Mantis uses to map k-mers to color class IDs. We can

draw several conclusions from these data:

- The MST-based representation is an order-of-magnitude smaller than the RRR-based representation.

- The gap between the RRR-based representation and the MST-based representation grows as we

increase the number of input samples. This suggests that the MST-based representation grows as-

ymptotically slower than the RRR-based representation.

- The MST-based color-class representation is, for large numbers of samples, about 5 · smaller than the

CQF. This means that representing the color classes is no longer the scaling bottleneck.

Table 2 also shows the scaling rate of all elements of the MST representation, in addition to the ratio of

MST over the color bit vector. As expected, the list of deltas dominates the MST representation both in

terms of total size and in terms of growth. Table 2 also shows the average edge weight of the edges in the

MST. The edge weight grows approximately proportional to Y( log (# of samples)) (i.e., every time we

double the number of samples, the average edge weight increases by almost exactly 1). This suggests that

our dbg-based algorithm is able to find pairs of similar color classes. The time column shows the time

required to build the MST representation (which is in addition to the Mantis construction time required to

produce the input to the MST compression algorithm).

To better understand the scaling of the different components of a cdbg representation, we plot the sizes of

the RRR-based color-class representations and MST-based representations on a log–log scale in Figure 3b.

Based on the data, the RRR-based representation appears to grow in size at a rate of roughly Y(n1:5),

Table 1. Minimum Number of Times a k-Mer Must Appear in an Experiment to Be Counted

as Abundantly Represented in That Experiment (Taken from the Sequence Bloom Tree Article)

Min size Max size Cutoff No. of experiments with specified threshold

0 £300 MB 1 2784

>300 MB £500 MB 3 798

>500 MB £1 GB 10 1258

>1 GB £3 GB 20 2296

>3 GB 1 50 2864

Note, the k-mers with count of ‘‘cutoff’’ are included at each threshold.
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Table 2. Space Required for Ramen, Ramen, Rao and Minimum Spanning Tree-Based Color Class

Encodings Over Different Numbers of Samples (Sizes in GB) and Time and Memory Required

to Build Minimum Spanning Tree

Data set

No. of

samples

RRR

matrix

MST

Total

space

Parent

vector

Delta

vector

Boundary

bit vector

Build time

(hh:mm:ss)

Expected

edge weight
size(MST)
size(RRR)

Homo sapiens RNA-seq

samples

200 0.42 0.15 0.08 0.06 0.01 0:05:42 2.42 0.37

500 1.89 0.46 0.2 0.24 0.03 0:12:15 3.42 0.24

1000 5.14 1.03 0.37 0.6 0.06 0:25:03 4.39 0.2

2000 14.2 2.35 0.71 1.5 0.14 0:51:58 5.38 0.17

5000 59.89 7.21 1.72 5.1 0.39 3:52:34 6.61 0.12

10,000 190.89 16.28 3.37 12.06 0.86 10:17:42 7.68 0.085

BBB 2586 15.8 2.66 0.63 1.88 0.16 00:57:43 6.98 0.17

Escherichia coli strain

reference genomes

5598 2.06 0.83 0.02 0.76 0.06 00:03:15 7.8 0.4

Central columns break down the size of individual MST components.

BBB, Blood, Brain, and Breast; MST, Minimum Spanning Tree; RRR, Ramen, Ramen, Rao.

FIG. 3. Size of the MST-based color-class representation versus the RRR-based color-class representation. (a) Sizes

of the RRR and MST-based color class representations with respect to the number of samples indexed from the human

bulk RNA-seq data set. The counting quotient filter component is the Mantis representation of the de Bruijn graph. (b)

Empirical asymptotic analysis of the growth rates of the sizes of RRR-based color class representation and the MST-

based color class representation. The RRR-based representation grows at a rate of &Y(n1.5), where n is the number of

samples. The MST-based representation grows at a rate of &Y(n1.2). RRR, Ramen, Ramen, Rao.

495



whereas the new MST-based representation grows roughly at a rate of Y(n1:2). This explains why the RRR-

based representation grows to dwarf the CQF (which grows roughly linearly) and become the bottleneck to

scaling to larger data sets, whereas the MST-based representation does not. With the MST-based repre-

sentation, the CQF itself is now the bottleneck.

Finally, the last two rows in Table 2 show the size of the RRR- and MST-based color-class represen-

tations for the human BBB and Escherichia coli data sets, respectively. BBB is the data set used in SBT and

its subsequent tools (Solomon and Kingsford, 2017; Sun et al., 2017; Yu et al., 2018), as well as in Mantis

(Pandey et al., 2018), and E. coli is the data set analyzed in the Rainbowfish article. This data set, which has

been obtained from GenBank (O’Leary et al. 2016), consists of 5598 distinct E. coli strains. Since the strain

assemblies are all from the same species, E. coli, each strain shares a large portion of its sequence with the

others. We specifically chose this data set since Rainbowfish has already demonstrated a large improvement

in size for it compared to Vari (Muggli et al., 2017).

As the table shows, our MST-based color-class representation is able to effectively compress genomic

color data in addition to RNA-seq color data.

3.2.2. Index building evaluation. The ‘‘Build time’’ column in Table 2 shows the time required to

build our MST-based color-class representation from Mantis’ RRR-based representation. All builds used 16

threads. Table 3 shows how the MST construction time for a 1000 sample data set scales as a function of

the number of build threads. The memory consumption is not affected by number of threads and remains

fixed for all trials. The memory usage for both the main Mantis build and the MST construction steps is

shown in Table 4. Since these phases are run independently, and since the MST phase follows the Mantis

construction phase, the peak memory for the whole build pipeline is the maximum of the memory required

for each of the two construction phases.

Overall, the MST construction time is only a tiny fraction of the overall time required to build the Mantis

index from raw fastq files. The vast bulk of the time is spent processing the fastq files to produce filtered

squeakrs. This step was performed on a cluster of 150 machines over roughly 1 week. Thus MST con-

struction represents <1% of the overall index build time. The memory required to build the MST is

dependent on the size of the CQF and grows proportional to that. In fact, due to the multi-pass construction

procedure, the peak MST construction memory is essentially the size of the CQF plus a relatively small

(and adjustable) amount of working memory. For the run over 10k experiments, where the CQF size was

the largest (98G), the peak memory required to build MST is 111G.

Table 3. The Minimum Spanning Tree Construction Time for 1000 Experiments

Using Different Number of Threads

No. of threads 1 2 4 8 16 32

Run time (hh:mm:ss) 02:47:08 01:38:26 01:02:42 00:31:57 00:22:00 00:14:17

Memory stays the same across all the runs.

Table 4. The Memory Required for Mantis Build and Minimum Spanning

Tree Compression Phases on Human RNA-Seq Data

Data set No. of samples Mantis build memory (GB) MST build memory (GB)

H. sapiens RNA-seq samples 200 5 8

500 10 16

1000 18 29

2000 25 29

5000 58 59

10,000 111 111

BBB 2586 28 29

The overall memory required to construct the full index is the max of the two columns which, for these datasets, is always the MST

memory.
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3.2.3. Query evaluation. We evaluate query speed in the following manner. We select random

subsets, of increasing size, of transcripts from the human transcriptome and query the Mantis index to

determine the set of experiments containing each of these transcripts. Mantis answers transcript queries as

follows. For each k-mer in the transcript, it computes the set of samples containing that k-mer. It then

reports a sample as containing a transcript if the sample contains more than Y fraction of the k-mers in the

transcript, where Y is a user-adjustable parameter. Note that, for Mantis, the Y threshold is applied at the

very end. Mantis first computes, for each sample, the fraction of k-mers that occur in that sample and then

filters as a last step. Thus the query times reported here are valid for any Y.

Table 5 reports the query performance of both the RRR and MST-based Mantis indexes. Despite the

vastly-reduced space occupied by the MST-based index and the fact that the color class decoding procedure

is more involved, query in the MST-based index is slightly faster than querying in the RRR-based index.

The average query time in both RRR-based and MST-based index is 0:08 s/query.

Once the index has been loaded into RAM, Mantis queries are much faster than the three SBT-based

large-scale sequence search data structures, and our MST-based color-class representation doesn’t change

that.

4. DISCUSSION AND CONCLUSION

We have introduced a novel exact representation of the color information associated with the cdbg. Our

representation yields large improvements in terms of representation size compared to previous state-of-the-

art approaches. While our MST-based representation is much smaller, it still provides rapid query and can,

for example, return the query results for a transcript across an index of 10‚ 000 RNA-seq experiments

in *0:08 s/query. Furthermore, the size benefit of our proposed representation over that of previous

approaches appears to grow with the number of color classes being encoded, meaning it is not only much

smaller but also much more scalable. Finally, the representation we propose is, essentially, a stand-alone

encoding of the cdbg’s associated color information, making this representation conceptually easy to

integrate with any tool or method that needs to store color information over a large dbg.

Although it is not clear how much further the color information can be compressed while maintaining a

lossless representation, this is an interesting theoretical question. It may be fruitful to approach this question

from the perspective suggested by Yu et al. (2015), of evaluating the metric entropy, fractal dimension, and

information-theoretic entropy of the space of color classes. Practically, however, we have observed that, at

least in our current system, Mantis, for large-scale sequence search, the CQF, which is used to store the

topology of the dbg and to associate color class labels with each k-mer, has become the new scalability

bottleneck. In this study, it may be possible to reduce the space required by this component by making use

of some of the same observations we relied upon to allow efficient color class neighbor search. For

example, because many adjacent k-mers in the dbg share the same color class ID, it is likely possible to

encode this label information sparsely across the dbg, taking advantage of the coherence between topo-

logically nearby k-mers. Furthermore, to allow scalability to truly-massive data sets, it will likely be

necessary to make the system hierarchical or even to adopt a more space-efficient (and domain-specific)

representation of the underlying dbg. Nonetheless, because we have designed our color class representation

Table 5. Query Time and Resident Memory for Mantis Using the Minimum Spanning

Tree-Based Representation for Color Information and the Original Mantis

(Using Ramen, Ramen, Rao-Compressed Color Classes) Over 10,000 Experiments

Mantis with MST Mantis

Index load+query Query Space Index load+query Query Space

10 Transcripts 1 minute 10 seconds 0.3 seconds 118 GB 32 minutes 59 seconds 0.5 seconds 290 GB

100 Transcripts 1 minute 17 seconds 8 seconds 119 GB 34 minutes 33 seconds 11 seconds 290 GB

1000 Transcripts 2 minute 29 seconds 79 seconds 120 GB 46 minutes 4 seconds 80 seconds 290 GB

The ‘‘query’’ column provides just the time taken to execute all queries (as would be required if the index was already loaded in e.g.,

a server-based search tool). Note that, in resident memory usage for the MST-based representation, the counting quotient filter always

dominates the total required memory.
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as essentially orthogonal to the dbg representation, we anticipate that we can easily integrate this approach

with improved representations of the dbg.

Mantis with the new MST-based color class encoding is written in C++17 and is available at https://

github.com/splatlab/mantis
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